首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A dynamic response analysis in the frequency domain is presented for risers subjected to combined wave and current loading. Considering the effects of current, a modified wave spectrum is adopted to compute the linearized drag force. An additional drag force convolution term is added to the linearized drag force spectrum, therefore the error is reduced which arises from the truncation of higher order terms in the drag force auto-correlation function. An expression of linearized drag force spectrum is given taking the relative velocity into account. It is found that the additional term is a fold convolution integral. In this paper dynamic responses of risers are investigated, while the influence of floater motion on risers is considered. The results demonstrate that the accuracy of the present method reaches the degree required in time domain analysis.  相似文献   

2.
复合加载下桶形基础循环承载性能数值分析   总被引:1,自引:0,他引:1  
作为一种新型基础形式,吸力式桶形基础除了承受海洋平台结构及自身重量等竖向荷载的长期作用之外,往往还遭受波浪等所产生的水平荷载及其力矩等其它荷载分量的瞬时或循环作用。对复合加载模式下软土地基中桶形基础及其结构的循环承载性能尚缺乏合理的分析与计算方法。应用Andersen等对重力式平台基础及地基所建议的分析方法,基于软黏土的循环强度概念,在大型通用有限元分析软件ABAQUS平台上,通过二次开发,将软土的循环强度与Mises屈服准则结合,针对吸力式桶形基础,基于拟静力分析建立了复合加载模式下循环承载性能的计算模型,并与复合加载作用下极限承载性能进行了对比。由此表明,与极限承载力相比,桶形基础的循环承载力显著降低。  相似文献   

3.
厦门海域浅水三维潮流场动力学模型   总被引:2,自引:0,他引:2       下载免费PDF全文
基于Casulli的三维浅水模型,改进浅滩处理方法,并入简化的紊流闭合模型,形成完整的海洋动力学基本方程组,改进了紊流闭合模型的求解方法,动力学模拟结果与实测结果符合良好,海域中大量浅滩的干出与淹没的面积和位置与实际情况吻合良好.本模型是厦门海域海洋动力学理论研究中第一个完全的三维斜压潮流场模型,全部程序用FORTRAN语言独立开发和编写.  相似文献   

4.
Bend stiffeners are essential components of a flexible riser system, employed to ensure a smooth transition at the upper connection and to protect the riser against over bending and from accumulation of fatigue damage. The highly nonlinear rate dependent behavior of these structures directly affects the integrity assessment of the riser in one of its most critical regions, the top connection. A steady-state formulation (disregarding inertial forces) and numerical solution procedure is developed in this work employing the perturbation method for a nonlinear viscoelastic bend stiffener large deflection beam model subjected to harmonic loading conditions. For stochastic loading conditions, the response is calculated employing the superposition principle by summing up the steady-state result of a number of individual frequency components. A time domain formulation is also derived employing the state-variable approach for the numerical solution of the resulting hereditary integral in the governing equations. A case study is presented for the top connection system of a 4″ ID flexible riser using relaxation and tensile experimental data obtained from a typical class of bend stiffener polyurethane. Harmonic and stochastic input loading conditions are employed for time and frequency domain model comparison/validation and to assess loading history and frequency influence in the curvature response.  相似文献   

5.
This paper presents the numerical solution of a new nonlinear mild-slope equation governing waves with different frequency components propagating in a region of varying water depth. There are two new nonlinear equations. The linear part of the equations is the mild-slope equation, and one of the models has the same non-linearity as the Boussinesq equations. The new equations are directly applicable to the problems of nonlinear wave-wave interactions over variable depth. The equations are first simplified with the parabolic approximation, and then solved numerically with a finite difference method. The Crank-Nicolson method is used to discretize the models. The numerical models are applied to a set of published experimental cases, which are nonlinear combined refraction-diffraction with generation of higher harmonic waves. Comparison of the results shows that the present models generally predict the measurements better than other nonlinear numerical models which have been applied to the data set.  相似文献   

