首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谭佩阳  侯志勇  谢永宏  李峰  杨扬  陈薇  李阳 《湖泊科学》2022,34(5):1562-1569
污水低碳氮比(C/N)是影响人工湿地氮去除效果限制因素,传统的碳源添加及利用存在成本较高、补充困难的局限性.本研究契合“就地取材,原位处理”的废物利用原则,选择人工湿地常见的水生植物和农业废弃物(玉米芯、稻草)作为对照,对比了挺水植物(香蒲、美人蕉)、浮叶植物(莲)、沉水植物(菹草)、湿生植物(南荻、短尖苔草)的释碳能力,初步确定了以香蒲、美人蕉、南荻为代表的植物具有较好的释放碳能力,在中国湿地中分布广泛,且均对水体二次污染较小.以南荻、美人蕉、玉米芯作为碳源添加的模拟人工湿地实验验证表明,在低碳氮比的模拟表流人工湿地投入植物碳源,能有效提高系统的脱氮效率,对照组、南荻组、美人蕉组和玉米芯组的出水总氮浓度分别为(5.24±0.07)、(4.50±0.10)、(3.75±0.17)和(2.97±0.18) mg/L,对应的去除率分别为58%、64%、70%和76%,确定南荻和美人蕉植物残体以及改性材料均残体和改性材料适合作为人工湿地中原位利用的外加碳源.本研究探索了通过湿地植物配置解决人工湿地水体低C/N比的问题,为提高湿地脱氮效果提供了有意义的新途径.  相似文献   

2.
A number of studies have showed that the mass removal rates of phosphorus (P) in different constructed wetlands (CWs) varied significantly, and it is essential to quantify the contributions of major P removal processes in order to improve system design. The objective of this study was to investigate the effects of vegetation, hydraulic retention time (HRT), and water temperature on P removal from polluted river water and to quantify the contributions of different P removal pathways in surface CWs. Results showed that the average total P removal rates ranged between 2.69 and 20.84 mg/(m2 day) in different seasons and were influenced significantly by vegetation, HRT, and water temperature. According to the mass balance approach, plant uptake removed 4.81–22.33% of P input, while media storage contributed 36.16–49.66%. Other P removal processes such as microbiota uptake removed around 0.26–4.13%. Media storage and plant uptake were identified as the main P removal processes in surface CWs treating polluted river water. This illustrated the importance of selecting media and plants in CWs for future practical application.  相似文献   

3.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

4.
The spatial distribution of the concentrations of heavy metals Cd, Pb, Zn and Cu were studied for contaminated wetlands located by industrial centres and villages influenced by anthropogenic contamination in the Russian Arctic. For comparison, non-contaminated wetlands were also studied in neighbouring areas. Samples were collected during the period 1977–1994 and included: (a) water, (b) particulate matter, (c) bottom sediments, (d) hydric soils and (e) hummock bog peat and polygonal bog peat. For impacted wetlands, the observed ranges for the concentrations of Cd, Pb, Zn, and Cu in water were 0.12–0.8, 0.9–2.5, 2.4–15 and 16–34 μg l−1, respectively. For (b)- (e) the corresponding values were [1.2–5.4; 24–37; 120–320; 80–116]; [6.4–17; 34–59; 240–570; 115–280]; [10–32; 57–78; 315–480; 87–350] and [5.1–53; 51–150; 125–520; 80–440] mg/kg, dry wt, respectively. The metal concentrations were up to 1000 times higher than background levels determined for non-contaminated wetlands in the Russian Arctic. The contaminants appear to be a direct result of localized anthropogenic activity, arising primarily from geoprospecting, the oil and coal industry, and domestic waste.  相似文献   

