首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
川东北地区下三叠统飞仙关组为浅海碳酸盐岩夹泥页岩与蒸发岩序列,而在碳酸盐岩台地边缘通常发育一些白云石化的鲕粒滩。这些鲕粒滩白云岩储集层是川东北地区主要的产气层,一些学者认为该套白云岩为大气淡水与海水的混合水白云石化成因,另外一些学者将其视为回流—渗透白云石化成因。飞仙关组鲕粒滩白云岩稳定同位素氧值一般为-6.73‰~-3.65‰(PDB),平均值为-4.89‰(PDB)(罗家寨地区为-10.81‰(PDB)),稳定同位素碳值一般为+0.57‰~+3.00‰(PDB)。对基质和孔洞中充填的鞍状白云石和亮晶白云石胶结物而言,稳定同位素87Sr/86Sr值为0.70735~0.70800。这些有关鲕粒滩白云岩的数据表明白云石化作用是在埋藏条件下进行的。在测定流体包裹体的均一化温度后,计算出白云石化流体稳定同位素氧成分(δ18O白云石-δ18O=[3.2×106 T-2]-1.5,来自 Friedman 和 ONeil(1977)),其平均值约为+4‰(SMOW)。根据流体稳定同位素氧、碳成分与海水蒸发时流体盐度的正相关性,计算出流体δD平均值约为+25‰(SMOW)。流体包裹体盐度测定表明,白云石化流体是一种超盐度卤水,其盐度是海水的数倍,白云石化的温度为90~130℃。由于下三叠统鲕粒滩白云岩的稳定同位素氧和碳成分与上二叠统生物礁白云岩的稳定同位素氧和碳成分类似,因此,它们的白云石化流体很可能是同一来源。然而,这一结论还有待于进一步研究。  相似文献   

2.
Stable isotope data from three areas in the granulite facies terrains of Brazil are assembled and discussed. All the three areas (Jequié, Guaxupé and São José do Rio Pardo) are from the São Francisco Craton. The carbon isotope composition of the fluid inclusion CO2 in the Archean granulite terrain of Jequié indicate the participation of two distinct sources, an upper mantle source and an internal source of Archean organic matter. The isotope data may be interpreted in terms of the granulite genesis due to the intrusion of magma in the lower crust. The singularly uniform carbon isotope data for CO2 fluid inclusion of plutonic granulites is a clear indication of the magmatic addition of CO2-rich volatiles from deeper crustal sources. In the São José do Rio Pardo area sulfur and carbon isotope data of scapolites from the granulites imply the derivation of volatiles from internal sources. The whole rock oxygen isotope data of the amphibolite and granulite facies gneisses from Guaxupé indicate a small scale variation of d18O values, compatible with the chemical data, suggesting the preservation of pre-metamorphic oxygen isotope composition. The isotope data of the granulites from São Francisco Craton indicate non-pervasive fluid flow during metamorphism.  相似文献   

