首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
本文利用Cluster卫星2004年11月8日的观测数据,分析了磁尾等离子体片中与地向周期性高速离子流相伴随的ULF波.结果显示周期性高速流的速度波动与磁场和温度中的ULF波同时出现、同时增强、同时消失,而且波动的频率都集中在60~70 mHz.这说明磁场和温度ULF波与周期性高速流密切相关,周期性高速流是ULF波产生的来源.高速流波动的相位与磁场波动的相位大致反相关,与热离子温度波动的相位正相关,同时磁场波动与热离子温度波动呈相位反相关的特性.最小方差法分析的结果显示虽然波传播方向有地向分量,但其主要传播方向是向等离子体片中心传播,并与周期性高速流速度方向垂直.以上观测说明是高速流的周期性变化产生了磁场在Pi1频率范围内的ULF波.  相似文献   

2.
在分析ARCS3探空火箭记录到的由人工离子束激发的低频等离子波的特征和激发机制的过程中,提出了多离子成分冷等离子体中的一般混杂共振和一般混杂波的概念,给出了斜向传播冷等离子体波的混杂共振条件.在上述理论的基础上,考虑了电子、氧离子、氦离子和人工氩离子束的贡献,计算出ARCS3实验条件下的等离子体介电函数,并用等离子体波模识别的方法,识别出频率在180Hz。附近的最强波峰乃是O+-He+双离子混杂波.  相似文献   

3.
在分析ARCS3探空火箭记录到的由人工离子束激发的低频等离子波的特征和激发机制的过程中,提出了多离子成分冷等离子体中的一般混杂共振和一般混杂波的概念,给出了斜向传播冷等离子体波的混杂共振条件.在上述理论的基础上,考虑了电子、氧离子、氦离子和人工氩离子束的贡献,计算出ARCS3实验条件下的等离子体介电函数,并用等离子体波模识别的方法,识别出频率在180Hz。附近的最强波峰乃是O+-He+双离子混杂波.  相似文献   

4.
Geotail卫星于2003年5月15日在近地磁尾观测到磁场重联并穿越重联耗散区.卫星从尾向—南尾瓣一侧穿越磁场重联耗散区到地向—北尾瓣一侧的过程中,随着等离子体流反向,霍尔磁场(By) 被观测到.本文研究了该磁场重联耗散区内的低混杂波.观测结果显示,在磁场重联耗散区核心及其附近区域观测到在低混杂频率附近存在强烈的等离子体波动的增强,其传播方向主要垂直于背景磁场,该等离子体波动为低混杂波.前人的模拟结果认为,当磁场重联得到充分发展之前,低混杂波将消失.本文的观测结果充分说明,当磁场重联充分发展之后,在核心区域仍然存在增强的低混杂波,说明低混杂波贯穿磁场重联的整个发展过程.这种观测结果与计算机等离子体模拟的结果有所不同.本文的观测对低混杂波在磁场重联中的具体表现提供了新的观测证据并有可能修正前人的理论.  相似文献   

5.
磁场重联是空间能量释放和转换的重要机制.静电孤立波(ESW)虽然在空间中有广泛观测,但在磁场重联附近少有直接观测,对它在磁场重联附近的特性了解甚少.通过Geotail卫星对一个磁场重联事件的观测,仔细分析了其边界层上观测到的静电孤立波的特性,并讨论了它对磁场重联的影响.研究表明,亚暴期间在磁尾发生磁场重联,重联区域的分形线附近观测到了大量的静电孤立波,其特性与在其他地方观测到的并没有显著差别,但具有更明显的非线性和孤立性的特征.它们对电子加速和能量耗散有促进作用,加速磁场重联的进程.  相似文献   

