首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limestone cave deposits (speleothems) provide archives for past changes in regional climates over a range of timescales. While δ18O and δ13C in speleothem calcite have been commonly used for reconstruction of paleoclimates, we report here further efforts in the use of 87Sr/86Sr and Sr/Ca signals in speleothem calcite to deduce paleomonsoon variability near the Loess Plateau of central China. A two end-member mass-balance model of concentration and isotopic composition of strontium in a cave system is used to estimate variation of the 87Sr/86Sr ratio in sediments overlying a limestone cave. We show that this ratio reflects climate-driven variations in the provenance and the extent of chemical weathering of the epikarstic sediments. The measurements of 87Sr/86Sr made on a well-dated stalagmite, SFL, from Buddha Cave (33o40N′ 109o05′E) show ratios of 0.71092 to 0.71133 (±0.00001 as 2σ) during relatively cold periods (e.g., Marine Isotope Stage (MIS) 5b, 5d, and 8), lower than ratios of 0.71133 to 0.71194 during relatively warm periods (e.g., MIS 5a, 5c, 5e, and 7). As changes in the Sr/Ca ratio may affect speleothem 87Sr/86Sr, we show that the direct use of speleothem 87Sr/86Sr is less ideal than our modeled 87Sr/86Sr for the exogenic Sr source above the cave as a paleomonsoon proxy. Using the δ18O, δ13C, Sr/Ca, and 87Sr/86Sr records of the stalagmite, we reconstruct the variability of the East Asian monsoon for the time period between 70 and 280 kyr ago. The results show that summer monsoons were more intense during interglacial periods than during glacial periods.  相似文献   

2.
This paper presents data on the extent of the North Patagonian Icefield during the Late Pleistocene-Holocene transition using cosmogenic nuclide exposure age and optically stimulated luminescence dating. We describe geomorphological and geochronological evidence for glacier extent in one of the major valleys surrounding the North Patagonian Icefield, the Rio Bayo valley. Geomorphological mapping provides evidence for the existence of two types of former ice masses in this area: (i) a large outlet glacier of the North Patagonian Icefield, which occupied the main Rio Bayo valley, and (ii) a number of small glaciers that developed in cirques on the slopes of the mountains surrounding the valley. Cosmogenic nuclide exposure-age dating of two erratic boulders on the floor of the Rio Bayo valley indicate that the outlet glacier of the icefield withdrew from the Rio Bayo valley after 10,900 ± 1000 yr (the mean of two boulders dated to 11,400 ± 900 yr and 10,500 ± 800 yr). Single-grain optically stimulated luminescence (OSL) dating of an ice-contact landform constructed against this glacier indicates that this ice mass remained in the valley until at least 9700 ± 700 yr. The agreement between the two independent dating techniques (OSL and cosmogenic nuclide exposure age dating) increases our confidence in these age estimates. A date obtained from a boulder on a cirque moraine above the main valley indicates that glaciers advanced in cirques surrounding the icefield some time around 12,500 ± 900 yr. This evidence for an expanded North Patagonian Icefield between 10,900 ± 1000 yr and 9700 ± 700 yr implies cold climatic conditions dominated at this time.  相似文献   

3.
We applied magnetostratigraphy and mammal biostratigraphy to date climate-sensitive pollen cycles and lithostratigraphic units of the Pliocene-Pleistocene Leffe sedimentary succession from the Southern Alps, Italy. The Leffe section was correlated to additional sections (Casnigo, Fornaci di Ranica, and Pianengo) to construct a stratigraphic network along a common fluviatile system (the Serio River) sourced in the Southern Alps and flowing southward into the Po River Basin. We obtained a coherent scenario of climate variability for the last ∼ 2 Myr. At Leffe, lacustrine deposition commenced during the Olduvai Normal Subchron (1.94-1.78 Ma) and lasted up to a chronologic level compatible with Marine Isotope Stage (MIS) 22 (0.87 Ma). Pollen analysis revealed that climate varied cyclically from warm-temperate to cool during this time interval, but never as cold as during glacial intervals. At around MIS 22, climate cooled globally. Gravels, attributed to high-energy braided river systems fed locally by alluvial fans, prograded from the Serio River catchment area over the Leffe Basin and toward the Po Plain in response to a generalized event of vegetation withdrawal and enhanced physical erosion. At this time, Alpine valley glaciers reached their first maximum southward expansion with glacier fronts located at only ∼ 5 km upstream from Leffe.  相似文献   