3.
The Gemericum is a segment of the Variscan orogen subsequently deformed by the Alpine–Carpathian orogeny. The unit contains abundant siderite–sulphide and quartz–antimony veins together with stratabound siderite replacement deposits in limestones and stratiform sulphide mineralization in volcano-sedimentary sequences. The siderite–sulphide veins and siderite replacement deposits of the Gemericum represent one of the largest accumulations of siderite in the world, with about 160 million tonnes of mineable FeCO3. More than 1200 steeply dipping hydrothermal veins are arranged in a regional tectonic and compositional pattern, reflecting the distribution of regional metamorphic zones. Siderite–sulphide veins are typically contained in low-grade (chlorite zone) sedimentary, volcano-sedimentary or volcanic Lower and Upper Paleozoic rocks. Quartz–antimony veins are hosted by higher-grade units (biotite zone). Siderite–sulphide veins are dominated by early siderite followed by a complex set of stages, including quartz–sulphide (chalcopyrite, tetrahedrite), barite, tourmaline–quartz, and sulphide-remobilization stages. The temporal evolution of these stages is difficult to study because of the widespread and repeated tectonic processes, within-vein replacement and recrystallization. Siderite–sulphide veins show considerable vertical (up to 1200 m) and lateral (up to 15 km) extent, and a thickness typically reaching several metres. Carbonate-replacement siderite deposits of the Gemericum are hosted by a Silurian limestone belt and are similar to stratabound siderite deposits of the Eastern Alps (e.g., Erzberg, Austria).Based on a review of geological, petrological and geochronological data for the Gemericum, and extensive stable and radiogenic isotope data and fluid inclusion data on hydrothermal minerals, the siderite–sulphide veins and siderite replacement deposits are classified as metamorphogenic in a broad sense. The deposits were formed during several stages of regional crustal-scale fluid flow. Isotope (S, C, Sr, Pb) fingerprinting identifies the metamorphosed rock complexes of the Gemericum as a source of most components of hydrothermal fluids. Fluid inclusion and stable isotope data evidence the participation of several contrasting fluid types, and the existence of contrasting PT conditions during vein evolution. A high-δ18O, medium- to high-salinity, H2O-type fluid is the most important component during siderite deposition, whereas H2O–CO2-type fluid inclusion containing dense liquid CO2 and corresponding to minimal pressures between 1 and 3 kbar were found in a younger tourmaline–quartz stage. Younger quartz–ankerite(±siderite)–sulphide stages are characterized by high-salinity (17 to 35 wt.% NaCl equivalent) and low-temperature (Th=90 to 180 °C) H2O-type fluids.The vein deposits are interpreted as a result of multistage hydrothermal circulation, with Variscan and Alpine mineralization phases. Based on available indirect data, the most important mineralization phase was related to regional fluid flow during the uplift of a Variscan metamorphic core complex, producing siderite–sulphide (±barite) mineralization, while tourmaline–quartz stage and sulphide remobilization stages are related to Alpine processes. Two phases of vein evolution are evident from two groups of 87Sr/86Sr isotope ratios of Sr-rich, Rb-poor hydrothermal minerals: 0.71042–0.71541 in older barite and 0.7190–0.7220 in late-stage celestine and strontianite.  相似文献   

4.
The Denizli Basin is a fault‐bounded Neogene–Quaternary depression located in the Western Anatolian Extensional Province, Western Turkey. The basin is a unique geological site with abundant active and fossil (Quaternary) travertine and tufa deposits. Fluid inclusion microthermometry and isotopic analysis were applied to study the genesis of the Ball?k fossil travertine deposits, located in the south‐eastern part of the basin. Microthermometry on fluid inclusions indicates that the main travertine precipitating and cementing fluids are characterized by low salinity (<0·7 wt% NaCl equivalent) and variable temperatures that cluster at <50°C and ca 100°C. Fluids of meteoric origin have been heated by migration to the deeper subsurface, possibly in a local high geothermal gradient setting. A later uncommon cementation phase is related to a fluid with a significantly higher salinity (25·5 to 26·0 wt% bulk). The fluid obtained its salinity by interaction with Late Triassic evaporite layers. Strontium isotopes indicate that the parent carbonate source rock of the different travertine precipitates is very likely to be the Triassic limestone of the Lycian Nappes. Carbon isotopes suggest that the parent CO2 gas originated from thermal decarbonation of the Lycian limestones with minor contributions of magmatic degassing and organic soil CO2. Oxygen isotopes confirm the meteoric origin of the fluids and indicate disequilibrium precipitation because of evaporation and degassing. Results were integrated within the available geological data of the Denizli Basin in a generalized travertine precipitation model, which enhanced the understanding of fossil travertine systems. The study highlights the novel application of fluid inclusion research in unravelling the genesis of continental carbonates and provides several recommendations for hydrocarbon exploration in travertine‐bearing sedimentary basins. The findings suggest that travertine bodies and their parent carbonate source rocks have the potential to constitute interesting subsurface hydrocarbon reservoirs.  相似文献   

