首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The flexible riser top connection is a critical region for lifetime assessment due to large tension/curvature variations and modeling uncertainties. The bend stiffener polyurethane mechanical response not only presents a nonlinear loading rate and temperature dependency but is also subjected to weather ageing during operation, which may affect its mechanical behavior over time. The top tension, employed for riser local cross-section stress calculation, is usually obtained from global dynamic analyses performed under selected environmental conditions, if direct measurement is not available. As a consequence, both the bend stiffener effect on the curvature distribution and the top tension time series present inherent uncertainties for riser lifetime (re)assessment. In the present work, a proposed monitoring approach composed by gyrometers installed along flexible riser/bend stiffener top connection system length combined with an inverse problem methodology is numerically investigated to estimate the following parameters: (i) polyurethane hyperelastic response and (ii) effective top tension. The top connection system is modeled using a large deflection beam bending model and the parameters are estimated using a damped least-square minimization approach with the Levenberg–Marquardt algorithm. For the preliminary feasibility investigation, the gyrometer experimental data is numerically estimated through Monte Carlo simulations. A case study is carried out to investigate the influence that the number of sensors, sensors arrangement, loading conditions and top connection model have on the inverse parameters estimation. The results indicate that the proposed monitoring approach and inverse parameter estimation methodology may effectively reduce flexible riser lifetime calculation uncertainties.  相似文献   

2.
海洋柔性立管弯曲加强器参数敏感性分析   总被引:1,自引:0,他引:1  
荆彪  朱克强  杨然哲 《海洋工程》2016,34(3):99-104
针对海洋立管弯曲加强器所受环境载荷与功能载荷的特点,基于有限元法对某海洋柔性立管弯曲加强器结构进行数值分析。通过有限元分析软件建立了弯曲加强器与柔性立管组合等效模型,重点讨论了弯曲加强器的设计参数对其自身防弯性能的影响,根据弯曲加强器的曲率及柔性立管的应力分布,对弯曲加强器结构进行优化设计,得到结论可供设计参考。  相似文献   

3.
Flexible marine risers are commonly used in deepwater floating systems.Bend stiffeners are designed to protect flexible risers against excessive bending at the connection with the hull.The structure is usually analyzed as a cantilever beam subjected to an inclined point load.As deflections are large and the bend stiffener material exhibits nonlinear stress-strain characteristics,geometric and material nonlinearities are important considerations.A new approach has been developed to solve this nonlinear problem.Its main advantage is its simplicity;in fact the present method can be easily implemented on a spreadsheet.Finite element analysis using ABAQUS is performed to validate the method.Solid elements are used for the bend stiffener and flexible pipe.To simulate the near inextensibility of flexible risers,a simple and original idea of using truss elements is proposed.Through a set of validation studies,the present method is found to be in a good agreement with the finite element analysis.Further,parametric studies are performed by using both methods to identify the key parameters and phenomena that are most critical in design.The most important finding is that the common practice of neglecting the internal steel sleeve in the bend stiffener analysis is non-conservative and therefore needs to be reassessed.  相似文献   

4.
An updated Lagrangian finite element formulation of a three-dimensional annular section beam element is presented for large displacement and large rotation dynamic analyses of flexible riser structures. In this formulation a new linearization method is used to avoid inaccuracies normally associated with other linearization schemes. The effects of buoyancy force as well as steady state current loading are considered in the finite element solution for riser structures response. The formulation has been implemented in a nonlinear finite element code and the results are compared with those obtained from other schemes reported in the literature.  相似文献   

5.
The vortex-induced vibration (VIV) of flexible long riser with combined in-line and cross-flow motion has been studied using a wake oscillator in this paper. The analytical solution of mean top tension of long flexible riser is evaluated and compared with experimental results, and good agreement is observed to verify its validity. Then the nonlinear coupled dynamics of the in-line and cross-flow VIV of a long tension-dominated riser were analyzed through wake oscillator model with the consideration of variation of the mean top tension. The in-line and cross-flow resonant frequencies, lift and drag coefficients, dominant mode numbers, amplitudes and instantaneous deflections are reported and compared with experimental results, and excellent agreements are observed. The comparison of mode numbers between the calculation with and without consideration of variation of mean top tension shows that the proposed analytical solution of the mean top tension can produce a better prediction of multi-mode VIV.  相似文献   

6.
7.
The dynamic analysis of a deepwater floating structure is complicated by the fact that there can be significant coupling between the dynamics of the floating vessel and the attached risers and mooring lines. Furthermore, there are significant nonlinear effects, such as geometric nonlinearities, drag forces, and second order (slow drift) forces on the vessel, and for this reason the governing equations of motion are normally solved in the time domain. This approach is computationally intensive, and the aim of the present work is to develop and validate a more efficient linearized frequency domain approach. To this end, both time and frequency domain models of a coupled vessel/riser/mooring system are developed, which each incorporate both first and second order motions. It is shown that the frequency domain approach yields very good predictions of the system response when benchmarked against the time domain analysis, and the reasons for this are discussed. It is found that the linearization scheme employed for the drag forces on the risers and mooring lines yields a very good estimate of the resulting contribution to slow drift damping.  相似文献   

8.
9.
A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the two-way fluid–structure interaction(FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline(IL) and crossflow(CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean-square(RMS) amplitude and the relatively chaotic trajectories. The fluid–structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3 D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3 D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.  相似文献   

10.
A finite differences (FD) solution method is proposed for the numerical treatment of the dynamic equilibrium problem of 2D catenary risers. The method is based on the so-called Box approximation, which in the scope of the present contribution is applied to the complete nonlinear model as well as to the reduced linearized formulation. The application of the Box method transforms the original governing systems into convenient sets of algebraic equations, which in turn are solved efficiently by the relaxation method. Extensive numerical calculations are presented that describe the dynamic behaviour of the structure and evaluate the amplification in loading due to the dynamic components. The effect of the geometric nonlinearities is assessed through comparative calculations that concern both mathematical formulations examined in the present, i.e. the complete nonlinear, and the reduced linearized model. Special attention is paid to the heave excitations as they amplify significantly the magnitudes of the loading components.  相似文献   