4.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

5.
Dating deposits in caves formed by rivers may yield insight into rates and processes of bedrock incision. Three cave passages at different levels have developed in the walls of the Qianyou River valley in the Qinling mountains, south of the city of Xian, China. Twelve speleothem samples near the position of palaeowater tables in three cave passages are dated by the 230Th dating method. The results show that the river cut down at the rate of 0.23 ± 0.02 mm/yr from 358,000 ± 38,000 to 247,000 ± 28,000 yr ago, 0.19 ± 0.03 mm/yr from 247,000 ± 28,000 to 118,000 ± 19,000 yr ago, and 0.51 ± 0.08 mm/yr from 118,000 ± 19,000 yr ago until today. These fall very close to the glacial-interglacial transition following marine oxygen isotope stages 10, 8, and 6, respectively. The increase in downcutting rates during the interglacial period is consistent with warm, wet weather, increasing rates of erosion. This may lead us toward an underlying mechanism for modulating incision that is not in a direct response to the presence of headwater glaciers.  相似文献   

6.
Speleothems from Hoti Cave in northern Oman provide a record of continental pluvial periods over the last 330,000 yr. Periods of rapid speleothem deposition occurred from 6000 to 10,500, 78,000 to 82,000, 120,000 to 135,000, 180,000 to 200,000, and 300,000 to 330,000 yr ago, with little or no growth during the intervening periods. During each of these five pluvial periods, δD values of water extracted from speleothem fluid inclusions (δDFI) are between −60 and −20‰ (VSMOW) and δ18O values of speleothem calcite (δ18OC) are between −12 and −4‰ to (VPDB). These values are much more negative than modern rainfall (for δD) or modern stalagmites (for δ18O). Previous work on the isotopic composition of rainfall in Oman has shown that northern and southern moisture sources are isotopically distinct. Combined measurements of the δD values of fluid-inclusion water with calculated δ18O values from peak interglacial speleothems indicate that groundwater was predominantly recharged by the southern (Indian Ocean) moisture source, when the monsoon rainfall belt moved northward and reached Northern Oman during each of these periods.  相似文献   

7.
The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.  相似文献   

8.
Textural and stable isotopic records of a composite-type speleothem from Gwaneum Cave in the eastern part of the Korean peninsula show prominent paleoenvironmental changes since MIS (marine oxygen isotope stage) 5a. Based on 230Th/234U dating, the speleothem experienced growth from 90.9 ± 6.5 ka to 1.2 ± 0.5 ka with several hiatuses. Four growth phases (A, B, C and D) are recognized based on speleothem type and texture. Very irregular and laterally discontinuous growth laminae in Phases B and C indicate that the cave coralloids grew over the stalagmite (Phase A) when the supply of dripping water became limited. Variations within the δ13C time series of Phase A are interpreted as responses to millennial-scale fluctuations of the East Asian monsoon intensity during MIS 5a. The monsoonal interpretation is based on the idea that δ13C values reflect the isotopic composition of soil-derived CO2, which, in turn, should relate to monsoon-driven changes in terrestrial productivity above the cave during the MIS 5a. Our reconstruction reveals that the significant monsoonal changes on the Korean peninsula occurred in conjunction with changes in sea level and/or oceanic circulations during the transition period from MIS 5a to MIS 4.  相似文献   

9.
Arabia is an important potential pathway for the dispersal of Homo sapiens (“out of Africa”). Yet, because of its arid to hyper-arid climate humans could only migrate across southern Arabia during pluvial periods when environmental conditions were favorable. However, knowledge on the timing of Arabian pluvial periods prior to the Holocene is mainly based on a single and possibly incomplete speleothem record from Hoti Cave in Northern Oman. Additional terrestrial records from the Arabian Peninsula are needed to confirm the Hoti Cave record. Here we present a new speleothem record from Mukalla Cave in southern Yemen. The Mukalla Cave and Hoti Cave records clearly reveal that speleothems growth occurred solely during peak interglacial periods, corresponding to Marine Isotope Stages (MIS) 1 (early to mid-Holocene), 5.1, 5.3, 5.5 (Eemian), 7.1, 7.5 and 9. Of these humid periods, highest precipitation occurred during MIS 5.5 and lowest during early to middle Holocene.  相似文献   

10.
Dating and geomorphology of shoreline features in the Qinghai Lake basin of northwestern China suggest that, contrary to previous interpretations, the lake likely did not reach levels 66-140 m above modern within the past ∼ 90,000 yr. Maximum highstands of ∼ 20-66 m above modern probably date to Marine Isotope Stage (MIS) 5. MIS 3 highstands are undated and uncertain but may have been at or below post-glacial highs. The lake probably reached ∼ 3202-3206 m (+ 8-12 m) during the early Holocene but stayed below ∼ 3202 m after ∼ 8.4 ka. This shoreline history implies significantly different hydrologic balances in the Qinghai Lake basin before ∼ 90 ka and after ∼ 45 ka, possibly the result of a more expansive Asian monsoon in MIS 5.  相似文献   