5.
列廷冈-勒青拉矿床位于西藏冈底斯北缘多金属成矿带东侧,是该成矿带内一个独特的同时发育Pb、Zn、Fe、Cu、Mo五种元素矿化的典型矽卡岩型矿床.对该矿床成矿流体性质研究有助于解决这种具有不同来源属性的多金属共生矿床的成矿机制等科学问题.基于此,选取与Fe-Cu-Mo矿化和Pb-Zn-Cu矿化密切相关的矽卡岩矿物和脉石矿物,系统开展了流体包裹体和碳氢氧同位素研究,结果显示二者的成矿流体来源相同并经历了相似的演化过程.矽卡岩阶段主要发育富液相包裹体,成矿流体具有高温中高盐度特征.成矿期石英硫化物阶段和成矿后期碳酸盐阶段主要发育富液相包裹体和含子晶的多相包裹体,前者成矿流体温度属于中高温范畴,而盐度分为高盐度和低盐度两类;后者成矿流体温度属于中低温范畴,而盐度同样分为高盐度和低盐度两类,研究表明出现两种盐度截然不同的流体是由于沸腾作用造成的.稳定同位素研究结果显示矽卡岩阶段成矿流体主要源于发生过脱水去气作用的残余岩浆水,石英硫化物阶段和碳酸盐阶段均有大气降水的参与.灰岩地层与正常海相碳酸盐岩相比δ18O明显亏损,表明成矿流体在矿区灰岩地层中大规模运移并发生水岩反应,从而在远端矽卡岩带形成铅锌铜矿化.结合前人及本次研究结果,列廷冈-勒青拉矿床Fe-Cu矿化与Pb-Zn矿化为同一时期岩浆活动的产物,但分别与不同属性的岩浆有关.降温冷却、流体混合作用以及pH值的变化是控制列廷冈-勒青拉矿床金属沉淀的重要因素,而成矿温度和岩浆属性的差异是造成成矿元素在空间上分带的主要原因.  相似文献   

6.
最近,在秦岭柞山地区泥盆系中又发现了穆家庄铜矿,矿体明显受层间破碎带控制,矿石主要产在铁白云石-石英脉中,其后生成矿现象非常明显.文章利用的黄铁矿流体包裹体He-Ar同位素和氢氧同位素,来探讨这类矿床的成矿流体的来源.穆家庄铜矿床矿石矿物黄铁矿流体包裹体的3He/4He比值为0.322~0.889R/Ra,小于1.0R/Ra.3He/4He比值远远低于地幔流体的比值,与地壳流体的比值在相同的数量级上.穆家庄铜矿成矿流体的40Ar/36Ar比值为377~569,平均470,显然偏离大气氩的同位素组成.穆家庄铜矿成矿流体的40Ar/4He比值为0.09~0.23,平均值为0.164.很显然,该矿床的成矿流体的40Ar/4He比值接近地壳.根据以上分析,柞山地区的穆家庄铜矿床的成矿流体是壳源的.氢氧同位素分析表明穆家庄铜矿的氢氧同位素则落入原生岩浆水范围内,表明穆家庄铜矿的成矿流体为岩浆水.综合对比分析后认为,穆家庄铜矿的成矿流体是由壳源岩浆驱动并参与的岩浆流体提供的.  相似文献   

7.
A combination of fluid inclusion, stable isotope and geochemical techniques has been used to study the nature of fluids present and their behaviour during Caledonian low-grade metamorphism of the Harlech Dome, north Wales. Fluid inclusion studies show that in most of the metasedimentary sequence the peak metamorphic fluid was an aqueous Na–K–Cl brine but in the graphitic Clogau Formation and in parts of the overlying Maentwrog Formation immiscible H2O-rich and CH4-rich fluids coexisted. Late-stage inclusions are of calcium-rich brine and a dilute aqueous fluid. The chemical composition of chlorite in metamorphic veins and rocks varies between different formations and quartz-oxygen isotopic compositions show considerable variation between different units. Both of these features are taken to indicate that there was little or no pervasive movement of fluid between different units at the peak of metamorphism. After the metamorphic peak there was focused flow of fluid upward through the sequence along fractures, in response to end-Caledonian uplift and unloading. Where the migrating fluid crossed the graphitic shales, interaction between the fluid and the shales gave rise to the formation of the auriferous veins of the Dolgellau Gold Belt. Subsequent to this mineralizing event there was widespread development of 18O-enriched calcites and micas. In the case of vein minerals it is possible that these crystallized directly from late-stage fluids at lower temperature than the quartz in the same veins. Alternatively, the original vein minerals may have re-equilibrated with later 18O-enriched or cooler fluid. In the case of muscovites in the rock matrix it is proposed that the isotopically heavy compositions are the result of re-equilibration of initially light grains with an introduced fluid, requiring considerable influx of fluid. This event may relate to either of two late-stage fluids observed as inclusions.  相似文献   

8.
《International Geology Review》2012,54(13):1478-1507
The Central and Eastern Taurides contain numerous carbonate-hosted Pb–Zn deposits, mainly in Devonian and Permian dolomitized reefal–stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them.