5.
Secondary drainage canals have the potential to effectively mitigate excess nitrogen loads from diffuse and point sources. In vegetated (Phragmites australis and Typha latifolia) and in unvegetated canals subjected to diffuse and point pollution, nitrogen removal was evaluated by means of simple in–out mass balance and potential uptake by macrophytes was estimated from biomass data. Results suggest an elevated control of nitrogen in vegetated ditches receiving point source of pollution (average abatement of 50% of the total N load per linear km), whereas removal processes are much less effective in unvegetated ditches. The comparison between net abatement and plant uptake, highlights the presence of other unaccounted for processes responsible for a relevant percentage of total N removal. Overall, results from this study suggest the importance of actions aiming at the appropriate management of emergent vegetation, in order to improve its direct and indirect metabolic functions and maximize nitrogen removal in impacted watersheds.  相似文献   

6.
巢湖典型子流域上下游水塘对暴雨径流氮磷去除效率比较   总被引:2,自引:0,他引:2  
从流域上下游环境条件及氮磷输出强度差异出发,探讨上下游水塘对径流氮磷去除的特征及效率,选取巢湖小柘皋河源头流域上下游水塘开展水塘去除暴雨径流氮磷的对比试验,研究暴雨及暴雨间期上下游水塘氮磷去除效率差异及原因,为流域上下游设计不同类型净化塘去除氮磷提供科学依据.结果表明:暴雨期,上游径流氮磷浓度高于下游,且颗粒态所占比例上游大于下游,流域上游应作为防治暴雨径流氮磷流失的重点区域;暴雨期,上游塘对暴雨径流中的氮磷去除效果明显,氮、磷去除率分别为74%和52%,且对颗粒态去除效果好于溶解态,下游塘没有表现出明显的去除效果;暴雨间期,上游塘塘内氮磷浓度平均下降50%和20%,下游塘则分别为72%和16%,且均以溶解态去除为主;水塘去除暴雨径流氮磷有一定的浓度适用范围,浓度过低,去除效果不明显;流域部位不同引起入塘径流氮磷浓度和形态的差异是上下游水塘对暴雨径流去除效果差异的主要外部原因.流域上游出山口,可以在渗透性好的山前洪积扇上构建深水宽塘,通过增加暴雨径流拦截量和降低流速增强物理沉降作用,实现暴雨径流氮磷的高效去除;流域下游农田区,宜构建水面较大的浅滩湿地,通过延长滞留时间和促进生物活动增强去除暴雨径流氮磷的效果.  相似文献   

7.
A study was made of the water chemistry, tissue nutrients and surface phosphatase activities of the 2-cm apices of three mosses in four upland streams in northern England, UK. This was part of a project to optimize methods for assessing nutrient fractions in environments with highly variable water chemistry. Aqueous N and P fractions showed the greatest variability followed by moss phosphatase activities, with nutrient composition of the shoot apices the least variable. There was no consistent pattern as to which aqueous N or P fraction was the most variable. The ratio between total inorganic N and total filtrable P ranged over three orders of magnitude in some streams. The interrelations between tissue N and P concentrations, tissue N:P ratio, phosphatase activities and aqueous variables showed:

(1) Significant +ve relationship between tissue N and aqueous NO3–N in some populations, but not between tissue P and aqueous P concentration;

(2) Significant +ve relationships between phosphatase activities and aqueous organic N, but none with aqueous organic P;

(3) Significant +ve relationships between phosphodiesterase:phosphomonoesterase activities and aqueous organic N;

(4) Significant −ve relationships between phosphatase activities and tissue P concentration;

(5) Significant +ve relationships between phosphatase activities and tissue N:P.

Both types of biological measurement are valuable for monitoring ambient nutrients in upland streams. Neither is clearly better than the other, so both should be included in surveys.  相似文献   


8.
蟹、鱼网围混养对草型湖泊氮磷平衡的影响   总被引:31,自引:3,他引:28  
施炜纲  王博  周昕 《湖泊科学》1999,11(4):363-368
富营养化是当今的水污染治理难题,而农业非点源磷污染与水体富营养化的发生有着密切的关系,目前农田生态系统中广泛存在的磷素投入过量和由此导致的土壤磷素积累加剧了磷素向水体的流失。本文根据国内外最新研究成果,分析了农田土壤磷素流失对水体富营养化的影响,指出了减轻农业非点源磷污染的重要性,对目前所采用的农业非点源磷污染重点控制区的确定方法和一些主要防治措施的效果进行了评述。  相似文献   

