首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过评估GPM计划三种日降水产品(IMERG-E、 IMERG-L和IMERG-F)和TRMM卫星、 两种日降水产品(TMPA 3B42和TMPA 3B42RT)在黄河源及其周边区域38个台站的适用性, 探究了五种产品探测精度和海拔高度及雨强的相关关系, 结果表明: 在与实测资料的一致性和偏差方面, GPM卫星产品要全面优于TMPA产品。在TRMM卫星产品中, 3B42产品明显优于3B42RT。五种产品的相关系数均表现出明显的从东南到西北递减的趋势, 均方根误差北部普遍低于南部。IMERG产品的探测率(POD)和探测成功率(CSI)都要普遍高于TMPA产品, 而误报率(FAR)则是TMPA 产品更低, 表现更好。五种产品均在个别台站出现了严重误报的情况, 这些台站主要分布在研究区的西北部。IMERG三种产品对于海拔高度的依赖程度具有很强的一致性, 而3B42RT产品对海拔高度几乎没有依赖。除3B42RT产品外, 其余四种产品的偏差均随雨强的增加而增大。在探测率方面, IMERG产品对小雨、 中雨和大雨的探测能力均优于TMPA产品。  相似文献   

2.
近实时卫星降水反演数据具有覆盖范围广、空间连续性和时效性较强以及开放获取等优势,是重要的全球性降水资料。针对2021年河南省“7·20”极端暴雨,基于116个地面气象站观测资料及其空间插值数据,综合解析了4种GPM近实时卫星降水数据(IMERG early、IMERG late、GSMaP NOW和GSMaP Gauge NOW)对极端强降水事件的表征能力。结果发现:(1)IMERG early、IMERG late对站网累积雨量的低估程度在20%左右,GSMaP NOW和GSMaP Gauge NOW的高估程度分别达到了约35%和70%,但2种GSMaP数据更易探测到500 mm以上的累积雨量。(2)在雨量过程方面,4种GPM数据对小时降水事件均具有较强的分类辨识能力,但未捕捉到主要雨峰过程,定量误差较突出,与地面降水量之间表现出显著的负相关关系。GPM降水数据对小时雨量低于10 mm的降水事件以高估为主;对于小时雨量超过30mm的降水事件以低估为主,甚至存在普遍低估。(3)在空间格局方面,4种GPM数据的精度指标均具有较强的时间波动性,IMERG数据的空间相关系数和体积临界成功指数...  相似文献   

3.
GPM与TRMM降水数据在中国大陆的精度评估与对比   总被引:2,自引:0,他引:2       下载免费PDF全文
为评估TRMM 3B42(TRMM)和新一代GPM IMERG(GPM)卫星降水产品精度,基于国内824个气象站点日降水数据,选用相关系数(R)、相对误差(ER)和公正先兆评分(SET)等指标,对比分析了二者在中国大陆和九大流域内逐日、逐月尺度的观测精度。研究表明:①在日尺度上,中国大陆内的GPM降水数据精度整体优于TRMM,二者的R、ER和SET分别达到了0.73、2.03%、0.36和0.70、3.75%、0.33;②GPM和TRMM日降水数据在海河流域、淮河流域、长江流域、珠江流域、东南诸河流域呈现较高的观测精度,在松辽流域、黄河流域、西南诸河片区精度次之,在内陆河片区相对最低;③在月尺度上,中国大陆内的GPM冬季降水精度明显好于TRMM,这是由于GPM提高了对弱降水和固态降水的观测能力。总体上,GPM降水产品在中国各大流域精度较好且优于TRMM,表明其在流域降水研究及水文模拟中将有较好的应用前景。  相似文献   

4.
The cyclones over Bay of Bengal (BoB) have varied socio-economic impacts and meteorological importance. There are considerable uncertainties in predicting the track and intensity of cyclonic systems in the BoB. The present study examines the cyclogenesis characteristics over the BoB and addresses the regional impacts and their importance in terms of intensification of cyclones. An analysis of cyclone track data from 1971–2013 reveals that the cyclones generated in Andaman Sea (a regional sea of BoB) and propagating through central BoB sustain maximum life time. Furthermore, within the BoB, the cyclones originated from Andaman Sea are the most intensified and characterized by highest cyclogenesis potential index. Interestingly, we have found that higher value of mid-tropospheric relative humidity over Andaman Sea during the cyclone period is enhancing the cyclone’s intensity. Climatologically also the Andaman Sea is dominated by higher values of mid-tropospheric relative humidity compared to other regions of BoB. There is no significant distinction between Andaman Sea and rest of the BoB for other meteorological and oceanic parameters that supports cyclogenesis. Climatologically dominant east–west asymmetry in mid-tropospheric relative humidity is enhancing the intensity of cyclones from Andaman Sea. The results will be helpful in understanding the processes of cyclone intensification and useful in the statistical and dynamical prediction of cyclones.  相似文献   