Fluid inclusion studies reveal that the ore fluids were highly saline (13–26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Da?, Delikkaya, and Ayrakl? deposits, respectively. Furthermore, the δ34S values of carbonate-hosted Pb–Zn deposits in the Central and Eastern Taurides vary between –5.4‰ and?+13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average δ34S –0.15‰) for the Çad?rkaya deposit, which is related to a late Eocene–Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Suçat? district, all deposits in the Eastern (Delikkaya, Ayrakl?, Denizovas?, Çad?rkaya) and Central (Katranba??, Küçüksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts.

Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Çad?rkaya deposit) and the Central Taurides are similar to MVT Pb–Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous–Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur?+?lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate–carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the ‘wall-rock replacement’ and the ‘residual and karst fill’ of non-sulphide zinc deposits and are predominantly composed of smithsonite.  相似文献   

9.
招平断裂带上盘金矿床氢氧同位素地质特征   总被引:1,自引:0,他引:1  
招平断裂是胶东招掖金矿带的主要控矿断裂,其上盘金矿床受NE向断裂构造控制,赋矿围岩为胶东群变质岩,金矿化以含金硫化物石英脉为主。研究表明,该区域金矿床H-O同位素组成为:δDH2O值为-100.15‰~-73.13‰,平均为-86.63‰;δ18OH2O值为4.78‰~10.12‰,平均为6.22‰,与下盘金矿床H-O同位素组成相同。显示出该地区成矿热液均以幔源为主,具有与招掖金矿带其它金矿类似的成矿热液系统。  相似文献   

10.
A multidisciplinary study, conducted over the carbonate platform deposits of the Liassic Calcari Grigi Group (Southern Alps), highlighted how the use of outcrop analogues can contribute to better define the distribution of dolomitic bodies related to fault networks, to characterize the petrophysical properties of the dolomitic sequence and unravel a complex diagenetic history. This study was carried out in the Asiago Plateau (southernmost part of the eastern Southern Alps, northern Italy) which provides excellent outcrops of the Jurassic Calcari Grigi Group. The dolomitization of the Jurassic sequence is variable in terms of stratigraphic extension and geographic distribution. In the studied localities the dolomitization is generally limited to the Mount Zugna Formation and is characterized by an undulatory front, with ‘sub‐vertical dolomitic chimneys’ along the major faults. Within this unit, and often associated with faults, stacked high‐porosity and permeability bed‐parallel dolomitic bodies are developed that show excellent petrophysical properties. The dolomitic intervals are characterized by pervasive unimodal and patchy polymodal dolomite crystals. Thin section, cathodoluminescence, isotopic and fluid inclusion analyses were used to constrain the paragenetic evolution of the sequence which is similar in all the studied localities. The first dolomitization stage is marked by zoned dolomite crystals with a dull luminescent core. The porosity is thought to have increased after this stage, with dark blue luminescent dolomite accompanied by the corrosion of older crystals. The appearance of saddle dolomite marks the onset of the porosity reduction stage, ending with the infilling of vugs and the remaining open pores with calcite cement. The diagenetic evolution locally stopped at the saddle dolomite stage with the complete occlusion of the remaining pores. Paragenetic and fluid‐inclusion data suggest an evolutionary trend of increasing temperatures and decreasing salinity toward brackish fluids responsible for dolomite and calcite precipitation. The integration of the available data seem to indicate that the diagenetic evolution of the study area is related to: (i) the interplay between evolving fluids (from marine to brackish); (ii) the burial of the sequence (increasing temperature); and (iii) the evolution of the hydrogeological system (fault and fracture network, fluid mixing). This complex paragenetic evolution is strongly linked to the evolution of the porosity framework that evolved from a good, widespread network in the early stages of the burial history to a confined system in the later stages due to reduction of porosity by the deposition of late calcite and dolomite cements.  相似文献   