9.
云南抚仙湖窑泥沟复合湿地的除氮效果   总被引:11,自引:3,他引:8  
为了延缓抚仙湖局部湖湾水体富营养化趋势,在北岸建设了净化面积1hm2.的复合人工湿地.综合利用生物氧化塘、水平潜流湿地和表面流湿地治理技术,对入湖河道窑泥沟污水中氮的去除效果进行了试验研究.试验结果表明,湿地系统的除氮效果十分明显,水力负荷年平均为437mm/d,氮负荷年平均为3.315 g/(m2·d),湿地系统氮滞留量年平均为1.91g/(m2·d).其中,通过植物吸收同化作用除氮量为0.142g/(m2·d),占总氮滞留量的7.5%左右.湿地系统对污水中硝酸盐及亚硝酸盐氮(NOX-)、氨氮(NH4+)、有机氮(TON)和总氮(TN)的去除率年平均分别为62.7%、53.8%、62.4%和57.5%.在湿地系统各功能区中,表面流人工湿地除氮效果最佳,氮去除率年平均为39.4%,硝化和反硝化作用均较强;生物净化塘除氮效果次之,氮去除率年平均为18.5%;潜流人工湿地氮去除率年平均为10.6%;沉淀池中氮去除率年平均只有3.6%.  相似文献   

10.
内陆水体是大气CO2收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO2排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为研究对象,选取流域中用于水产养殖(养殖塘)、生活污水承纳(村塘)、农业灌溉(农塘)、蓄水(水塘)的4个功能不同的景观池塘,基于为期1年的野外实地观测,以明确农业流域小型池塘CO2排放特征。结果表明,不同功能池塘水体CO2排放差异显著,受养殖活动、生活污水输入和农田灌溉等人类活动影响,养殖塘((80.37±100.39) mmol/(m2·d))、村塘((48.69±65.89) mmol/(m2·d))和农塘((13.50±15.81) mmol/(m2·d))是大气CO2的热点排放源,其CO2排放通量分别是自然蓄水塘((4.52±23.26) mmol/(m2·d))的18、11和3倍。统计分析也表明,该流域池塘CO2排放变化总体上受溶解氧、营养盐等因素驱动。4个不同景观池塘CO2排放通量全年均值为(37.31±67.47) mmol/(m2·d),是不容忽视的CO2排放源,其中养殖塘和村塘具有较高的CO2排放潜力,在未来研究中需要重点关注。  相似文献   

11.
Gravel-filled traps were buried in the beds of streams draining steep logged and unlogged catchments of the Dazzler Range in northern Tasmania, Australia, and removed after storm events, to assess infiltration of fine (less than 1 mm) material into the bed. All stream catchments were geomorphically similar, over similar altitude ranges and had moderately erodible sandy-clay soils on 25–35° slopes. Study catchments were selected to control for aspect, logging treatment and coupe age. Fine sediment infiltration into the stream bed was assessed for 15 tributary ephemeral streams in logged areas and 11 streams in unlogged areas. The logged catchments had been clearfelled in three time periods — 1990–1991, 1988–1989 and 1986–1987 — all by skyline cable logging. Trap yield was also assessed in riffles of the perennial valley floor streams upstream and downstream of the junction of six logged and six unlogged tributaries and upstream and downstream of four old but actively used road crossings. Trap yield was significantly higher in logged than in unlogged ephemeral streams for size fractions ranging from less than 125 to 500 μm, by factors ranging from two to three, but not for sediment between 0.5 and 1.0 mm. Trap yield of organic sediment of less than 125 μm declined with time after logging and burning, whereas inorganic sediment yield showed no clear trend with coupe age. Trap yield of 0.5–1.0 mm organic sediment was also significantly enhanced by logging and by burning. Sediment yield of streams logged in 1986–1987 was not significantly higher than for control streams, whereas inorganic sediment and 0.5–1.0 mm organic sediment yields were highest for recently burnt coupes. A significantly greater number of increases in trap yield occurred between riffle pairs of valley floor streams adjacent to junctions of logged tributaries, when compared with control riffle pairs. Logged tributary junctions were associated with an increase in the organic content of sediment. Road crossings were associated with large increases in infiltration in adjacent riffle pairs, 30–50 years after construction. Current forest practices do not protect ephemeral headwater streams from enhanced sediment inputs, the long-term significance of which is unknown. Recovery of sediment fluxes in these streams to background levels appears to take 5 years or longer.  相似文献   