5.
Ozturk  U.  Saito  H.  Matsushi  Y.  Crisologo  I.  Schwanghart  W. 《Landslides》2021,18(9):3119-3133

Predicting rainfall-induced landslides hinges on the quality of the rainfall product. Satellite rainfall estimates or rainfall reanalyses aid in studying landslide occurrences especially in ungauged areas, or in the absence of ground-based rainfall radars. Quality of these rainfall estimates is critical; hence, they are commonly crosschecked with their ground-based counterparts. Beyond their temporal precision compared to ground-based observations, we investigate whether these rainfall estimates are adequate for hindcasting landslides, which particularly requires accurate representation of spatial variability of rainfall. We developed a logistic regression model to hindcast rainfall-induced landslides in two sites in Japan. The model contains only a few topographic and geologic predictors to leave room for different rainfall products to improve the model as additional predictors. By changing the input rainfall product, we compared GPM IMERG and ERA5 rainfall estimates with ground radar–based rainfall data. Our findings emphasize that there is a lot of room for improvement of spatiotemporal prediction of landslides, as shown by a strong performance increase of the models with the benchmark radar data attaining 95% diagnostic performance accuracy. Yet, this improvement is not met by global rainfall products which still face challenges in reliably capturing spatiotemporal patterns of precipitation events.

  相似文献   

6.
This paper presents an assessment of the 3B42 research version rainfall product from NASA’s Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA). The study provides new results of TMPA data accuracy in urban areas and highlights trends associated with the climatological indicators of temperature and relative humidity in cities. Ten years (1998-2007) of TMPA data were analyzed for three case study cities in the United States (Houston, Atlanta, and Las Vegas) and one in Korea (Cheongju), representing semi-arid to humid climates. At each location, an urbanized river basin and non-urbanized river basin were selected and comparisons between TMPA and rain gage observations were made for recorded storm events in the study period, the largest storm events by total depth, and selected hurricanes and topical storms. The results indicate TMPA data match well with rain gage observations at all locations. TMPA is slightly underestimated for semi-arid regions and overestimated for humid regions. The relative magnitude of TMPA rain event accumulation compared to rain gage accumulation is noted to be smaller for urbanized watersheds and high intensity events. The correlation of TMPA accuracy with temperature and relative humidity and the analysis of accuracy by season indicate TMPA is more accurate for convective rainfall events. This suggests a possible linkage between the observed urban-modified temperatures, hypothesized enhanced convection, and improved TMPA accuracy in urban areas.  相似文献   

7.
Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June–September or JJAS) from 2005–2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall.  相似文献   

8.
The genesis of tropical cyclones (TCs) over Indian seas comprising of Bay of Bengal (BoB) and Arabian Sea (AS) is highly seasonal with primary maximum in postmonsoon season (mid-September to December) and secondary maximum during premonsoon season (April and May). The present study is focused to demonstrate changes in genesis and intensity of TCs over Indian seas in warming environment. For this purpose, observational data of TCs, obtained from the India Meteorological Department (IMD), are analyzed. The sea surface temperature (SST), surface wind speed, and potential evaporation factor (PEF), obtained from the International Comprehensive Ocean Atmosphere Data Set (ICOADS), are also analyzed to examine the possible linkage with variations in TC activities over Indian seas. The study period has been divided into two epochs: past cooling period (PCP, period up to 1950) and current warming period (CWP, period after 1950) based on SST anomaly (became positive from 1950) over the BoB and AS. The study reveals that the number of severe cyclones (SCS) increases significantly (statistically significant at 99% confidence level) by about 41% during CWP though no such significant change is observed in cyclonic disturbances (CDs) and cyclones (CS) over Indian seas. It is also observed that the rate of dissipation of CS and SCS over Indian seas has been decreasing considerably by about 63 and 71%, respectively, during CWP. The analysis shows that the BoB contributes about 75% in each category of TCs and remaining 25% by the AS towards total of Indian seas. A detailed examination on genesis and intensity of TC over both the basins and the seasons illustrates that significant enhancement of SCS by about 65% during CWP is confined to the postmonsoon season of the BoB. Further, the BoB is sub-divided into northern, central, and southern sectors and the AS into western and eastern sectors based on genesis of TCs and SST gradient. Results show that in postmonsoon season during CWP, the number of SCS increases significantly by about 71% in southern BoB and 300% over western AS.  相似文献   