11.
Cosmogenic radionuclide (CRN) exposure ages provide evidence for the limited extent of last glacial maximum glaciers in the Tanggula Shan, central Tibetan Plateau. The most extensive advances occurred during or before marine oxygen isotope stage 6 (MIS-6) based on previous CRN exposure ages. The second most extensive advance occurred during or before MIS-4 based on previous ages and new ages of 41,400 ± 4300, and 66,800 ± 7100 10Be yr. A MIS-2 advance of less than 3 km occurred between 31,900 ± 3400 and 16,000 ± 1700 10Be yr.  相似文献   

12.
We reconstructed the paleoenvironmental history of surface and deep water over the last 130 kyr from oxygen and carbon isotope ratios of planktonic and benthic foraminifera in two cores (MD179-3312 and MD179-3304) from the Joetsu Basin, eastern margin of the Japan Sea. Our data showed that paleoceanographic changes such as influx of surface currents and vertical circulation were associated with global glacial–interglacial sea level change. Surface water conditions were influenced by the influx of Tsushima Current, East China Sea coastal or off-shore waters through the Tsushima Strait during interglacial or interstadial stages, and strongly affected by freshwater input during the glacial maximum. During interglacial maximums such as Marine Isotope Stages 1 and 5e, development of well-oxygenated bottom water was indicated. A density-stratified ocean with weak ventilation was inferred from the isotopic records of benthic foraminifera during the Last Glacial Maximum. Local negative excursions in carbon isotopes during deglacial or interglacial periods may suggest the dissolution of gas hydrates or methane seep activities.  相似文献   

13.
天山末次冰期以来干旱化过程的冰川证据   总被引:3,自引:3,他引:0  
依据天山7个有确切年代学资料的典型地区进行冰川面积和平衡线高度等重建,揭示天山地区末次冰期以来冰川经历的扩张和收缩过程。冰川规模在MIS 4~MIS 3大幅度扩张,形成大规模的复合型山谷冰川和山麓冰川;MIS 2冰川扩张显著,但远不及MIS 4~MIS 3,许多山区形成大型山谷冰川;全新世新冰期NG和小冰期LIA都略有扩张,冰碛垄分布在现代冰川外围,冰川类型与现在一致。冰川平衡线高度的降幅亦表现为MIS 4~MIS 3最大,MIS 2以后降幅递减。MIS 4~MIS 3天山冰川大规模扩张与欧亚冰盖演化,巨大冰前湖泊、广阔的湿地的形成为西风提供更多水气带到天山有关;MIS 2至今,随着欧亚冰盖减小到消失,西风带来的水气渐少,干冷的蒙古高压逐渐加强,制约了冰川规模扩张。  相似文献   

14.
The Sierra los Cuchumatanes (3837 m), Guatemala, supported a plateau ice cap and valley glaciers around Montaña San Juan (3784 m) that totaled ∼ 43 km2 in area during the last local glacial maximum. Former ice limits are defined by sharp-crested lateral and terminal moraines that extend to elevations of ∼ 3450 m along the ice cap margin, and to ca. 3000-3300 m for the valley glaciers. Equilibrium-line altitudes (ELAs) estimated using the area-altitude balance ratio method for the maximum late Quaternary glaciation reached as low as 3470 m for the valley glaciers and 3670 m for the Mayan Ice Cap. Relative to the modern altitude of the 0°C isotherm of ∼ 4840 m, we determined ELA depressions of 1110-1436 m. If interpreted in terms of a depression of the freezing level during maximal glaciation along the modern lapse rate of − 5.3°C km− 1, this ΔELA indicates tropical highland cooling of ∼ 5.9 to 7.6 ± 1.2°C. Our data support greater glacial highland cooling than at sea level, implying a high tropical sensitivity to global climate changes. The large magnitude of ELA depression in Guatemala may have been partially forced by enhanced wetness associated with southward excursions of the boreal winter polar air mass.  相似文献   

15.
U-Th ages have been obtained by TIMS on the growth periods of a stalagmite from the “Grotte des Puits de Pierre-la-Treiche” (northeastern France), during the middle part of the “Weichselian glaciation” (Marine Isotope Stage 3), between 55.36 ± 0.95 and 53.34 ± 0.49 ka and around 45.85 ± 0.49 ka. These episodes are contemporaneous with abrupt climatic variations recorded in Greenland ice cores (Greenland interstadials 12, 14 and 15) that have been previously recognized in European speleothems. They also coincide with two interstadials, known as “Goulotte” and “Pile” in the Grande Pile pollen sequence (eastern France), which have been correlated with the Moershoofd complex in the Netherlands. Such evidence of speleothem deposition related to temperate episodes gives a strong indication of the absence of continuous shallow permafrost during the middle part of MIS 3 in northeastern France.  相似文献   