12.
13.
Small water bodies, such as ponds and wetlands, are common landscape features, but often are not simulated within a watershed modeling framework. The wetland modeling tool, AgWET, uses a GIS framework to characterize the features of ponds and wetlands so that they can be incorporated into watershed simulations using the Annualized Agricultural Non-Point Source (AnnAGNPS) pollution model. AgWET was used to characterize farm ponds on the Goodwin Creek Experimental Watershed in northwest Mississippi and AnnAGNPS simulated watershed hydrology. Monthly streamflow was validated at four watershed gauges with Nash-Sutcliffe efficiency values between 0.91 and 0.94. Ponds influenced watershed hydrology at various scales, with a decrease in average streamflow by 4% at the watershed outlet, 8% at the sub-watershed scale, and an average of 56% immediately downstream of the ponds. AgWET can be used to simulate ponds in watershed assessments for improved results and evaluation of future scenarios.  相似文献   

14.
Watershed management efforts in agriculturally dominated landscapes of North America face nearly two centuries of laws and policies that encouraged habitat destruction. Although streams and wetlands in these landscapes are actively being restored using designs that incorporate science and engineering, watershed drainage laws can constrain action or impact passively restored or naturalized habitat. In general, drainage laws require removal of any riparian vegetation or wood deemed to obstruct flow in streams regulated as drains. We use a case study from Indiana (USA) to introduce the shortcomings of drainage laws for allowing large wood, which is an important habitat feature, to remain in stream ecosystems. Removals of large wood from monitored stream reaches in a regulated drain were associated with subsequent declines in fish biomass. Such legal activities represent an important environmental management problem that exists under drainage laws which apply to streams over a widespread geographic region of North America. Recent litigation in Wisconsin (USA) suggests that if state legislatures fail to update these antiquated laws, the courts may act in favour of science-based management of drains. The statutes and regulations that govern agricultural drainage warrant careful consideration if streams within drainage districts are to be managed to improve ecological function. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
S. V. Panno  W. R. Kelly   《Journal of Hydrology》2004,290(3-4):229-242
This investigation was designed to estimate the mass loading of nitrate (NO3) and herbicides in spring water discharging from groundwater basins in an agriculturally dominated, mantled karst terrain. The loading was normalized to land use and NO3 and herbicide losses were compared to estimated losses in other agricultural areas of the Midwestern USA. Our study area consisted of two large karst springs that drain two adjoining groundwater basins (total area of 37.7 km2) in southwestern Illinois' sinkhole plain, USA. The springs and stream that they form were monitored for almost 2 years. Nitrate–nitrogen (NO3–N) concentrations at three monitoring sites were almost always above the background concentration (1.9 mg/l). NO3–N concentrations at the two springs ranged from 1.08 to 6.08 with a median concentration of 3.61 mg/l. Atrazine and alachlor concentrations ranged from <0.01 to 34 μg/l and <0.01 to 0.98 μg/l, respectively, with median concentrations of 0.48 and 0.12 μg/l, respectively. Approximately 100,000 kg/yr of NO3–N, 39 kg/yr of atrazine, and 2.8 kg/yr of alachlor were discharged from the two springs. Slightly more than half of the discharged NO3 came from background sources and most of the remainder probably came from fertilizer. This represents a 21–31% loss of fertilizer N from the groundwater basins. The pesticide losses were 3.8–5.8% of the applied atrazine, and 0.05–0.08% of the applied alachlor. The loss of atrazine adsorbed to the suspended solid fraction was about 2 kg/yr, only about 5% of the total mass of atrazine discharged from the springs.  相似文献   