9.
Rainfall is one of the pivotal climatic variables, which influence spatio-temporal patterns of water availability. In this study, we have attempted to understand the interannual long-term trend analysis of the daily rainfall events of ≥?2.5 mm and rainfall events of extreme threshold, over the Western Ghats and coastal region of Karnataka. High spatial resolution (0.25°?×?0.25°) daily gridded rainfall data set of Indian Meteorological Department was used for this study. Thirty-eight grid points in the study area was selected to analyze the daily precipitation for 113 years (1901–2013). Grid points were divided into two zones: low land (exposed to the sea and low elevated area/coastal region) and high land (interior from the sea and high elevated area/Western Ghats). The indices were selected from the list of climate change indices recommended by ETCCDI and are based on annual rainfall total (RR), yearly 1-day maximum rainfall, consecutive wet days (≥?2.5 mm), Simple Daily Intensity Index (SDII), annual frequency of very heavy rainfall (≥?100 mm), frequency of very heavy rainfall (≥?65–100 mm), moderate rainfall (≥?2.5–65 mm), frequency of medium rainfall (≥?40–65 mm), and frequency of low rainfall (≥?20–40 mm). Mann-Kendall test was applied to the nine rainfall indices, and Theil-Sen estimator perceived the nature and the magnitude of slope in rainfall indices. The results show contrasting trends in the extreme rainfall indices in low land and high land regions. The changes in daily rainfall events in the low land region primarily indicate statistically significant positive trends in the annual total rainfall, yearly 1-day maximum rainfall, SDII, frequency of very heavy rainfall, and heavy rainfall as well as medium rainfall events. Furthermore, the overall annual rainfall strongly correlated with all the rainfall indices in both regions, especially with indices that represent heavy rainfall events which is responsible for the total increase of rainfall.  相似文献   

10.
In view of the ongoing environmental and ecological changes in the Western Ghats, it is important to understand the environmental parameters pertaining to the sustenance of the region. Rainfall is one such parameter governing the hydrological processes crucial to agriculture planning, afforestation and eco-system management. Therefore, it is essential to understand rainfall distribution and its variation in relevance to such activities. The present study is an attempt to gain in-depth understanding in this direction. The study area comprises of one coastal district and its adjoining areas in Karnataka State. Mean annual rainfall data of 93 rain gauge stations distributed over the study area for a period of 10–50 years are used for the study. In order to assess the variation of rainfall across the ghats, several bands were constructed parallel to the latitudes to facilitate the analysis. The statistical analyses conducted included cluster analysis and analysis of variance. The study revealed that there exist three distinct zones of rainfall regimes in the study area, namely, Coastal zone, Transition zone and Malanad zone. It is observed that, the maximum rainfall occurs on the windward side ahead of the geographical peak. Further, mean monthly rainfall distribution over the zones has been depicted to enable agricultural planning in the study area.  相似文献   

11.
The volumetric rainfall attributed to Hurricane Floyd in 1999 was computed for the bulk of the Tar, Neuse, and Cape Fear River Basins in eastern North Carolina, USA from the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) research product, and compared with volumes computed using kriged gauge data and one centrally located radar. TMPA showed similar features in the band of heaviest rainfall with kriged and radar data, but was higher in the basin-scale integrations. Furthermore, Floyd’s direct runoff volumes were computed and divided by the volumetric rainfall estimates to give runoff coefficients for the three basins. The TMPA, having the larger storm totals, would suggest greater infiltration during Floyd than the gauge and radar estimates would. Finally, we discuss a concept for adjusting the United States Department of Agriculture Natural Resources Conservation Service rainfall-runoff model when predicting discharge values from real-time TMPA in ungauged river basins.
Scott CurtisEmail:
  相似文献   

