首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.  相似文献   

2.
Major earthquakes of last 15 years (e.g., Northridge 1994, Kobe 1995 and Chi-Chi 1999) have shown that many near-fault ground motions possess prominent acceleration pulses. Some of the prominent ground acceleration pulses are related to large ground velocity pulses, others are caused by mechanisms that are totally different from those causing the velocity pulses or fling steps. Various efforts to model acceleration pulses have been reported in the literature. In this paper, research results from a recent study of acceleration pulse prominent ground motions and an analysis of structural damage induced by acceleration pulses are summarized. The main results of the study include: (1) temporal characteristics of acceleration pulses; (2) ductility demand spectrum of simple acceleration pulses with respect to equivalent classes of dynamic systems and pulse characteristic parameters; and (3) estimation of fundamental period change under the excitation of strong acceleration pulses. By using the acceleration pulse induced linear acceleration spectrum and the ductility demand spectrum, a simple procedure has been developed to estimate the ductility demand and the fundamental period change of a reinforced concrete (RC) structure under the impact of a strong acceleration pulse.  相似文献   

3.
Representation of near-fault pulse-type ground motions   总被引:7,自引:3,他引:4  
Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the fling-step or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.  相似文献   

4.
Design spectra including effect of rupture directivity in near-fault region   总被引:4,自引:1,他引:4  
In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relationships developed for near-fault, forward-directivity motions. Near-fault ground motions are represented by equivalent pulses with different waveforms defined by a small number of parameters (peak acceleration, A, and velocity V; and pulse period, Tv). Dimensionless ratios between these parameters (e.g., ATv/V, VTv/D) and response spectral shapes and amplitudes are examined for different pulses to gain insight on their dependence on basic pulse waveforms. Ratios of ATv/V, VTv/D, and the ratio of pulse period to the period for peak spectral velocity (Tv-p) are utilized to quantify the difference between rock and soil sites for near-fault forward-directivity ground motions. The ATv/Vratio of recorded near-fault motions is substantially larger for rock sites than that for soil sites, while Tvp/Tv ratios are smaller at rock sites than at soil sites. Furthermore, using simple pulses and available predictive relationships for the pulse parameters, a preliminary model for the design acceleration response spectra for the near-fault region that includes the dependence on magnitude, rupture distance, and local site conditions are developed.  相似文献   

5.
Near-fault ground motions containing high energy and large amplitude velocity pulses may cause severe damage to structures. The most widely used intensity measure (IM) is the elastic spectral acceleration at the fundamental period of the structure (Sa(T1)); however, Sa(T1) is not a sufficient IM with respect to the effects of the pulse-like ground motions on structural response. For near-fault ground motions, including pulse-like and non–pulse-like time histories, we propose a vector-valued IM consisting of a new IM called instantaneous power (IP(T1)) and the Sa(T1). The IP(T1) is defined as the maximum power of the bandpass-filtered velocity time series over a time interval of 0.5T1. The IP(T1) is period-dependent because the velocity time series is filtered over a period range (0.2T1-3T1). This allows the IP(T1) to represent the power of the near-fault ground motions relevant to the response of the structure. Using two-dimensional models of the 2- and 9-story steel-frame buildings, we show that the proposed [Sa(T1), IP(T1)] vector IM gives more accurate estimates of the maximum inter-story drift and collapse capacity responses from near-fault ground motions than using the vector IM consisting of the Sa(T1), the presence of the velocity pulse, and the period of the velocity pulse. Moreover, for the structures considered, for a given Sa(T1), the IP(T1) is more strongly correlated with structural damage from near-fault ground motions than the combination of the velocity pulse and pulse period.  相似文献   