6.
电离层人工调制可以激发甚低频(VLF)波,其中向上传播进入磁层的VLF波,不但能够用来研究磁层中的各种物理现象,且具有人工沉降高能粒子,消除辐射带等实际用途.本文使用射线追踪方法,模拟电离层调制激发的VLF波在磁层的传播路径,分析激发纬度和调制频率对传播路径和传播特性的影响;并基于低频波的色散方程和波粒共振条件,分析VLF波传播路径上与磁层高能粒子的最低共振能及其分布.研究表明,VLF波通过在磁层来回反射向更高的L-shell传播,最终稳定在某一L-shell附近.以较低的调制频率或者从较高的纬度激发的VLF波能够传播到更高的L-shell,但是,当激发纬度过高时,低频波也可能不发生磁层反射而直接进入电离层和大气层.低频波在磁层的传播过程中,在较高的纬度或者较低的L-shell能够与较高能量的电子发生共振相互作用,在较高的L-shell并且低纬地区,能够与较低能量的电子发生共振相互作用.共振谐数越高,能发生波粒共振的电子能量越高.  相似文献   

7.
我国极区冬季电离层加热实验研究   总被引:10,自引:8,他引:2       下载免费PDF全文
通过对非相干散射雷达观测数据的处理分析,研究了2008年1月我国在挪威Troms进行的冬季电离层加热实验效应.研究结果表明,电离层临界频率大于泵波频率的O波加热事件扰动效应明显,电子温度存在60%~120%的增强,扰动范围从150 km一直延伸到400 km,电子密度扰动不显著,最大可以观察到12%的密度衰减.受加热影响,离子声波频率有1~2 kHz的增加,离子线谱峰谷比增加,有时伴随有高阶谐振线出现.离子线和等离子线功率存在过冲现象,等离子线的功率剖面存在单峰、双峰和三峰结构,等离子线的功率增强幅度随频率负指数衰减.  相似文献   

8.
用三维可压缩MHD数值模拟研究了在磁场重联过程中电子压力梯度项的效应研究结果发现在较高等离子体β,较小离子惯性尺度条件下,广义欧姆定理中压力梯度项在重联过程的作用不可忽略.在磁重联过程中,压力梯度项虽然没有明显改变磁场拓扑结构和重联速度,但它使电子和离子速度明显增大.由于在离子惯性尺度下,离子和电子运动解耦,电子是电流的主要载流子,所以场向电流也增大,并导致核心磁场明显增大.考虑到场向电流是磁层电离层耦合的一个重要因素,所以电子压力梯度项的引入加强了行星际磁场南向期间磁层电离层的耦合.电子压力梯度项还在重联区激发了波动,该波动可向重联区外传播.  相似文献   

9.
提出一个剪切Alfven波加速极光粒子的新模式。频率远小于离子回旋频率的Alfven波由磁层向电离层传播会演化成孤波,当场向电流超过离子声不稳定性的临界电流时,激发离子声不稳定性,波与粒子的相互作用产生反常阻尼使Alfven波演化成行波涌浪。它携带一个方向向上的平行电场,加速极光电子形成分立极光。对等离子体密度、电场及其对应的电势进行了数值计算,结果发现满足磁层加速区条件形成Alfvn行波涌浪,提供足够强的加速粒子的电场。  相似文献   

10.
太阳风—磁层耦合过程会产生各种等离子体波,其中超低频波的频率最低(1 mHz~1 Hz)、波长最长(与内磁层磁力线长度相当)、能量密度最大.超低频波在磁层粒子加速、物质输运和能量转化中起着重要作用.以往的研究主要关注超低频波的全球性传播和分布特征以及这些波动与磁层能量粒子(辐射带电子和环电流离子)的相互作用过程.最近几...  相似文献   