6.
Numerical modeling of nonlinear water waves over heterogeneous porous beds   总被引:1,自引:0,他引:1  
Eric C. Cruz  Qin Chen   《Ocean Engineering》2007,34(8-9):1303-1321
The transformation of nonlinear water waves over porous beds is studied by applying a numerical model based on Chen's [2006. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132:2, 220–230] Boussinesq-type equations for highly nonlinear waves on permeable beds. The numerical model uses a high-order time-marching solution and fourth-order finite-difference schemes for discretization of first-order spatial derivatives to obtain a computational accuracy consistent with the model equations. By forcing the wave celerity and spatial porous-damping rate of the linearized model to match the exact linear theory for horizontal porous bed over a prescribed range of relative depths, the values of the model parameters are optimally determined. Numerical simulations of the damped wave propagation over finite-thickness porous layer demonstrate the accuracy of both the numerical model and governing equations, which have been shown by prior theoretical analyses to be accurate for both nominal and thick porous layers. These simulations also elucidate on the significance of the higher-order porous-damping terms and the influence of the hydraulic parameters. Application of the model to the simulation of the wave field around a laboratory-scale submerged porous mound provides a measure of its capability, as well as useful insight into the scaling of the porous-resistance coefficients. For application to heterogeneous porous beds, the assumption of weak spatial variation of the porous resistance is examined using truncated forms of the governing equations. The results indicate that the complete set of Boussinesq-type equations is applicable to porous beds of nonhomogeneous makeup.  相似文献   

7.
林诚鑫  黄维  刘海笑 《海洋工程》2012,30(3):97-104
在循环载荷作用下,合成纤维系缆的应力应变关系表现出明显的非线性特性,直接影响系泊缆绳的动力响应。如何针对其在循环载荷作用下的应力应变关系进行准确的定量描述是有关绷紧式系泊系统设计的关键问题。国内外研究者之前的研究不能反映缆绳的载荷历史、蠕变特性以及刚度变化过程,因此提出一个粘弹性粘塑性模型来描述合成纤维系缆的应力应变关系。本模型能够反映合成纤维缆绳的时间变化特性以及在整个加载—卸载过程中的刚度变化。此外,提出了明确的参数确定方法及步骤,基于简单的蠕变实验可以确定模型的各个参数。将两种载荷条件下聚酯缆绳的实验结果与模型结果进行对比,二者吻合较好,证明了模型的有效性和可靠性。本研究对于绷紧式系泊系统的研发和工程应用具有重要意义。  相似文献   

8.
非线性波传播的新型数值模拟模型及其实验验证   总被引:3,自引:4,他引:3  
以一种新型的Boussinesq型方程为控制方程组,采用五阶Runge-Kutta-England格式离散时间积分,采用七点差分格式离散空间导数,并通过采用恰当的出流边界条件,从而建立了非线性波传播的新型数值模拟模型.通过对均匀水深水域内波浪传播的数值模拟说明,模型能较好地模拟大水深水域和强非线性波的传播.通过设置不同的入射波参数来进行潜堤地形上波浪传播的物理模型实验,并将数值解与物理模型实验结果进行了比较.  相似文献   

9.
On the nonlinear hydrodynamic forces for a ship advancing in waves   总被引:1,自引:0,他引:1  
In this paper, using a second-order steady-state approach and a three-dimensional (3D) pulsating source distribution method derives the nonlinear hydrodynamic forces on a ship advancing in waves. The nonlinear hydrodynamic forces considered here consist of the mean lateral drifting force and the added resistance, which can be expressed as products of the ship-motion responses, the radiation potential, diffraction potential and the incident-wave potential. All related velocity potentials applied in the calculations are in 3D form. The Series 60 and Marine ship hulls are used for numerical calculations and the results are compared with existing experimental data and two-dimensional (2D) solutions. The comparisons show that the results obtained in the paper generally agree with experimental data well. It is also found that the nonlinear hydrodynamic forces obtained based on the present 3D source distribution methods are indeed improved in some calculations compared with the 2D method, especially for the mean lateral drifting force.  相似文献   

