首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Coastal Engineering》2002,46(2):139-157
At plunging breakers, air bubbles are entrained at the impingement of the water jet, formed at the top of the wave, with the water free surface in front. During the present study, air bubble entrainment at a pseudo-plunging breaker was investigated at near full-scale and further experimental work studied the bubble detrainment process. Experimental observations included the generation and propagation of waves downstream of the plunge point. Experimental results highlighted a number of unsteady air–water flow patterns and emphasise high levels of aeration: i.e., depth-averaged void fraction of more than 10% next to jet impact in shallow waters. Unsteady bubble injection experiments showed a strong vortical motion induced by the rising bubbles. Altogether, the results suggest that a dominant time scale is the bubble rise time d1/ur, which cannot be scaled properly with an undistorted Froude model. The study contributes to a better understanding of unsteady bubble entrainment at a pseudo-plunging breaker and the associated vortical circulation.  相似文献   

2.
Jiankang Wu  Bo Chen 《Ocean Engineering》2003,30(15):1899-1913
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow , and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when , the frequency dispersion can be neglected in supercritical flows.  相似文献   

3.
Zhiliang Gao  Zaojian Zou   《Ocean Engineering》2008,35(11-12):1271-1282
A high-order Rankine panel method based on Non-Uniform Rational B-Spline (NURBS) is developed for solving the three-dimensional radiation and diffraction problems with forward speed. A NURBS surface is used to precisely represent the body geometry. Velocity potential on the body surface is described by B-spline after the source density distribution on the boundary surface is determined. A collocation approach is applied to numerical computation and the integral equations are evaluated by applying Gauss–Legendre quadrature. The mj-terms are evaluated by a desingularized method which utilizes NURBS technique. In order to verify the method proposed, it is firstly applied to the unbounded flow problem of a sphere and spheroids. The numerical results are found to be in good agreement with analytical solutions. Then the method is used to solve the radiation and diffraction problems of a sphere and the diffraction problem of a spheroid moving with a forward speed beneath the free surface in frequency domain. The numerical results are satisfactory in comparison with the published analytical results and experimental results.  相似文献   

4.
Numerical experiments with two-dimensional nonhydrostatic model have been performed to investigate tidally generated internal waves at the Dewakang sill at the southern Makassar Strait where two large-amplitude “bumps” of relatively shallow water exist. We investigate the effect of these features on vertical mixing, with emphasis on the transformation of the Indonesian throughflow (ITF) water properties. The result shows that large-amplitude internal waves are generated at both bumps by the predominant M2 tidal flow, even though the condition of the critical Froude number and the critical slope are not satisfied. The internal waves induce such vigorous vertical mixing in the sill region that the vertical diffusivity attains a maximum value of 6 × 10−3 m2s−1 and the salinity maximum and minimum core layers characterizing the ITF thermocline water are considerably weakened. Close examination reveals that bottom-intensified currents produced mainly by the joint effect of barotropic M2 flow and internal tides generated in the concave region surrounding both bumps can excite unsteady lee waves (Nakamura et al., 2000) on the inside slopes of the bumps, which tend to be trapped at the generation region and grow into large-amplitude waves. Such generation of unsteady lee waves does not occur in case of one bump alone. Trapping and amplification of the waves in the sill region induce large vertical displacements (∼60 m) of water parcels during one tidal period, leading to strong vertical mixing there. Since the K1 tidal currents are relatively weak, large-amplitude internal waves causing intense vertical mixing are not generated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A general formulation is given of the hydrodynamic forces on a ship, oscillating about a state of rest in 6df in response to excitation by a harmonic wave in shallow water. A method is described to obtain a numerical approximation of the velocity potential, describing the flow around the moving ship by means of a distribution of discrete three-dimensional sources.With this method it is possible to take the influence of a quay into account.Calculated values of wave excited forces, hydrodynamic coefficients and motions of a 200,000 tdw tanker in shallow water are presented and compared with experimental results.  相似文献   

6.
Direct numerical simulations are performed to study the transformation of internal solitary waves (ISWs) of depression type propagating over an underwater ridge in a two-layer fluid system. Bottom ridges with relatively smooth vertex are employed to represent sills in natural lakes and oceans. Consistent with previous experiments, three interaction types (weak, moderate and strong) are observed to be based on the energy loss. In addition, the moderate interaction are found to be categorized into transmitted and reflected type according to their distinct transformation process. General flow characteristics for ISW–ridge interaction in the benthic boundary layer and in the pycnocline is monitored and analysed. A modified degree of blocking Bm considering both the nonlinear effect of incident ISWs and the blockage effect of the submerged ridge is proposed. Different ISW–ridge interactions are discovered to be linked with Bm. Maximum wave-induced velocities, wave energy losses, reflected and transmitted wave amplitudes are found to have a self-similar feature with Bm. The maximum energy loss is up to 35% and the maximum wave-induced velocity can reach 1.8 times of the phase speed of the incident ISW. Empirical equations are obtained based on the data fitting to predict some useful physical parameters during ISW–ridge interaction.  相似文献   