11.
WIND observations of coherent electrostatic waves in the solar wind   总被引:4,自引:0,他引:4  
The time domain sampler (TDS) experiment on WIND measures electric and magnetic wave forms with a sampling rate which reaches 120 000 points per second. We analyse here observations made in the solar wind near the Lagrange point L1. In the range of frequencies above the proton plasma frequency fpi and smaller than or of the order of the electron plasma frequency fpe, TDS observed three kinds of electrostatic (e.s.) waves: coherent wave packets of Langmuir waves with frequencies ffpe, coherent wave packets with frequencies in the ion acoustic range fpiffpe, and more or less isolated non-sinusoidal spikes lasting less than 1 ms. We confirm that the observed frequency of the low frequency (LF) ion acoustic wave packets is dominated by the Doppler effect: the wavelengths are short, 10 to 50 electron Debye lengths λD. The electric field in the isolated electrostatic structures (IES) and in the LF wave packets is more or less aligned with the solar wind magnetic field. Across the IES, which have a spatial width of the order of ≃25D, there is a small but finite electric potential drop, implying an average electric field generally directed away from the Sun. The IES wave forms, which have not been previously reported in the solar wind, are similar, although with a smaller amplitude, to the weak double layers observed in the auroral regions, and to the electrostatic solitary waves observed in other regions in the magnetosphere. We have also studied the solar wind conditions which favour the occurrence of the three kinds of waves: all these e.s. waves are observed more or less continuously in the whole solar wind (except in the densest regions where a parasite prevents the TDS observations). The type (wave packet or IES) of the observed LF waves is mainly determined by the proton temperature and by the direction of the magnetic field, which themselves depend on the latitude of WIND with respect to the heliospheric current sheet.  相似文献   

12.
Ultra low frequency (ULF) waves incident on the Earth are produced by processes in the magnetosphere and solar wind. These processes produce a wide variety of ULF hydromagnetic wave types that are classified on the ground as either Pi or Pc pulsations (irregular or continuous). Waves of different frequencies and polarizations originate in different regions of the magnetosphere. The location of the projections of these regions onto the Earth depends on the solar wind dynamic pressure and magnetic field. The occurrence of various waves also depends on conditions in the solar wind and in the magnetosphere. Changes in orientation of the interplanetary magnetic field or an increase in solar wind velocity can have dramatic effects on the type of waves seen at a particular location on the Earth. Similarly, the occurrence of a magnetospheric substorm or magnetic storm will affect which waves are seen. The magnetosphere is a resonant cavity and waveguide for waves that either originate within or propagate through the system. These cavities respond to broadband sources by resonating at discrete frequencies. These cavity modes couple to field line resonances that drive currents in the ionosphere. These currents reradiate the energy as electromagnetic waves that propagate to the ground. Because these ionospheric currents are localized in latitude there are very rapid variations in wave phase at the Earth’s surface. Thus it is almost never correct to assume that plane ULF waves are incident on the Earth from outer space. The properties of ULF waves seen at the ground contain information about the processes that generate them and the regions through which they have propagated. The properties also depend on the conductivity of the Earth underneath the observer. Information about the state of the solar wind and the magnetosphere distributed by the NOAA Space Disturbance Forecast Center can be used to help predict when certain types and frequencies of waves will be observed. The study of ULF waves is a very active field of space research and much has yet to be learned about the processes that generate these waves.  相似文献   

13.
Over the last few decades, very low frequency electromagnetics has been widely and successfully applied in mineral exploration and groundwater exploration. Many radio transmitters with strong signal‐to‐noise ratios are scattered in the very low frequency band and low frequency band. Based on experiences gained from ground measurements with the radio‐magnetotelluric technique operating in the frequency interval 1–250 kHz, broadband magnetometers have been used to cover both very low frequency (3–30 kHz) and low frequency (30–300 kHz) bands to increase the resolution of the near‐surface structure. The metallic aircraft as a conductive body will distort the magnetic signal to some extent, and thus it is important to investigate aircraft interference on the electromagnetic signal. We studied noise caused by rotation of an aircraft and the aircraft itself as a metallic conductive body with three methods: 3D wave polarization, determination of transmitter direction and full tipper estimation. Both very low frequency and low frequency bands were investigated. The results show that the magnetic field is independent of the aircraft at low frequencies in the very low frequency band and part of the low frequency band (below 100 kHz). At high frequencies (above 100 kHz), the signals are more greatly influenced by the aircraft, and the wave polarization directions are more scattered, as observed when the aircraft turned. Some aircraft generated noise mixed with radio transmitter signals, detected as ‘dummy’ signals by the 3D wave polarization method. The estimated scalar magnetic transfer functions are dependent on the aircraft flight directions at high frequencies, because of aircraft interference. The aircraft eigenresponse in the transfer functions (tippers) between vertical and horizontal magnetic field components was compensated for in the real part of the estimated tippers, but some unknown effect was still observed in the imaginary parts.  相似文献   