11.
Abstract: The Daejang mine is located within the Cretaceous Gyeongsang basin. Mineral paragenesis can be divided into four stages (stages I, II, III and IV) by major tectonic fracturing. Stages I, III and IV are economically barren. Stage II, at which the precipitation of major ore minerals occurred, is further divided into three substages with paragenetic time based on minor fractures and discernible mineral assemblages: substage IIa, marked by deposition of quartz and Fe–sulfides; substage IIb, by introduction of base-metal sulfides within carbonates and some quartz; substage IIc, by quartz and carbonates with various sulfosalts. Fluid inclusion data indicate a complex geochemical evolution of hydrothermal fluids. Both CO2–rich and H2O–rich fluids were trapped in fluid inclusions at stage I and substage IIa. It is suggested that a compositionally heterogeneous fluid was formed by fluid boiling and CO2 immiscibility at temperatures of about 400° to 300°C. Composite lodes of base-metal sul–fides, carbonates and quartz at substage IIb were deposited in open spaces created by fracturing. The fracturing event prompted rapid decreases in pressure and temperature of residual fluids and resulted in retrograde fluid boiling at about 200 bars and 300°–250°C during substage IIb. The progressive loss of CO2 by CO2 effervescence and retrograde boiling from substage IIa and IIb fluids resulted in pH increase and related increase in carbonate activity, causing deposition of abundant carbonates. The change in pH also caused the decrease of stability of hydrogen sulfide with Cu, Zn and Pb chloride complexes (as main transporting agents at Daejang) and resulted in the pricipitation of base-metal minerals. Deposition of Ag– and Sb-bearing sul–fides and sulfosalts of substage IIc occurred at temperatures of about 250° to 150°C from a dominantly aqueous fluid with low salinity (down to 3. 0 equiv. wt % NaCl). At this substage, aqueous fluid formed by mixing with cooler and less saline meteoric groundwater. There is a systematic decrease in caculated δ18Owater values with the mineralization stage (and decreasing temperature) in the Daejang hydrothermal system, from values of about 11% for stage I, through about 4% for stages II and III, to about –3 per mil for stage IV. The result of stable isotope and fluid inclusion studies are interpreted to indicate progressive less evolved and/or unexchanged meteoric water influx of an early hydrothermal system formed by highly evolved meteoric waters.  相似文献   

12.
青海省都兰县果洛龙洼金矿成矿流体   总被引:2,自引:0,他引:2  
果洛龙洼金矿是青海东昆仑地区最典型、最具规模的金矿床之一。在前人资料基础上,将果洛龙洼金矿热液成矿期划分为4个成矿阶段:贫矿化石英阶段、石英-多金属硫化物阶段(主要成矿阶段)、石英-贫硫化物阶段(次要成矿阶段)和石英-碳酸盐阶段。随后对主要和次要成矿阶段石英脉开展流体包裹体显微测温和H-O同位素研究。结果表明:原生流体包裹体主要包括气液两相、富CO2三相、纯CO2两相共3类;成矿流体总体以CO2-NaCl-H2O体系为主,均一温度为130.0~357.3 ℃,盐度(w(NaCl))为1.83%~20.11%。石英-多金属硫化物阶段石英δ18OV-SMOW值为14.8‰~17.2‰,据此计算流体的δ18OH2O值为5.5‰~8.5‰,流体的δDV-SMOW值为-61‰~-96‰;而石英-贫硫化物阶段石英δ18OV-SMOW值为15.7‰~16.9‰,据此计算流体的δ18OH2O值为4.1‰~5.3‰,流体的δDV-SMOW值为-84‰~-101‰。由此认为:主要成矿阶段成矿流体可能为高温低盐度富CO2变质热液和低温中高盐度岩浆热液两个端元组成的混合流体;次要成矿阶段成矿流体主要为混合后更均匀的中低温中低盐度热液,但后期明显有大气降水混入。总之,成矿流体的来源、性质及其演化等方面的研究结果进一步证明果洛龙洼金矿为造山型金矿。  相似文献   

13.
Sichuan Basin is one of the most important marine–salt forming basins in China. The Simian and Triassic have a large number of evaporites. The Triassic strata have found a large amount of polyhalite and potassium-rich brine. However, no soluble potassium salt deposit were found. In this study, the halite in well Changping 3 which is located at the eastern part of the Sichuan basin was studied using the characteristics, hydrogen and oxygen isotopes of the fluid inclusion in halite to reconstruct the paleoenvironment. The salt rocks in well Changping 3 can be divided into two types: grey salt rock and orange salt rock. The result shows that the isotopic composition of the halite fluid inclusion is distinct from the global precipitation line reflecting that the salt formation process is under strong evaporation conditions and the climate is extremely dry. At the same time, compared with the hydrogen and oxygen isotopes of brine in the Sichuan Basin and the hydrous isotope composition of the inclusions in the salt inclusions of other areas in China, it is shown that the evaporation depth of the ancient seawater in the Sichuan Basin was high and reached the precipitation of potassium and magnesium stage.  相似文献   