16.
Analyses of sediment cores from Jellybean Lake, a small, evaporation-insensitive groundwater-fed lake, provide a record of changes in North Pacific atmospheric circulation for the last ∼7500 yr at 5- to 30-yr resolution. Isotope hydrology data from the southern Yukon indicate that the oxygen isotope composition of water from Jellybean Lake reflects the composition of mean-annual precipitation, δ18Op. Recent changes in the δ18O of Jellybean sedimentary calcite (δ18Oca) correspond to changes in the North Pacific Index (NPI), a measure of the intensity and position of the Aleutian Low (AL) pressure system. This suggests that δ18Op variability was related to the degree of fractionation during moisture transport from the Gulf of Alaska across the St. Elias Mountains and that Holocene shifts were controlled by the intensity and position of the AL. Following this model, between ∼7500 and 4500 cal yr B.P., long-term trends suggest a predominantly weaker and/or westward AL. Between ∼4500 and 3000 cal yr B.P. the AL shifted eastward or intensified before shifting westward or weakening between ∼3000 and 2000 cal yr B.P. Rapid shifts eastward and/or intensification occurred ∼1200 and 300 cal yr B.P. Holocene changes in North Pacific atmospheric circulation inferred from Jellybean Lake oxygen isotopes correspond with late Holocene glacial advances in the St. Elias Mountains, changes in North Pacific salmon abundance, and shifts in atmospheric circulation over the Beaufort Sea.  相似文献   

17.
Applications of speleothem calcite geochemistry in climate change studies require the evaluation of the accuracy and sensitivity of speleothem proxies to correctly infer paleoclimatic information. The present study of Harrison’s Cave, Barbados, uses the analysis of the modern climatology and groundwater system to evaluate controls on the C and O isotopic composition of modern speleothems. This new approach directly compares the δ18O and δ13C values of modern speleothems with the values for their corresponding drip waters in order to assess the degree to which isotopic equilibrium is achieved during calcite precipitation. If modern speleothems can be demonstrated to precipitate in isotopic equilibrium, then ancient speleothems, suitable for paleoclimatic studies, from the same cave environment may also have been precipitated in isotopic equilibrium. If modern speleothems are precipitated out of isotopic equilibrium, then the magnitude and direction of the C and O isotopic offsets may allow specific kinetic and/or equilibrium isotopic fractionation mechanisms to be identified.Carbon isotope values for the majority of modern speleothem samples from Harrison’s Cave fall within the range of equilibrium values predicted from the combined use of (1) calcite-water fractionation factors from the literature, (2) measured temperatures, and (3) measured δ13C values of the dissolved inorganic carbon of drip waters. Calcite samples range from ∼0.8‰ higher to ∼1.1‰ lower than predicted values. The 13C depletions are likely caused by kinetically driven departures in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions, caused by rapid calcite growth. 13C enrichments can be accounted for by Rayleigh distillation of the HCO3 (aq) reservoir during degassing of 13C-depleted CO2.Modern speleothems from Harrison’s Cave are not in O isotopic equilibrium with their corresponding drip waters and are 0.2‰ to 2.3‰ enriched in 18O relative to equilibrium values. δ18O variations in modern calcite are likely controlled by kinetically driven changes in the fractionation between HCO3 (aq) and CaCO3 from equilibrium conditions to nonequilibrium conditions, consistent with rapid calcite growth. In contrast to δ13C, δ18O values of modern calcite may not be affected by Rayleigh distillation during degassing because CO2 hydration and hydroxylation reactions will buffer the O isotopic composition of the HCO3 (aq) reservoir. If the effects of Rayleigh distillation manifest themselves in the O isotopic system, they will result in 18O enrichment in the HCO3 (aq) reservoir and ultimately in the precipitated CaCO3.  相似文献   