7.
The experimental studies of the wave breaking effects on freak wave generation are presented within a finite-depth random wave train in a laboratory wave tank. The main attention is paid to the abnormal index, AI=Hmax/Hs, being used to characterize the freak waves, and the changes of the coefficient due to wave breaking. The results show that the occurence in deep water is larger than that in shallow water.  相似文献   

8.
An experimental study, conducted in the large wave flume of CIEM in Barcelona, is presented to evaluate the effects of Posidonia oceanica meadows on the wave height damping and on the wave induced velocities. The experiments were performed for irregular waves from intermediate to shallow waters with the dispersion parameter h/λ ranging from 0.09 to 0.29. Various configurations of the artificial P. oceanica meadow were tested for two stem density patterns (360 and 180 stems/m2) and for plant's height ranging from 1/3 to 1/2 of the water depth.The results for wave height attenuation are in good agreement with the analytical expressions found in literature, based on the assumption that the energy loss over the vegetated field is due to the drag forces. Based on this hypothesis, an empirical relationship for the drag coefficient related to the Reynolds number, Re, is proposed. The Reynolds number, calculated using the artificial P. oceanica leaf width as the length scale and the maximum orbital velocity over the meadow edge as the characteristic velocity scale, ranges from 1000 to 3500 and the drag coefficient Cd ranges from 0.75 to 2.0.The calculated wave heights, using the analytical expression from literature and the proposed relationship for the estimation of Cd, are in satisfactory agreement with those measured. Wave orbital velocities are shown to be significantly attenuated inside the meadow and just above the flume bed as indicated by the calculation of an attenuation parameter. Near the meadow edge, energy transfer is found in spectral wave velocities from the longer to the shorter wave period components. From the analysis it is shown that the submerged vegetation attenuates mostly longer waves.  相似文献   

9.
Nonlinear Dynamic Behaviors of A Floating Structure in Focused Waves   总被引:1,自引:1,他引:0  
曹飞凤  赵西增 《海洋工程》2015,29(6):807-820
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.  相似文献   

10.
安达曼海是内孤立波生成最多的海域之一,目前对其研究大多基于卫星遥感,缺乏基于现场观测资料的相关研究。本文通过2016年至2017年布放在安达曼海中部的锚系潜标对该海域内孤立波的方向和强度进行研究,结果表明在研究区域内孤立波主要向东北方向传播,最大振幅可达100 m。应用彻体力理论预测了研究海域内孤立波波源的分布,与遥感统计结果基本一致,并且波源位置更精确,可直观地给出不同波源激发内孤立波的能力。本文分别用浅水方程、深水方程和有限深方程对安达曼海中部内孤立波相速度进行模拟,结合卫星遥感分析发现该海域内孤立波的产生符合Lee波机制,在三种方程中有限深方程的模拟效果与潜标观测最相符。  相似文献   

11.
Effects of high-order nonlinear interactions on unidirectional wave trains   总被引:2,自引:0,他引:2  
Numerical simulations of gravity waves with high-order nonlinearities in two-dimensional domain are performed by using the pseudo spectral method. High-order nonlinearities more than third order excite apparently chaotic evolutions of the Fourier energy in deep water random waves. The high-order nonlinearities increase kurtosis, wave height distribution and Hmax/H1/3 in deep water and decrease these wave statistics in shallow water. Moreover, they can generate a single extreme high wave with an outstanding crest height in deep water. High-order nonlinearities (more than third order) can be regarded as one cause of freak waves in deep water.  相似文献   

12.
In the present paper a general longshore transport (LT) model is proposed after a re-calibration of the model originally introduced by Lamberti and Tomasicchio (1997) based on a modified stability number, Ns⁎⁎, for stone mobility at reshaping or berm breakwaters. Ns⁎⁎ resembles the traditional stability number (Ahrens, 1987; van der Meer, 1988) taking into account the effects of a non-Rayleighian wave height distribution at shallow water (Klopman and Stive, 1989), wave steepness, wave obliquity, and nominal diameter of the units. Nine high-quality data sets from field and laboratory experiments have been considered to extend the validity of the original model for a wider mobility range of the units: from stones to sands. The predictive capability of the proposed model has been verified against the most popular formulae in literature for the LT estimation of not cohesive units at a coastal body. The comparison showed that the model gives a better agreement with the physical data with respect to the other investigated formulae.The proposed transport model presents a main advantage with respect to other formulae: it can represent an engineering tool suitable for a large range of conditions, from sandy beaches till reshaping breakwaters.  相似文献   

13.
Unsteady nonlinear wave motions on the free surface in shallow water and over slopes of various geometries are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier–Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. Either linear or Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with various wave periods and sea bottom slopes in surf zone. The results are compared with other existing computational and experimental results. Agreement between the experimental data and the computation results is good.  相似文献   