14.
Moreira Gomes is a recently discovered deposit (21.7 t Au) of the Cuiú-Cuiú goldfield, Tapajós Gold Province, Amazonian Craton. The mineralized zone is about 1200 m long, 30–50 m wide, and at least 400 m in depth. The zone is controlled by a subvertical, east–west-trending structure that is related to a left lateral strike-slip fault system. The host rocks are predominantly tonalites of the Creporizão Intrusive Suite (1997 ± 2 Ma) of uncertain tectonic setting (magmatic arc or post-collision). Hydrothermal alteration and mineralization are predominantly of the fissure-filling type and locally pervasive. Sericitization, chloritization, sulfidation, silicification, carbonatization and epidotization are the observed alteration types. Pyrite is the predominant sulfide mineral and bears inclusions of chalcopyrite, galena, sphalerite and minor hessite and bismuthinite. Gold occurs predominantly as inclusions in pyrite and subordinately in the free-milling state in quartz veins. Ag, Pb and Bi have been detected by semi-quantitative EDS analysis.Three types of fluid inclusions, hosted in quartz veins and veinlets, have been identified. (1) one- and two-phase CO2 inclusions; (2) two- and three-phase H2O–CO2-salt inclusions, and (3) two-phase H2O-salt inclusions. The CO2-bearing types are interpreted as the product of phase separation of an immiscible fluid. This fluid presents low to moderate density, low to moderate salinity (1.6–11.8 wt.% NaCl equivalent) and was trapped at 280° to 350 °C. The chemical system of the aqueous inclusions may contain CaCl2 and/or MgCl2, salinity varies from zero to 10.1 wt.% NaCl equivalent. Only locally salinities up to 25% have been recorded. This fluid was trapped between 120° and 220 °C and is interpreted as resulting from mixing of a hotter and more saline aqueous fluid (in part derived from phase separation of the H2O–CO2 fluid) with a cooler and dilute aqueous fluid.The δ34S values of pyrite (−0.3‰ to 3.9‰) are probably related to magmatic sulfur. The isotopic composition of inclusion fluids and of the fluid in equilibrium with hydrothermal minerals (quartz, chlorite, and calcite) show δ18O and δD values that range from +0.5 to +9.8‰, and from −49 to −8‰, respectively. Mineral pairs show equilibrium isotopic temperatures that are compatible with the fluid inclusion homogenization temperatures and with textural relationships of the hydrothermal minerals.Isotopic results combined with mineralogical and fluid inclusion data are interpreted to reflect a magmatic-hydrothermal system that evolved in at least three stages. (1) Exsolution of a CO2-bearing magmatic fluid between 400 °C and 320–350 °C and up to 2.1 kbar (6 km in depth) followed by phase separation and main precipitation of the hydrothermal assemblage composed of chlorite–sericite–pyrite–quartz-gold. (2) Cooling and continuous exsolution of CO2 produced a CO2-depleted and slightly more saline aqueous fluid that was trapped mainly at 250°–280 °C. The predominant hydrothermal assemblage of stage 1 continued to form, but epidote is the main phase at this stage. (3) Mixing of the stage 2 aqueous fluid with a cooler and dilute aqueous fluid of meteoric origin, which was responsible for the main carbonatization phase. The mineralizing fluid was neutral to slightly alkaline and relatively reduced. H2S (and/or HS-) might have been the main sulfur species in the fluid and Au(HS)2- was probably the gold transporting complex. Gold deposition occurred as a consequence of a combination of mechanisms, such as phase separation, mixing and fluid-rock interaction.The Moreira Gomes is a granite-hosted gold deposit that is interpreted to be a product of a magmatic-hydrothermal gold system. The age of ore formation (∼1.86 Ga) is consistent with the final stages of evolution of the widespread high-K, calc-alkaline Parauari Intrusive Suite, although the transitional to predominantly alkaline Maloquinha Intrusive Suite cannot be ruled out. Notwithstanding, the deposit does not show the classic features of (oxidized or reduced) intrusion-related gold deposits of Phanerozoic magmatic arcs.  相似文献   