18.
The chemical and isotopic composition of speleothem calcite and particularly that of stalagmites and flowstones is increasingly exploited as an archive of past environmental change in continental settings. Despite intensive research, including modelling and novel approaches, speleothem data remain difficult to interpret. A possible way foreword is to apply a multi-proxy approach including non-conventional isotope systems. For the first time, we here present a complete analytical dataset of magnesium isotopes (δ26Mg) from a monitored cave in NW Germany (Bunker Cave). The data set includes δ26Mg values of loess-derived soil above the cave (−1.0 ± 0.5‰), soil water (−1.2 ± 0.5‰), the carbonate hostrock (−3.8 ± 0.5‰), dripwater in the cave (−1.8 ± 0.2‰), speleothem low-Mg calcite (stalactites, stalagmites; −4.3 ± 0.6‰), cave loam (−0.6 ± 0.1‰) and runoff water (−1.8 ± 0.1‰) in the cave, respectively. Magnesium-isotope fractionation processes during weathering and interaction between soil cover, hostrock and solute-bearing soil water are non-trivial and depend on a number of variables including solution residence times, dissolution rates, adsorption effects and potential neo-formation of solids in the regolith and the carbonate aquifer. Apparent Mg-isotope fractionation between dripwater and speleothem low-Mg calcite is about 1000lnαMg-cc-Mg(aq) = −2.4‰. A similar Mg-isotope fractionation (1000lnαMg-cc-Mg(aq) ≈ −2.1‰) is obtained by abiogenic precipitation experiments carried out at aqueous Mg/Ca ratios and temperatures close to cave conditions. Accordingly, 26Mg discrimination during low-Mg calcite formation in caves is highly related to inorganic fractionation effects, which may comprise dehydration of Mg2+ prior to incorporation into calcite, surface entrapment of light isotopes and reaction kinetics. Relevance of kinetics is supported by a significant negative correlation of Mg-isotope fractionation with the precipitation rate for inorganic precipitation experiments.  相似文献   

19.
By using continuous helium flow during the crushing of calcite speleothem samples, we are able to recover liberated inclusion waters without isotopic fractionation. A paleotemperature record for the Jacklah Jill Cave locality, Vancouver Island, BC, was obtained from a 30-cm tall stalagmite that grew 10.3-6.3 Ka ago, using δ18O values of the crushed calcite and of the inclusion water as inferred from its δD. It is found that the locality experienced mean annual temperature variations up to 11 °C over a 4-Ka period in the early Holocene. At the beginning of the period, local temperature quickly increased from a minimum of ∼1 °C to around 10 °C, but this early climate optimum, about 3 °C warmer than today, only lasted for ∼1200 years. About 8.6 Ka ago, temperature had declined to ∼7 °C, approximately the same as the modern cave temperature. Since then, the study area has experienced only minor temperature fluctuations, but there was a brief fall to ∼4 °C at around 7 Ka ago, which might be caused by a short lived expansion of local alpine glaciers. The long-term T-dependence of δD was 1.47‰/°C, identical to the value in modern precipitation.  相似文献   

20.
We investigated the effects of diagenetic alteration (dissolution, secondary aragonite precipitation and pore filling) on the distribution of U in live and Holocene coral skeletons. For this, we drilled into large Porites lutea coral-heads growing in the Nature Reserve Reef (NRR), northern Gulf of Aqaba, a site close to the Marine Biology Laboratory, Elat, Israel, and sampled the core material and porewater from the drill-hole. In addition, we sampled Holocene corals and beachrock aragonite cements from a pit opened in a reef buried under the laboratory grounds. We measured the concentration and isotopic composition of U in the coral skeletal aragonite, aragonite cements, coral porewater and open NRR and Gulf of Aqaba waters.Uranium concentration in secondary aragonite filling the skeletal pores is significantly higher than in primary biogenic aragonite (17.3 ± 0.6 compared to 11.9 ± 0.3 nmol · g−1, respectively). This concentration difference reflects the closed system incorporation of uranyl tri-carbonate into biogenic aragonite with a U/Ca bulk distribution coefficient (KD) of unity, versus the open system incorporation into secondary aragonite with KD of 2.4. The implication of this result is that continuous precipitation of secondary aragonite over ∼1000 yr of reef submergence would reduce the coral porosity by 5% and can produce an apparent lowering of the calculated U/Ca - SST by ∼1°C and apparent age rejuvenation effect of 7%, with no measurable effect on the calculated initial U isotopic composition.All modern and some Holocene corals (with and without aragonite cement) from Elat yielded uniform δ234U = 144 ± 5, similar to the Gulf of Aqaba and modern ocean values. Elevated δ234U values of ∼180 were measured only in mid-Holocene corals (∼5000 yr) from the buried reef. The values can reflect the interaction of the coral skeleton with 234U-enriched ground-seawater that washes the adjacent granitic basement rocks.We conclude that pore filling by secondary aragonite during reef submergence can produce small but measurable effects on the U/Ca thermometry and the U-Th ages. This emphasizes the critical importance of using pristine corals where the original mineralogy and porosity are preserved in paleooceanographic tracing and dating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号