12.
Spatial variability and rainfall characteristics of Kerala   总被引:1,自引:0,他引:1  
Geographical regions of covariability in precipitation over the Kerala state are exposed using factor analysis. The results suggest that Kerala can be divided into three unique rainfall regions, each region having a similar covariance structure of annual rainfall. Stations north of 10‡N (north Kerala) fall into one group and they receive more rainfall than stations south of 10‡N (south Kerala). Group I stations receive more than 65% of the annual rainfall during the south-west monsoon period, whereas stations falling in Group II receive 25–30% of annual rainfall during the pre-monsoon and the north-east monsoon periods. The meteorology of Kerala is profoundly influenced by its orographical features, however it is difficult to make out a direct relationship between elevation and rainfall. Local features of the state as reflected in the rainfall distribution are also clearly brought out by the study.  相似文献   

13.
多传感器联合反演高分辨率降水方法综述   总被引:4,自引:1,他引:3  
精确测量具有强烈时空变异性的降水,是水文气象学颇具挑战的科学研究目标之一。基于多传感器联合反演降水(Multi-sensor Precipitation Estimation,MPE)的方法已成为卫星反演降水的主流趋势。首先介绍MPE方法的定义与分类,回顾MPE方法的历史发展阶段及研究现状;然后介绍主要的MPE算法,包括TRMM多卫星降水分析算法(TMPA)、气候预测中心算法(CMORPH)、全球卫星降水制图算法(GSMa P)、美国海军研究实验室联合算法(NRLB)和神经网络降水算法(PERSIANN);对比这5种主要算法的优缺点和反演精度(PERSIANN精度范围为-56%~200%,其他产品为-67%~10%),指出存在的主要问题,并且评价不同类型MPE算法的性能;最后结合目前存在的问题探讨MPE方法研究发展趋势。  相似文献   

14.
北京市泥石流灾害临界雨量研究   总被引:3,自引:2,他引:3  
降雨是泥石流灾害的主要诱发因素。文章根据北京市历史上泥石流灾害发生时的前期雨量与当日激发雨量,建立了临界雨量判别模型。通过对北京地区泥石流灾害与降雨频率的分析,计算了不同时段的临界雨量;经验证明,计算结果是可信的。基于灾害与降雨频率分析来确定北京地区泥石流发生的临界雨量是一种新的尝试。该方法可用于计算不同泥石流沟道发生泥石流的临界雨量。  相似文献   

15.
TRMM多卫星降水数据在黑河流域的验证与应用   总被引:6,自引:2,他引:4  
利用黑河流域9个气象台站降水数据, 在不同时间尺度和空间分布上分析了2008-2011年TRMM多卫星降水数据(TMPA 3B43)在黑河流域的适用性.结果表明: 用TMPA估测的年降水量在黑河流域平均高估27.3%, 对上游降水量大的山区估测相对好于降水稀少的黑河下游地区; TMPA与气象站降水量的拟合优度夏季(R2=0.851)高于冬季(R2=0.332); TMPA可以较好反映各测站降水量年变化、 月变化趋势, 用TMPA估测的黑河流域平均年降水量变化趋势为30 mm·(10 a)-1. 黑河流域年降水量体现出随海拔高度的递增规律(11.1 mm·(100 m)-1)、 从东向西降水量逐渐减少的分布以及最大降水高度带出现在上游偏东地区(海拔2 800~4 900 m).  相似文献   

16.
The study focuses on understanding the variations of precipitation during summer monsoon season and its impact on Kharif and Rabi foodgrain yield over India. Total foodgrain yield over India during Kharif (summer) season is directly affected by variations in the summer monsoon precipitation (June–September). An increase (decrease) in rainfall is generally associated with an increase (decrease) in foodgrain yield. A similar correspondence during the Rabi (winter) foodgrain yield is not evident. The Rabi crop is not directly affected by variations in the post-monsoon precipitation (October–December) alone, also the summer season precipitation influences the Rabi crop through water and soil moisture availability over many parts of India. Though the reduction of rainfall activity during the entire summer monsoon season leads to reduction in crop yields, the occurrence of prolonged rainfall breaks also causes adverse effect on the crop growth resulting in reduced crop yields.  相似文献   