15.
The Don Sixto mining area in Mendoza province, central‐western Argentina, contains an epithermal low sulfidation Au–Ag deposit. It is a small deposit (~4 km2), with a gold resource of 36 t. In Don Sixto, ore minerals are disseminated in the hydrothermal quartz veins and hydrothermally altered volcanic‐pyroclastic rock units of Permian–Triassic age. On the basis of the texture, ore mineral paragenesis and cross cutting relationship of gangue minerals, seven stages of mineralization were recognized and described. The first six stages are characterized by quartz veins with minor amounts of base metal minerals and the last stage is represented by fluorite veins with minimal quantities of base metal minerals; the precious metal mineralization is mainly related to the fourth stage. The hydrothermal veins exhibit mainly massive, crustiform and comb infilling textures; the presence of bladed quartz replacement textures and quartz veins with adularia crystals are indicative of boiling processes in the system. Fluid inclusion and complementary stable isotope studies were performed in quartz, fluorite, and pyrite samples from the vein systems. The microthermometric data were obtained from primary, biphasic (liquid‐vapor) fluid inclusion assemblages in quartz and fluorite. The maximum values for salinity and homogenization temperature (Th) came from the stage IV where quartz with petrographic evidence of boiling has average values of 4.96 wt% NaClequiv. and 286.9°C respectively. The lower values are related to the last stage of mineralization, where the fluid inclusions in fluorite have average salinities of 1.05 wt% NaClequiv. and average homogenization temperatures of 173.1°C. The oxygen and sulfur isotopic fractionation was analyzed in quartz and pyrite. The calculated isotopic fractionation for oxygen in the hydrothermal fluid is in the range of δ18OH2O = ?6.92 up to ?3.08‰, which indicates dominance of a meteoric source for the water, while sulfur reaches δ34SH2S = 1.09‰, which could be reflecting a possible magmatic, or even a mixed source.  相似文献   

16.
The Jinwozi lode gold deposit in the eastern Tianshan Mountains of China includes auriferous quartz veins and network quartz veins that are exemplified by the Veins 3 and 210, respectively. This paper presents H‐, O‐isotope compositions and gas compositions of fluid inclusions hosted in sulfides and quartz, and S‐, Pb‐isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210. Fluid inclusions trapped in quartz and sphalerite are pseudo‐secondary and primary. They were trapped from the fluids during the successive or alternate precipitation of quartz with sulfides. H‐ and O‐isotope compositions of fluid inclusion of three pyrite and one quartz separates from Vein 210 plot within the field of degassed melt, which is evidence for the incorporation of magmatic fluid as well with some possibility of contribution of metamorphic water to the hydrothermal system since the two datasets show a higher oxygen isotopic ratio than those of degassed melt. However, δD and δ18O values of fluid inclusions hosted in sulfides and quartz from Vein 3 are distinctly lower than those from Vein 210. In addition, salinities of fluid inclusion from Vein 3, approximately 3 to 6 wt% NaCl equivalent, are considerably lower than those from Vein 210, which are approximately 8 to 14 wt% NaCl equivalent. Ore‐forming fluids of Veins 3 and 210 have migrated through the relatively high and low levels in the imbricate‐thrust column where rock deformation is characterized by dilatancy or ductile–brittle transition, respectively. Therefore, the ore‐forming fluid of Vein 3 is interpreted to have mixed with greater amounts of meteoric‐derived groundwater than that of Vein 210. Fluid inclusions hosted in sulfides contain considerably higher abundances of gaseous species of CO2, N2, H2S, and so on, than those hosted in quartz. Many of these gaseous species exhibit linear correlations with H2O. These linear trends are interpreted in terms of mixing between magmatic fluid and groundwater. The relative enrichment of gaseous species in fluid inclusions hosted in sulfides, coupled with the banded ore structure, suggests that the magmatic fluid was involved with the ore‐forming fluid in pulsation. Lead isotope compositions of 21 pyrite and galena separates form a linear trend, suggesting mixing of metallic materials from diverse reservoirs. The δ34S values of pyrite and galena range from +5.6‰ to +7.9‰ and from +3.1‰ to +6.3‰, respectively, indicating sulfur of the Jinwozi deposit has been leached mainly from the granodiorite and partly from the Jinwozi Formation by the circulating ore‐forming fluid.  相似文献   