14.
Low frequency electrostatic waves are studied in magnetized plasmas with an electron temperature which varies with position in a direction perpendicular to the magnetic field. For wave frequencies below the ion cyclotron frequency, the waves need not follow any definite dispersion relation. Instead a band of phase velocities is allowed, with a range of variation depending on the maximum and minimum values of the electron temperature. Simple model equations are obtained for the general case which can be solved to give the spatial variation of a harmonically time varying potential. A simple analytical model for the phenomenon is presented and the results are supported by numerical simulations carried out in a 2.5-dimensional particle-in-cell numerical simulation. We find that when the electron temperature is striated along B0 and low frequency waves (ci) are excited in this environment, then the intensity of these low frequency waves will be striated in a manner following the electron temperature striations. High frequency ion acoustic waves (ci) will on the other hand have a spatially more uniform intensity distribution.  相似文献   

15.
大气重力波产生的大尺度赤道电离层扰动   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了大气重力波产生的大尺度赤道电离层扰动的性质.当重力波的传播方向与磁场方向倾斜相交时,重力波在F区产生行进电离层扰动.当重力波垂直于磁场传播时,能触发等离子体Rayleigh-Taylor不稳定性,形成大尺度赤道扩展F不均匀体.重力波引起的扩展F主要出现于晚上,行进电离层扰动则可能出现于任何时间.本文建立了行进电离层扰动和大尺度赤道扩展F的统一理论模型,深入全面地揭示了电离层扰动的性质.  相似文献   

16.
An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay) and a low latitude (L’Aquila, Italy) station during the Earth’s passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz) and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth’s magnetosphere.  相似文献   

17.
Day-time Pc 3–4 (≃5–60 mHz) and night-time Pi 2 (≃5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.  相似文献   

18.
The magnetic field generated by an acoustic wave, propagating in the oceanic wave guide, has been considered. It has been indicated that the induced field is most substantial at frequencies when only the first normal mode exists. The dependences of the induced field component on the depth, frequency, and direction of the geomagnetic field have been obtained in this frequency band. The possibility of determining coordinates of a strong underwater earthquake using the acoustic field magnetic field has been considered.  相似文献   

19.
A fluid‐saturated flat channel between solids, such as a fracture, is known to support guided waves—sometimes called Krauklis waves. At low frequencies, Krauklis waves can have very low velocity and large attenuation and are very dispersive. Because they propagate primarily within the fluid channel formed by a fracture, Krauklis waves can potentially be used for geological fracture characterization in the field. Using an analogue fracture consisting of a pair of flat slender plates with a mediating fluid layer—a trilayer model—we conducted laboratory measurements of the velocity and attenuation of Krauklis waves. Unlike previous experiments using ultrasonic waves, these experiments used frequencies well below 1 kHz, resulting in extremely low velocity and large attenuation of the waves. The mechanical compliance of the fracture was varied by modifying the stiffness of the fluid seal of the physical fracture model, and proppant (fracture‐filling high‐permeability sand) was also introduced into the fracture to examine its impact on wave propagation. A theoretical frequency equation for the trilayer model was derived using the poroelastic linear‐slip interface model, and its solutions were compared to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号