17.
The Tropical Rainfall Measuring Mission (TRMM) is a joint space mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study tropical rainfall. In this study, the daily rainfall from TRMM has been utilized to simulate the soil moisture content up to 30 cm vertical soil profile of at an interval depth of 15 cm by using the HYDRUS 1D numerical model for the three plots. The simulated soil moisture content using ground-based rainfall and TRMM-derived rainfall measurements indicate an agreeable goodness of fit between the both. The Nash–Sutcliffe efficiency using ground-based and TRMM-derived rainfall was found in the range of 0.90–0.68 and 0.70–0.40, respectively. The input data sensitivity analysis of precipitation combined with different irrigation treatment indicates a high dependency of soil moisture content with rainfall input. The overall analysis reveals that TRMM rainfall is promising for soil moisture prediction in absence of ground-based measurements of soil moisture.  相似文献   

18.
Located in the south-western part of Romania, the south-west development region overlaps the main relief forms: the Carpathians mountains, the Getic Subcarpathians, the Getic piedmont, the Romanian plain and the Danube valley. The study aims at providing an overview on the main pluvial parameters and their role in assessing rainfall erosivity in the study area. The authors assessed the occurrence, frequency and magnitude of some of the most significant pluvial parameters and their impact on the climatic aggressiveness in the study area. Thus, the monthly and annual mean and extreme climatic values for different rainfall related parameters (e.g., maximum amounts of precipitation/24 hr, heavy rainfall), as well as relevant indices and indicators for pluvial aggressiveness (Fournier, Fournier Modified, Angot) were calculated. The rainfall erosivity was assessed in order to provide both the spatial distribution of the triggering extreme weather phenomena and the resulted intensity classes for the analysed indices and indicators. The authors used long-term precipitation records (1961–2010) for the selected relevant meteorological stations distributed throughout all analysed relief units.  相似文献   

19.
《Atmósfera》2014,27(4):411-427
Daily extreme precipitation values are among environmental events with the most disastrous consequences for human society. Information on the magnitudes and frequencies of extreme precipitations is essential for sustainable water resources management, planning for weather-related emergencies, and design of hydraulic structures. In the present study, regional frequency analysis of maximum daily rainfalls was investigated for Golestan province located in the northeastern Iran. This study aimed to find appropriate regional frequency distributions for maximum daily rainfalls and predict the return values of extreme rainfall events (design rainfall depths) for the future. L-moment regionalization procedures coupled with an index rainfall method were applied to maximum rainfall records of 47 stations across the study area. Due to complex geographic and hydro-climatological characteristics of the region, an important research issue focused on breaking down the large area into homogeneous and coherent sub-regions. The study area was divided into five homogeneous regions, based on the cluster analysis of site characteristics and tests for the regional homogeneity. The goodness-of-fit results indicated that the best fitting distribution is different for individual homogeneous regions. The difference may be a result of the distinctive climatic and geographic conditions. The estimated regional quantiles and their accuracy measures produced by Monte Carlo simulations demonstrate that the estimation uncertainty as measured by the RMSE values and 90% error bounds is relatively low when return periods are less than 100 years. But, for higher return periods, rainfall estimates should be treated with caution. More station years, either from longer records or more stations in the regions, would be required for rainfall estimates above T=100 years. It was found from the analyses that, the index rainfall (at-site average maximum rainfall) can be estimated reasonably well as a function of mean annual precipitation in Golestan province. Index rainfalls combined with the regional growth curves, can be used to estimate design rainfalls at ungauged sites. Overall, it was found that cluster analysis together with the L-moments based regional frequency analysis technique could be applied successfully in deriving design rainfall estimates for northeastern Iran. The approach utilized in this study and the findings are of great scientific and practical merit, particularly for the purpose of planning for weather-related emergencies and design of hydraulic engineering structures.  相似文献   

20.
This study examines spatial and temporal variability of rainfall in Bizerte-Ichkeul Watershed. The basin, located in the extreme north of Tunisia, covers an area of 3084 km2. Thirteen rainfall stations, with continuous monthly precipitation records over the period (1970–2011), were considered in the analysis. Two methods were used. In the first, the dimensionless standardized precipitation ratio is applied to examine precipitation temporal variation. The second method is represented by continuous wavelet analysis for the precipitation spatial analysis and the identification of the origin of its variability. The study of temporal variability of annual rainfall showed severe persistent and recurrent drought episodes over the period (1977–2001). Wavelet analysis resulted in detecting the modes and origins of precipitation variability. Three energy bands were clearly identified: (1, 2–4, and 4–8 years) for the entire watershed. The visualization of the power distribution showed that the observed modes of variability are different in their power distributions from one station to another. The approach adopted allowed the identification of two groups with the same precipitation frequency and temporal variation. These groups were defined according to the difference in occurrence of the frequency band for each station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号