6.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

7.
The orientations of ground motions are paramount when the pulse‐like motions and their unfavorable seismic responses are considered. This paper addresses the stochastic modeling and synthesizing of near‐fault impulsive ground motions with forward directivity effect taking the orientation of the strongest pulses into account. First, a statistical parametric analysis of velocity time histories in the orientation of the strongest pulse with a specified magnitude and various fault distances is performed. A new stochastic model is established consisting of a velocity pulse model with random parameters and a stochastic approach to synthesize high‐frequency velocity time history. The high‐frequency velocity history is achieved by integrating a stochastic high‐frequency accelerogram, which is generated via the modified K‐T spectrum of residual acceleration histories and then modulated by the specific envelope function. Next, the associated parameters of pulse model, envelope function, and power spectral density are estimated by the least‐square fitting. Some chosen parameters in the stochastic model of near‐fault motions based on correlation analysis are regarded as random variables, which are validated to follow the normal or lognormal distribution. Moreover, the number theoretical method is suggested to select efficiently representative points, for generating artificial near‐fault impulsive ground motions with the feature of the strongest pulse, which can be used to the seismic response and reliability analysis of critical structures conveniently. Finally, the simulated ground motions demonstrate that the synthetic ground motions generated by the proposed stochastic model can represent the impulsive characteristic of near‐fault ground motions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
杨迪雄  赵岩 《地震学报》2010,32(5):579-587
选择台湾集集地震和美国北岭地震的近断层地震动记录作为输入,考察了近断层地震动破裂向前方向性与滑冲效应引起的两种不同速度脉冲运动对单自由度体系和长周期橡胶支座隔震建筑结构抗震性能的影响.反应谱分析表明,破裂向前方向性与滑冲效应对工程结构地震响应的影响是随结构周期变化的.在中短周期段,含破裂向前方向性效应地震动的谱加速度值大于含滑冲效应地震动的谱加速度值;而在长周期段,含滑冲效应地震动的谱加速度大于含破裂向前方向性效应的谱加速度值.并且,与无脉冲地震动作用相比,含破裂向前方向性与滑冲效应脉冲的近断层地震动作用下隔震建筑的地震响应显著增大.滑冲效应引起的速度脉冲使隔震建筑底部的层间变形和楼层剪力明显增大,这意味着滑冲效应脉冲比向前方向性效应脉冲对长周期建筑结构的破坏更具危害性.  相似文献   

9.
Ground motions with strong velocity pulses are of particular interest to structural earthquake engineers because they have the potential to impose extreme seismic demands on structures. Accurate classification of records is essential in several earthquake engineering fields where pulse‐like ground motions should be distinguished from nonpulse‐like records, such as probabilistic seismic hazard analysis and seismic risk assessment of structures. This study proposes an effective method to identify pulse‐like ground motions having single, multiple, or irregular pulses. To effectively characterize the intrinsic pulse‐like features, the concept of an energy‐based significant velocity half‐cycle, which is visually identifiable, is first presented. Ground motions are classified into 6 categories according to the number of significant half‐cycles in the velocity time series. The pulse energy ratio is used as an indicator for quantitative identification, and then the energy threshold values for each type of ground motions are determined. Comprehensive comparisons of the proposed approach with 4 benchmark identification methods are conducted, and the results indicate that the methodology presented in this study can more accurately and efficiently distinguish pulse‐like and nonpulse‐like ground motions. Also presented are some insights into the reasons why many pulse‐like ground motions are not detected successfully by each of the benchmark methods.  相似文献   

10.
Ground motions close to a ruptured fault resulting from forward-directivity are significantly different than other ground motions. These pulse-type motions can place severe demands on structures in the near-fault region. To aid in the characterization of these special type of ground motions, a simplified parameterization is proposed based on a representative amplitude, pulse period, and number of significant pulses in the velocity–time history. Empirical relationships were developed for estimating the peak ground velocity (PGV) and period of the velocity pulse (Tv) of available forward-directivity motions. PGV in the near-fault region varies significantly with magnitude and distance. Additionally, the PGV for soil sites are systematically larger than those at rocks sites. Tv is a function of moment magnitude and site conditions with most of the energy being concentrated within a narrow-period band centered on the pulse period. Hence, lower magnitude events, which produce lower pulse periods, might produce more damaging ground motions for the stiff structures more common in urban areas.  相似文献   

11.
近断层速度脉冲地震动的三维有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据台湾西部地质地貌特征和1999年集集MW7.6地震的研究成果,建立三维速度结构模型和震源模型,并采用三维有限差分法对双冬断层可能产生的近断层脉冲型地震动进行数值模拟。结果表明,方向性效应引起的双向速度脉冲集中在垂直于断层滑动分量的方向上,而滑冲效应引起的单向速度脉冲则集中在平行于断层滑动分量的方向上。受方向性效应和上盘效应的共同调制,近断层脉冲型地震动反映出不对称带状分布的特征,速度脉冲主要分布在距离断层面约10 km的范围内。凹凸体的特性影响着地震动的时空分布,由地震波场显示南投和台中处于强地震动危险区。近场脉冲型地震动的研究对分析速度脉冲形成机理以及地震危险性有一定的参考意义。  相似文献   