11.
In order to study the effect of internal flow on vortex-induced vibration of flexible riser, the experiment on the vortex-induced vibration of flexible riser transporting fluid in the current was conducted in the physical oceanography laboratory of Ocean University of China. Considering the internal flowing fluid and external marine environment, the dynamic response of the flexible riser was measured. The corresponding numerical simulation was performed using the wake oscillatory model considering the extensibility of the riser system. Both the experiment and the numerical simulation indicated that with the increase of internal flow speed, the response amplitude increases, while the response frequency decreases.  相似文献   

12.
The anchorage system for mid-ocean loading or production consists of an articulated tower for mooring the tanker. Flexible risers are also essential components of the anchorage system. The present paper provides a state-of-the-art review on articulated storage systems and flexible risers, giving theoretical background for the development of computer software for the static analysis of flexible risers.In the state-of-the-art review for flexible risers, various analysis techniques for elastic lines and flexible risers under self-weight, current and wave forces are presented. The dynamic response of the flexible riser, including vortex-induced oscillations, is also outlined.The literature concerning the articulated tower and tanker is relatively scarce. Available works related only to dynamic responses of articulated towers. The combined response of tower and tanker is only studied by Chakrabarti and Cotter [(1978), Analysis of a tower-tanker system. In Proceedings of the 10th Offshore Technology Conference, OTC 3202, pp. 1301–1310] in a limited sense. The review of these works is summarised relevant to this paper.In the end, the static analysis of the flexible riser under its self-weight and current is presented using a finite difference approach. The problem essentially involves geometrical non-linearity, which is tackled with the help of an iterative solution based on modified Newton-Raphson technique. The theoretical formulation presented is being used to develop the computer software for the static analysis of the flexible risers.  相似文献   

13.
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.  相似文献   

14.
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.  相似文献   

15.
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally the three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.  相似文献   

16.
In this study, a practical model is proposed to predict cross-flow (CF) and in-line (IL) vortex-induced vibrations of a flexible riser in time domain. The hydrodynamic force as a function of non-dimensional amplitude and frequency is obtained from the forced vibration experimental data of a two-dimensional cylinder. An empirical nonlinear damping model is used to simulate the hydrodynamic damping outside the experiment's range. Coupling effect of CF and IL-VIV is taken into account by implanting a magnification model for the IL hydrodynamic force associated with CF amplitude, and by increasing the non-dimensional amplitude corresponding to the IL hydrodynamic coefficient in the second excitation region. The experimental models of flexible riser under the uniform and sheared current are simulated to validate the proposed model. The predicted displacement, curvatures, excited modes and fatigue damage show reasonable agreement with the measured data.  相似文献   

17.
Dynamic and static analysis of a marine riser   总被引:1,自引:0,他引:1  
A frequency domain normal mode solution is presented for the dynamic response of an unbuoyed marine riser subjected to periodic excitation from a surface vessel in the direction of wave propagation. The variable tension beam-column equation is solved in terms of normal modes of free vibration of the riser and the rigid body displacement. Drag forces on the riser are represented by Morison's formula taking account of the velocity of the riser and wave-induced fluid velocity. A periodic solution for the flexural motion of the riser and the bending stress is then obtained by means of an iterative solution of the frequency response function. The drag force induced stresses arising from a linearly varying current are also determined. The results presented compare favourably with those obtained by other methods.  相似文献   

18.
In consideration of the effect of the internal flowing fluid and the external marine environmental condition on the vortex-induced vibration (VIV) of top tensioned riser (Till), the differential equation is derived based on work-energy principles and the riser near wake dynamics is modeled by Facchinetti' s wake oscillator model. Then Galerkin' s finite element approximation is implemented to derive the nonlinear matrix equation of the coupled equations and file corresponding numerical programs are compiled which solve the coupled equations directly in the time domain. The comparison of the predicted results with the recent experimental results and the prediction of SHEAR7 is performed. The results show the validity of the proposed method on the prediction of VIV of deep water risers. The effect of internal flow on the dynamic characteristics and dynmnic response of the riser is analyzed and several valuable conelusions are drawn.  相似文献   

19.
海洋立管是深海油气开发中用于连接海底井口和水面浮体的唯一通道。立管在洋流作用下极易发生涡激振动(vortex-induced vibration,简称VIV),发展快速经验性涡激振动时域预报方法对立管的安全设计具有重要意义。通过柔性立管模型试验,结合载荷重构方法和最小二乘法,识别建立了能量竞争载荷模型下的经验水动力载荷系数模型。应用识别建立的经验水动力载荷系数模型,发展形成了海洋立管顺流向及横流向双向涡激振动时域预报方法。将预报结果与试验结果对比,结果表明:基于能量竞争载荷模型的海洋立管双向涡激振动预报方法能够有效预报海洋立管涡激振动主导模态、主导频率、流向平均位移响应和涡激振动位移响应等力学行为特性。研究成果对发展更为有效的涡激振动预报手段具有有益参考。  相似文献   

20.
考虑钢悬链线立管大变形的特性以及内流的影响,利用Kane方法和拉格朗日应变理论建立钢悬链线立管的二维动力学模型。将顶部浮体的激励简化为一个沿顺流向的周期作用力施加于立管顶部,采用平均加速度法求解立管的动力响应。探讨顶部浮体不同激励频率下立管的非线性动力响应以及内流流速的大小对管道共振响应幅值的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号