17.
《Comptes Rendus Geoscience》2014,346(1-2):13-19
The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin–basement unconformity have been studied. Dating is based on U–Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment–granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U–Pb isotopic dating outlines three successive events: a 3.0–2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na–Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic–Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga.  相似文献   

18.
流体包裹体岩相学的一些问题探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
流体包裹体岩相学是流体包裹体研究的基础和前提。在流体包裹体研究过程中,我们十分重视和强调选择什么样的 流体包裹体去做测温和分析。在流体色裹体岩相学中区分原生和次生包裹体十分重要。只有选择了原生流体包裹体后才能 进行显微测温学和流体包裹体成分分析。这种选择包裹体的过程(或步骤),确定流体包裹体的分类以及在显微镜下观察流 体包裹体捕获后的変化,是流体包裹体岩相学(Fluid inclusion petrography)最主要的内容。本文叙述流体包裹体岩相学的内容 和区分原生和次生流体包裹体的一些实例和方法,阐述了流体包裹体与主矿物之关系。  相似文献   

19.
左家庄金矿位于西秦岭凤太盆地西北部,金矿体赋存在印支早期何家庄岩体的东西向剪切破碎带内。矿石类型以石英硫化物脉型为主,与西秦岭地区沉积岩控矿为主的特征有显著的差别。流体包裹体测温及成分分析表明,左家庄金矿成矿流体具有含CO2、中低温(122~305 ℃)、低盐度(1.2%~11.8% NaCleq)、浅成(约2.4 km)热液的特征。H-O同位素组成(δDH2O集中在-88.8‰~-81.1‰;δ18OH2O在-0.4‰~+7.6‰)显示成矿初始流体以变质水为主,随着流体向上运移不排除有岩浆水和大气降水的加入。Pb同位素组成显示成矿物质来源于浅部上地壳及造山带内;S同位素组成集中(11.4‰~13.4‰),与凤太盆地内泥盆系沉积岩控金矿相似,且与全球范围内泥盆系控矿造山型金矿组成吻合,反映出泥盆系地层为成矿提供了硫源;热液期黄铁矿原位微量元素分析显示左家庄金矿成矿流体富集Au、As、Cu、Sb、Ag、Pb、Bi等元素,该元素组合与前人分析凤太盆地内泥盆系地层(尤其是中、上泥盆统界面)富集元素特征一致。上述分析一致表明泥盆系地层是左家庄金矿成矿物质来源理想场所。多元同位素对比分析表明,左家庄金矿与凤太盆地内其他金矿在成矿流体及成矿物质来源上具有统一性,但是在矿化形式上有显著区别,其差异可能与二者赋矿围岩性质不同有关。成矿流体沿断裂向上运移过程中,当遇到上泥盆统渗透性较高的千枚岩时发生水岩反应,形成以微细浸染状矿化为主的金矿;当碰到岩体内脆性剪切破碎带时,由于压力释放,流体沸腾,导致矿质迅速沉淀在张性破碎带内,形成石英硫化物脉型左家庄金矿。通过与典型造山型金矿成矿特征对比分析,认为左家庄金矿可划归为浅成造山型金矿床。  相似文献   

20.
大团山铜(钼) 矿床是安徽铜陵狮子山矿田内较为典型的岩浆热液叠加型铜钼矿床,其成因与早白垩世大团山石英 二长闪长岩有密切关系。系统采集硫化物阶段的矿化石英脉并经岩相学显微观察发现,石英中捕获有大量的流体包裹体, 主要分为三种类型,即富气相(Ⅰ型)、富液相(Ⅱ型) 的两相水溶液包裹体和含子晶的三相水溶液包裹体(Ⅲ型)。显微 测温研究表明,流体包裹体的均一温度统计峰值分别出现在375~405°C和285~315°C之间,流体盐度的统计峰值出现在5.0 wt.%~10.0 wt.% NaCl eq.之间。激光拉曼探针分析表明,流体包裹体的气相成分以水蒸汽为主,含有少量CO2和CH4。流体 氢、氧同位素组成呈岩浆流体特征。研究表明,大团山铜(钼) 矿床的成矿流体主要来源于岩浆流体,在成矿过程中经历 了相态变化,沸腾的流体体系受到了不均匀捕获。结合前人研究成果,狮子山矿田内早白垩世叠加改造型流体表现出同源 特征,在物理化学演化方面具有一定规律性,流体的多次沸腾作用很可能对成矿元素的分配、迁移与沉淀起到了重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号