16.
This paper reviews work related to interbasin groundwater flow (naturally occurring groundwater flow beneath watershed topographic divides) into lowland rainforest watersheds at La Selva Biological Station in Costa Rica. Chemical mixing calculations (based on dissolved chloride) have shown that up to half the water in some streams and up to 84% of the water in some riparian seeps and wells is due to high-solute interbasin groundwater flow (IGF). The contribution is even greater for major ions; IGF accounts for well over 90% of the major ions at these sites. Proportions are highly variable both among watersheds and with elevation within the same watershed (there is greater influence of IGF at lower elevations). The large proportion of IGF found in water in some riparian wetlands suggests that IGF is largely responsible for maintaining these wetlands. δ18O data support the conclusions from the major ion data. Annual water and major ion budgets for two adjacent watersheds, one affected by IGF and the other not, showed that IGF accounted for two-thirds of the water input and 92–99% of the major ion input (depending on the major ion in question) to the former watershed. The large (in some cases, dominating) influence of IGF on watershed surface water quantity and quality has important implications for stream ecology and watershed management in this lowland rainforest. Because of its high phosphorus content, IGF increases a variety of ecological variables (algal growth rates, leaf decay rate, fungal biomass, invertebrate biomass, microbial respiration rates on leaves) in streams at La Selva. The significant rates of IGF at La Selva also suggest the importance of regional (as opposed to small-scale local) water resource planning that links lowland watersheds with regional groundwater. IGF is a relatively unexplored and potentially critical factor in the conservation of lowland rainforest.  相似文献   

17.
Based on benthic macroinvertebrate samples from 57 sites of streams in the European Central Highlands (Ecoregion 9; Illies (1978). Limnofauna Europaea, Stuttgart), the composition and the abundance of Simuliid species were analysed in relation to hydromorphological and land use parameters. Sampling sites were located at two stream types differing in catchment geology, stream morphology and channel width. Land use data were taken from the official German information system for cartography and topography (ATKIS) and the German River Habitat Survey. Land use categories suitable to describe the sampling sites were ‘agricultural land’, ‘urban’ and near-natural areas. Hydromorphological parameters of the sites were recorded using the AQEM site protocol (AQEM Consortium (2002). Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. EVK1-CT1999-00027, Version 1.0. Available via the Internet from www.aqem.de). Relevant parameters controlling Simuliid distribution in streams were the mineral substrates and the biotic microhabitats. Blackfly larvae and pupae were sampled at each site for 15 min. Statistical analysis was performed by CANOCO® (Ter Braak & Smilauer (1997). CANOCO Version 4.5. Biometrics Plant Research International, Wageningen, The Netherlands) using redundancy analysis (RDA).

Our results show a stream type-specific composition of the Blackfly fauna. The analyses reveal sensitivity of the Simuliid species to morphological degradation, which is indicated by the shift in the longitudinal zonation of the Simuliid communities. Especially, Prosimulium hirtipes (Fries, 1824) and Simulium argyreatum Meigen, 1838 are typical representatives of headwater streams. While they seem to indicate undisturbed conditions of this stream type and react sensitively to the degradation of stream habitats, Simulium ornatum Meigen, 1818 and Simulium equinum (Linnaeus, 1758) are more tolerant to stream degradation.

On catchment scale, ‘% natural forest’ and ‘% agricultural land use’ illustrate the degree of degradation of the two selected stream types. ‘Average stream depth’ and ‘relation riffles/pools’ account for hydromorphological degradation reflected by Simuliid species on the smaller reach scale. The analysis of habitat quality revealed that ‘% woody debris’ represents an important parameter of morphological degradation reflected by the Blackfly community.  相似文献   