10.
It is the purpose of this study to investigate the dynamic behaviour of catenary pipelines for marine applications, assuming the combined effect of harmonic motions imposed at the top, and the internal slug-flow. The analysis is based on the assumption of a steady slug-flow inside the pipe that results in a relatively simplified model for the formulation of the internal flow. The slug-flow model is described using several assumptions and empirical correlations which attempt to reveal the ill-understood and concealed properties of the slug-flow. The pipeline dynamics are investigated in the two dimensional space omitting the out-of-plane vibrations. The system of differential equations is generic and accounts for the steady effect of the internal liquid as is conveyed through the structure.The two models, those of the internal slug-flow and the pipeline’s dynamical model, are properly combined through the internal flow terms of the dynamic equilibrium system. The solution provided is achieved using a frequency domain technique which is applied to the linearized governing set. The effect of the slug-flow is assessed through comparative computations with and without internal flow effects. The conclusions are drawn having the structure excited under axial and normal motions paying particular attention to the variation of the dynamic components along the complete length of the pipeline.  相似文献   

11.
A model problem of the flow under an air-cushion vessel is studied. Two different numerical techniques are used to determine the solution of the free-surface elevation and the wave resistance for a range of Froude number, Reynolds number, value of the pressure applied in the cushion, and depth of the water. The first numerical technique uses a velocity potential that satisfies linearized free-surface boundary conditions, whereas the second employs a finite-volume method to find a solution that satisfies the fully nonlinear free-surface boundary conditions. The results clearly show that for high Froude number and practical values of the cushion pressure, the linear-theory solution is in excellent agreement with the more exact nonlinear prediction. For lower Froude number the solution becomes unsteady, and the disagreement between the two methods is larger.  相似文献   

12.
This paper deals with the finite-element analysis of compliant structures containing nonlinear elastic components and subjected to loading by waves and currents. An efficient procedure to model such components is developed and implemented in a computer program. It can be applied to analyze nonlinear elastic ropes, rubber tethers, risers, and hoses. The elastic modulus is assumed to depend on the amount of strain in a component. The Newton-Raphson iteration scheme is modified to account for the change of elastic properties on each step of time integration procedure. The approach is applied to develop feed buoy mooring systems for the University of New Hampshire Open Ocean Aquaculture site. The complex nonlinear and viscoelastic load-elongation behavior of suitable high stretch mooring elements for this application is modeled to obtain realistic numerical predictions at sea conditions. Various designs and environmental loading scenarios are considered. Numerical simulations provide predictions of the overall dynamics of the system and maximum values of tensions in critical components.  相似文献   

13.
In this study, the flow around the pod unit is analysed and the performance characteristics of the propeller on the pod are investigated. The main objective of the present work is to further improve the original numerical method developed before for the prediction of performance of podded propellers and to further validate the earlier developed numerical model with a specific emphasis on the hydrodynamic interaction amongst the propulsor components. While in the earlier numerical method, the axial induced velocities by pod and strut parts were included into the calculations on the propeller disc plane, in the present method the tangential induced velocities on the propeller disc plane are included in the calculations as well. The flow domain around the podded propeller is mainly divided into three parts; the axisymmetric pod part, the strut part and the propeller part. While the pod and strut parts are modelled by a low-order boundary element method (BEM), the propeller is represented by a vortex lattice method (VLM). Coupling of the BEM and the VLM is carried out in an iterative manner to incorporate the effect of the pod on the propeller, and vice versa. The present numerical method is applied to two different podded propellers with zero yaw angles in order to compare the results with those of experimental measurements. The present numerical method is also validated in the case of 15° of yaw angle for a podded propulsor. The effect of pod and strut on the propeller and vice versa are discussed.  相似文献   

14.
Nonlinear Finite Element Analysis of Ocean Cables   总被引:1,自引:1,他引:1  
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparamnetrie curved cable element based on the Lagrangian folmulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.  相似文献   

15.
We analyze the results of numerical calculations performed according to the three-dimensional interdisciplinary model of an ecological system of the Black-Sea shelf zone near the estuary of the Danube. The complete system of equations of hydrothermodynamics is solved together with transport equations of the advection-diffusion-reaction type used to describe the transformation of a substance (nitrogen) between the components of the characteristic vectors of the ecosystem: plankton, detritus, and biogenic elements (nitrates). We describe the distinctive features of the circumcontinental distribution of components obtained as a result of numerical experiments and present arguments for the conclusion that the ecosystem of the Danube estuary water area plays the role of a buffer zone between the press of the Danubian biogenic pollutions and the neighbouring areas of the shelf zone and open sea. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