12.
In spite of important differences in structural response to near‐fault and far‐fault ground motions, this paper aims at extending well‐known concepts and results, based on elastic and inelastic response spectra for far‐fault motions, to near‐fault motions. Compared are certain aspects of the response of elastic and inelastic SDF systems to the two types of motions in the context of the acceleration‐, velocity‐, and displacement‐sensitive regions of the response spectrum, leading to the following conclusions. (1) The velocity‐sensitive region for near‐fault motions is much narrower, and the acceleration‐sensitive and displacement‐sensitive regions are much wider, compared to far‐fault motions; the narrower velocity‐sensitive region is shifted to longer periods. (2) Although, for the same ductility factor, near‐fault ground motions impose a larger strength demand than far‐fault motions—both demands expressed as a fraction of their respective elastic demands—the strength reduction factors Ry for the two types of motions are similar over corresponding spectral regions. (3) Similarly, the ratio um/u0 of deformations of inelastic and elastic systems are similar for the two types of motions over corresponding spectral regions. (4) Design equations for Ry (and for um/u0) should explicitly recognize spectral regions so that the same equations apply to various classes of ground motions as long as the appropriate values of Ta, Tb and Tc are used. (5) The Veletsos–Newmark design equations with Ta=0.04 s, Tb=0.35 s, and Tc=0.79 s are equally valid for the fault‐normal component of near‐fault ground motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a methodology for constructing seismic design spectra in near-fault regions.By analyzing the characteristics of near-fault pulse-type ground motions,an equivalent pulse model is proposed,which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions.The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions,which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations.The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions.The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense.The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.  相似文献   

14.
The Vrancea subcrustal earthquakes of August 30,1986 and May 30,1990 are the two most recent seismic events that have occurred in Romania with moment magnitudes M W ≥ 6.9.The spectral analysis of the strong ground motions recorded in Bucharest reveals that despite small differences in magnitude between the 1986 and 1990 earthquakes,their frequency contents are very different,sometimes even opposing.The main focus of this study is to conduct a comparative analysis of the response spectra in terms of the bi-normalized response spectra(BNRS) proposed by Xu and Xie(2004 and 2007) for strong ground motions recorded in Bucharest during these two seismic events.The mean absolute acceleration and relative velocity response spectra for the two earthquakes are discussed and compared.Furthermore,the mean bi-normalized absolute acceleration and normalized relative velocity response spectra with respect to the control period T C are computed for the ground motions recorded in Bucharest in 1986 and 1990.The predominant period T P is also used in this study for the normalization of the spectral period axis.Subsequently,the methodology proposed by Martinez-Perreira and Bommer(1998) is applied in order to estimate the seismic intensity of the two events.The results are discussed and several conclusions regarding the possibility of using the bi-normalized response spectra(BNRS) are given.  相似文献   

15.
Characteristics of near-fault ground motion containing velocity pulses   总被引:1,自引:0,他引:1  
There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code,  相似文献   

16.
Residual displacements of single‐degree‐of‐freedom systems due to ground motions with velocity pulses or fling step displacements are presented as a function of period T and of its ratio to the pulse period Tp. Four hysteretic behaviors are considered: bilinear elastoplastic, stiffness‐degrading with cycling, stiffness‐cum‐strength degrading, with or without pinching. When expressed in terms of T/Tp, peak inelastic and residual displacements due to motions with a pulse or fling appear similar to those due to far‐fault motions, if the response to far‐field records are expressed in terms of the ratio of T to the record's characteristic period. However, as the latter is usually much shorter than the pulse period of motions with fling, the range of periods of interest for common structures becomes a short‐period range under fling motions and exhibits very large amplification of residual and peak inelastic displacements. Similar, but less acute, are the effects of motions with a velocity pulse. Wavelets of different complexity are studied as approximations to near‐fault records. Simple two‐parameter wavelets for fling motions overestimate peak inelastic displacements; those for pulse‐type motions overestimate residual displacements. A more complex four‐parameter wavelet for motions with a velocity pulse predicts overall well residual and peak displacements due to either pulse‐ or fling‐type motions; a hard‐to‐identify parameter of the wavelet impacts little computed residual displacements; another significantly affects them and should be carefully estimated from the record. Even this most successful of wavelets overpredicts residual displacements for the periods of engineering interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Pulse-like records are well recognized for their potential to impose higher demands on structures when compared with ordinary records. The increased severity of the structural response usually caused by pulse-like records is commonly attributed to the spectral increment around the pulse period. By comparing the building response to sets of spectrally equivalent pulse-like and ordinary records, we show that there are characteristics of pulse-like records beyond the shape of the acceleration response spectrum that affect the results of nonlinear dynamic analysis. Nevertheless, spectral shape together with the ratio of pulse period to the first-mode structural period, Tp/T1, are confirmed as “sufficient” predictors for deformation and acceleration response metrics in a building, conditioned on the seismic intensity. Furthermore, the average spectral acceleration over a period range, AvgSA, is shown to incorporate to a good proxy for spectral shape, and together with Tp/T1, form an efficient and sufficient intensity measure for response prediction to pulse-like ground motions. Following this latter route, we propose a record selection scheme that maintains the consistency of Tp with the hazard of the site but uses AvgSA to account for the response sensitivity to spectral shape.  相似文献   