18.
Changes in seasonality and form of precipitation alter the structure and function of grassland and steppe ecosystems and pose challenges for land management and crop production in regions like the Northern Great Plains, North America. This research uses isotopic composition of water (δ18O and δ2H) to explore the sources and fate of soil water in lower-elevation agricultural areas of the Judith River watershed, in the headwaters of the Missouri River, USA. Extensive non-irrigated cereal crop production in this area occurs on well-drained soils and depends on careful water management. Our observations indicate that colder precipitation contributes isotopically distinct water to cultivated terrace soils relative to downgradient groundwaters and streams. Riparian waters also exhibit a higher fraction of contributions from colder precipitation relative to terrace groundwaters and streams. Apparent contributions from colder precipitation in terrace and riparian soil waters suggest that snowmelt is a key component of the water supply to these systems. Riparian waters also show evidence of evaporation suggesting that water spends sufficient time in some ponds and open channels in the riparian corridor to reflect fractionation by evaporation. The evolution of water isotopic composition from soils to shallow aquifers to stream corridors indicates source water partitioning as precipitation moves through this semi-arid agricultural landscape. The apparent mixing processes evident in this evolution reveal source water dynamics that are necessary to understand plant transpiration, solute processing, and contaminant leaching processes.  相似文献   

19.
Background concentrations of Cd, Pb, Zn and Cu were studied for wetlands from pristine regions of the Russian Arctic: Severnaya Zemlya Archipelago, Vrangel Island, Arctic deserts and tundra of the North Taimyr Peninsula, Byrranga Mountainous Area, tundra zone of Mid-Siberia, North-East Siberia, Far North-East, and Amguemo-Anadyr Mountainous Area. These wetland regions were known to be relatively remote and isolated, with little human population and no local industry. Samples were collected during the period 1976–1993 and included: (a) snow and thaw water, (b) particulate matter, (c) bottom sediments, (d) hydric organo-mineral deposits and hydric soils, (e) polygonal bog peat and sedge-moss peat. Observed ranges for the background concentrations of Cd, Pb, Zn, and Cu in water were 0.001–0.15, 0.02–0.36, 0.05–2.9 and 0.23–6.2 μg l−1 respectively. For (b)–(e) the corresponding values were [0.04–0.46; 1.3–41; 8.6–190; 0.7–63]; [0.05 0.99; 1.5–49; 2.5–153; 2.4–55]; [0.05–0.96; 1.7–44; 2.2–154; 2.0–82] and [0.03–0.83; 1.3–31; 2.1–124; 1.7–68] mg kg−1, dry wt, respectively. Although full assessment of the pristine nature of the wetlands was not possible due to the limited data available, the observed metal concentrations reflect natural geochemical background levels and influence from localized minor ore-deposits present for some regions. In general, there was no evidence of impact from remote industrial regions of the Russian Arctic.  相似文献   

20.
DET (diffusive equilibrium in thin films) gel probes were used for sampling river-bed sediment porewaters, to characterise in situ soluble reactive phosphorus (SRP) concentration profiles and fluxes. DET probes were deployed in three contrasting rural streams: (1) a headwater ‘pristine’ stream, with minimal P inputs from low intensity grassland and no point sources, (2) an intensively cultivated arable catchment, and (3) a stream subject to high P loadings from sewage effluent and intensive arable farming. The DET results showed highly enriched porewater SRP concentrations of between ca. 400 and 5000 μg-P l−1 in the sewage-impacted stream. In contrast, the arable and pristine streams had porewater SRP concentrations <70 μg-P l−1 and <20 μg-P l−1, respectively. Porewater SRP concentration profiles in both the sewage-impacted and arable-impacted streams showed well-defined vertical structure, indicating internal sources and sinks of SRP within the sediment. However, there was little variability in porewater SRP concentrations in the pristine stream. The DET porewater profiles indicated net diffusion of SRP (a) from the overlying river water into the surface sediment and (b) from subsurface sediment upwards towards the sediment–water interface. A mass balance for the sewage-impacted site showed that the influx of SRP into the surface sediments from the overlying river water was small (ca. 1% of the daily river SRP load). The DET results indicated that, in the arable and sewage-impacted streams, the surface ‘cap’ of fine sediment may play an important role in inhibiting upward movement of SRP from subsurface porewaters into the overlying river water, under steady-state, low-flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号