14.
A numerical study was undertaken in order to assess the capability of an unsteady RANS code to predict the seakeeping characteristics of a high-speed multi-hull vessel in high sea states. Numerical analysis includes evaluation of ship motions, effects of wave steepness on ship response, catamaran natural frequency and added resistance in waves. Computations were performed for the DELFT 372 catamaran by the URANS solver CFDSHIP-Iowa V.4. The code was validated with encouraging results for high ship speeds (0.3≤Fn≤0.75) and high wave amplitudes (0.025≤Ak≤0.1). Comparison with strip theory solutions shows that the RANS method predicts ship motions with higher accuracy and allows the detection of nonlinear effects. Current computations evidence that heave peaks occur at resonance for all Fn, and reach the absolute maximum at Fn=0.75. Maximum pitch occurs at frequencies lower than resonance, for each speed, and absolute maximum occurs at medium Fn=0.6. Maximum added resistance, Raw, was computed at Fn=0.45, which, interestingly, is near the catamaran Fncoincidence. Overall, we found similar results as Simonsen et al. (2008) for KCS containership, though, herein, a multi-hull geometry and higher speeds were tested. Also, our results are useful to further evaluate the exciting forces and their correlation with fe and λ/Lpp.  相似文献   

15.
《Ocean Engineering》2004,31(3-4):305-341
The paper seeks to examine hydrodynamic coefficients of a rectangular structure in shallow water and to establish analytical formulae for fast computations. A two-dimensional rectangular profile is considered with the under-bottom clearance assumed to be small compared with structure dimensions and the water depth. Following the method of matched asymptotic expansions, the radiation problem is solved under assumptions of the linear wave theory, by matching two ‘outer’ flows with the ‘inner’ flow near the structure edge. Closed asymptotic formulae are obtained for all hydrodynamic coefficients for heave, sway and roll motions. The zero and infinite frequency values of the added mass are examined and formulae are derived intended for quick engineering estimations. Numerical results compare well with those published in literature, and the approach is shown to be consistent with known fundamental relations in the body–wave interaction theory.  相似文献   

16.
17.
18.
Analysis of a craft with two degrees of freedom (2DOF) consumes time more than simulation of a craft with a fixed trim condition; therefore in most of the previous researches fixed trim condition is taken into account to analyze the flow field around a craft in shallow water and head sea wave conditions. In this paper numerical simulation of Reynolds Average Naiver Stokes (RANS) equations are used to analyze the motion of DTMB 62 model 4667-1 planing vessel in calm water and head sea waves in both deep and shallow water with two degrees of freedom (heave and pitch). For this purpose, a finite volume ANSYS-FLUENT code is used to solve the Navier-Stokes equations for the simulation of the flow field around the vessel. In addition, an explicit VOF scheme and SST k-ω model is used with dynamic mesh scheme to capture the interface of a two-phase flow and to model the turbulence respectively in the 2DOF model.Regarding the results, reducing the wavelength and also the depth of the water can increase the drag force. Also comparing the results of a fixed trim vessel with the results of a free to sink and trim one in calm water shows a difference of approximately 50% in the drag force in shallow water.  相似文献   

19.
At first-order of approximation a sea-state may be considered as an infinite sum of Airy components with angular frequencies ωi and wave-number vectors ki. A second-order analysis shows the co-existence of long waves appearing at the difference frequencies ωiωj with wave-number vectors ki—kj. In shallow water they become appreciable in amplitudes and may induce slow-drift motion of moored structures.For small values of ωiωj,ki—kj may take all kinds of directions for an angular-spread wave system. Then it may be questioned how the in-line and transverse second-order accelerations compare to those obtained for a mono-directional wave-system.This analysis is carried out here by relating the spectra of the second-order horizontal accelerations to the directional wave-spectrum. Numerical applications are first performed for deep water. They show that at low frequencies, even for very narrowly spread wave systems, the transverse component is larger than the in-line component. In shallow water both components are dratically reduced as compared to the mono-directional case. As a consequence one may question the validity of model-testings or numerical models which take no account of the directionality of the wave-system.  相似文献   

20.
The hydrodynamic problem of a hydrofoil travelling at constant speed in water waves has been investigated through velocity potential theory. The boundary conditions on the free surface have been linearized, and the effects are accounted for through the Green function. The overall problem is decomposed into the steady forward speed problem and periodic wave radiation and diffraction problems. Each of these problems is solved using the boundary integral equation over the hydrofoil surface together with a vortex sheet behind the trailing edge. The body surface boundary condition is imposed on its mean position. As a result the steady potential will contribute a well-known mj term to the body surface boundary condition on the radiation problem. The numerical difficulty in dealing with this term is effectively resolved through a difference method. The effects of the thickness on the wave radiation and diffraction are investigated. The applicability of various reciprocity relationships in this problem is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号