18.
以巨-子结构抗震体系、隔震体系以及智能隔震体系为研究对象,选择4组具有速度脉冲特性的实际地震动加速度记录及人工模拟的具有相同加速度反应谱而无速度脉冲的地震动时程分别作为地震动输入,采用数值分析方法分别计算在有、无速度脉冲的地震动激励下三种结构体系的地震响应,探讨地震动的速度脉冲对巨型结构体系在不同控制策略下地震响应的影响。研究结果表明:三种结构体系在速度脉冲型地震动作用下的地震响应大部分要大于无速度脉冲型的地震响应,近断层地震动的速度脉冲对巨-子结构抗震体系、隔震体系以及智能隔震体系的地震响应均有一定的不利影响。智能隔震体系对速度脉冲地震动较为敏感,但能有效地减小隔震层位移。  相似文献   

19.
A series of relatively long-period velocity pulses appearing in the later part of ground motion, which is the characterization of far-source long-period ground motions in basin (“long-period ground motion” for short), is mainly influenced by focal mechanism, basin effect, and dispersion. It was supposed that the successive low-frequency velocity pulses in long-period ground motion caused the resonance of long-period structures in basin, which are of special concern to designers of super high-rise buildings. The authors proposed a wavelet-based successive frequency-dependent pulse extraction (WSFPE) method to identify and extract these pulses with dominant period of interest from long-period ground motions. The pulses extracted by using two frequently used methods (zero-crossing analysis, empirical mode decomposition) were compared to the pulses extracted by using WSFPE. The results demonstrate that the WSFPE provides higher resolution in time–frequency domain than the other two methods do. The velocity pulses extracted by using WSFPE are responsible for the resonance and maximum response of structure subjected to long-period ground motions. WSFPE can be used to make a better understanding of long-period ground motions and to promote the formation of long-period ground motion model which will help the seismic design of long-period structures built in sedimentary basin.  相似文献   

20.
Capacity-based inelastic displacement spectra that comprise an inelastic displacement ratio (CR ) spectrum and the corresponding damage index (DI ) spectrum are proposed in this study to aid seismic design and evaluation of reinforced concrete (RC) bridges. Nonlinear time history analyses of single-degree-of-freedom (SDOF) systems are conducted using a versatile smooth hysteretic model when subjected to far-field and near-fault ground motions. It is demonstrated that the Park and Ang damage index can be a good indicator for assessing the actual visible damage condition of columns regardless of its loading history, providing a better insight into the seismic performance of bridges. The computed spectra for near-fault (NF) ground motions show that as the magnitude of pulse period ranges increases from NF1 (0.5-2.5 seconds) to NF2 (2.5-5.5 seconds), the spectral ordinates of the CR and DI spectra increase moderately. In contrast, the computed spectra do not show much difference between NF2 and NF3 (5.5-10.5 seconds) when the period of vibration Tn≤  1.5 seconds, after which the spectral ordinates of NF3 tend to increase obviously, whereas those of NF2 decrease with increasing Tn . Moreover, when relative strength ratio R  = 5.0, nearly all of the practical design scenarios could not survive NF3. On the basis of the computed spectra, CR and DI formulae are presented as a function of Tn , R , and various design parameters for far-field and near-fault ground motions. Finally, an application of the proposed spectra to the performance-based seismic design of RC bridges is presented using DI as the performance objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号