16.
Optimal Active Control of Wave-Induced Vibration for Offshore Platforms   总被引:2,自引:0,他引:2  
An obvious motivation of this paper is to examine the effectiveness of the lateral vibration control of a jacket type offshore platform with an AMD control device, in conjunction with H2 control algorithm, which is an optimal frequency domain control method based on minimization of H2 norm of the system transfer function. In this study, the offshore platform is modeled numerically by use of the finite element method, instead of a lumped mass model. This structural model is later simplified to be single-degree-of-freedom (SDOF) system by extracting the first vibration mode of the structure. The corresponding "generalized" wave force is determined based on an analytical approximation of the first mode shape function, the physical wave loading being calculated from the linearized Morison equation. This approach facilitates the filter design for the generalized force. Furthermore, the present paper also intends to make numerical comparison between H2 active control and the corresponding passive control using a T  相似文献   

17.
《Coastal Engineering》2005,52(8):655-672
This paper describes the extension of a finite difference model based on a recently derived highly accurate Boussinesq formulation to include domains having arbitrary piecewise-rectangular bottom-mounted (surface-piercing) structures. The resulting linearized system is analyzed for stability on a structurally divided domain, and it is shown that exterior corner points pose potential stability problems, as well as other numerical difficulties. These are mainly due to the discretization of high-order mixed-derivative terms near these points, where the flow is theoretically singular. Fortunately, the system is receptive to dissipation, and these problems can be overcome in practice using high-order filtering techniques. The resulting model is verified through numerical simulations involving classical linear wave diffraction around a semi-infinite breakwater, linear and nonlinear gap diffraction, and highly nonlinear deep water wave run-up on a vertical plate. These cases demonstrate the applicability of the model over a wide range of water depth and nonlinearity.  相似文献   

18.
A numerical model is presented to predict the interaction of multidirectional random surface waves with one or more rectangular submarine pits. The water depth is assumed uniform and the method involves the superposition of diffraction solutions based on linearized shallow water wave theory obtained by a two-dimensional boundary integral approach. The incident wave conditions are specified using a discrete form of the Mitsuyasu directional spectrum. The present numerical model has been validated through comparisons with previous theoretical results for regular waves. Good agreement was obtained in all cases. Based on these comparisons it is concluded that the present numerical model is an accurate and efficient tool to predict the wave field around multiple submarine pits and navigation channels in many practical situations.  相似文献   

19.
The paper presents a constitutive model to describe undrained cyclic stress-strain responses of soft clays based on the equivalent visco-elastic and creep theories. The hysteretic and nonlinear stress-strain responses of soft clays are described using the equivalent visco-elastic relationship and variations of the cyclic modulus and the damping ratio with the octahedral shear strain, respectively in the model. The cyclic accumulative strain is described using the Mises creeping potential function and the associated flow rule. The method determining the model parameters is given by static and cyclic triaxial tests. The finite element method to analyze deformation of anchor foundation in soft clay under static and cyclic loads is developed based on the model. For the method, a cyclic loading time history is divided into a series of incremental loading sub-processes which include one load cycle at least. The cyclic stress-strain responses of soil elements at any time are not tracked in detail and determined by the equivalent visco-elastic calculations for every loading sub-process. The accumulative deformation of anchor foundations is calculated using the initial strain algorithm. The method has been implemented in ABAQUS Software by developing interface programs. Model tests of the suction anchors are conducted and predicted using the method. Comparisons of predicted and model test results show that the method can be used to evaluate cyclic stability and reveal the failure process and mechanism of anchor foundations by analyzing deformation time-histories.  相似文献   

20.
In this paper we present a model for oscillating-foil propulsion in which springs are used to transmit forces from the actuators to the foil. The expressions for hydrodynamic force and moment on the foil come from classical, linear, unsteady aerodynamics, and these are coupled to linearized rigid-body mechanics to obtain the complete model for swimming. The model is presented as a low-order set of ordinary differential equations, which makes it suitable for the application of techniques from systems and control theory. The springs serve to reduce energy costs, and we derive explicit expressions for spring constants which are optimal in this sense. However, the use of springs can potentially lead to unstable dynamics. Therefore, we also derive a set of necessary and sufficient conditions for stability. A detailed example is presented in which energy costs for one actuator are reduced by 33%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号