首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
为了充分反映结构的抗连续倒塌能力,文中基于能量原理,将结构倒塌时消耗能量与屈服时消耗能量之比定义为考虑悬链线效应的结构鲁棒性指标。首先进行一榀1/2缩尺的RC平面框架的连续倒塌试验,得到了具有双峰值点的荷载-位移曲线。基于试验数据对有限元模型进行验证与校准。进一步建立了18个RC平面框架结构数值分析模型,研究了中柱失效、边柱失效及不同梁底部纵向钢筋配筋率、顶部纵向钢筋配筋率等对考虑悬链线效应的结构鲁棒性影响规律。分析结果表明,由于边柱失效的结构无法发挥悬链线效应,鲁棒性较差;而中柱失效后的结构,由于其存在悬链线效应,结构表现出了更好的鲁棒性。结构鲁棒性系数随着梁底部钢筋配筋率的增加而降低,随着梁上部钢筋配筋率的增加而提高,梁上部钢筋配筋率显著影响结构的鲁棒性。本文提出的基于能量的考虑悬链线效应的结构鲁棒性计算方法,为RC框架结构抗连续倒塌设计提供了理论支持。  相似文献   

2.
我国7度设防等跨RC框架抗地震倒塌能力研究   总被引:1,自引:0,他引:1  
我国建筑结构抗震设计主要采用基于小震下的构件承载力计算保证结构的抗震承载能力,配合抗震构造措施保证结构的变形能力,缺乏大震抗倒塌定量计算.而实际地震震害表明,即使是同类结构,其结构体系参数对其抗地震倒塌能力也有很大影响.为此,本文依据《建筑抗震设计规范》GB50011 - 2001,按照7度抗震设防设计了24个不同跨度...  相似文献   

3.
梁丹  梁兴文 《地震工程学报》2015,37(4):1060-1065,1072
选取按照现行规范设计的既有建筑进行有限元建模,考虑地震动的不确定性对其进行大量增量动力分析(IDA),得到模型的IDA曲线簇。在此基础上对其进行地震需求概率分析和概率抗震能力分析,拟合得到结构的易损性曲线,据此对结构的倒塌概率进行定量评估,并比较基于非线性分析与性能评估软件PERFORM-3D的纤维模型和塑性铰模型的分析结果。结果表明:按照我国现行规范设计的钢筋混凝土(RC)框架结构,在预期的罕遇地震作用下倒塌概率较小,可满足"大震不倒"的要求;基于PERFORM-3D的截面纤维模型所得的RC框架结构,经非线性分析所得的倒塌概率相对保守,安全储备更高。  相似文献   

4.
为了提高钢筋混凝土建筑结构的抗震性能,分析多维地震作用下钢筋混凝土建筑结构的抗连续倒塌能力,结合钢筋混凝土建筑结构特性、节点构造特点以及其在多维地震作用下的破坏机理,采用离散单元法建立结构连续倒塌的理论模型,对建筑结构连续倒塌过程进行数值模拟。基于数值模拟化结果,通过备用荷载路径法,实现建筑结构的抗连续倒塌分析。仿真实验结果得出,所提方法能实现对建筑结构抗连续倒塌的准确分析,且在多维地震作用下建筑结构扭转的幅度明显变大,结构顶层位移发散状态显著,不同楼层会产生不同的层间位移以及薄弱部位,建筑结构的抗连续倒塌性能随着失效构件位置的提升而增强。  相似文献   

5.
Forward directivity may cause large velocity pulses in ground motion time histories that are damaging to buildings at sites close to faults, potentially increasing seismic collapse risk. This study quantifies the effects of forward directivity on collapse risk through incremental dynamic analysis of building simulation models that are capable of capturing the key aspects of strength and stiffness degradation associated with structural collapse. The paper also describes a method for incorporating the effects of near-fault directivity in probabilistic assessment of seismic collapse risk. The analysis is based on a suite of RC frame models that represent both past and present building code provisions, subjected to a database of near-fault, pulse-like ground motions with varying pulse periods. Results show that the predicted collapse capacity is strongly influenced by variations in pulse period and building ductility; pulse periods that are longer than the first-mode elastic building period tend to be the most damaging. A detailed assessment of seismic collapse risk shows that the predicted probability of collapse in 50 years for modern concrete buildings at a representative near-fault site is approximately 6%, which is significantly higher than the 1% probability in the far-field region targeted by current seismic design maps in the US. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
School buildings have been classified by many of the design codes as important buildings, which have to withstand the earthquake excitations without any or with minor structural damages, and special care has to be given in their design and construction phases. This paper mainly aims to investigate the seismic performance of reinforced-concrete (RC) school buildings after 2011 Van earthquakes. The seismic performances of two damaged RC school buildings located in the earthquake-affected region are studied. First, the capacities of the selected buildings are assessed using nonlinear static procedures, and then, nonlinear dynamic time history analyses are performed to evaluate the seismic performances of the selected RC school buildings. Reasons for the observed damages are discussed. Further, recommendations are provided from the viewpoint of enhancing the structural capacity of the heavily damaged school building. As a result, to get an idea about the ductility demands imposed on the buildings, spectral acceleration values are compared with the seismic coefficients of the code that the buildings were adapted to. It can be concluded that the construction quality and detailing of the reinforcement are the key issues affecting the seismic performance of RC school buildings.  相似文献   

7.
Unreinforced masonry (URM) infill panels are widely used as partitions in RC frames and typically considered as non‐structural elements in the design process. However, observations from recent major earthquakes have shown that under seismic excitation, the structural interaction between columns and infill walls can significantly alter the structural behaviour, thus causing catastrophic consequences. The purpose of this research was to propose and test an innovative low seismic damage detailing method, which isolates the infill panel from bounding columns with finite width vertical gaps during the infill panel construction phase and deploys steel wire connections in mortar layers anchored to columns. Taking into account the similitude requirements, a total of six one‐third scale, single‐storey single‐bay RC frames with different infill configurations and flexible connection details were carefully designed and tested on a shake‐table. Three real earthquake records were selected and scaled to ascending intensity levels and used as input signals. A series of thorough investigations including dynamic characteristics, hysteretic behaviour, failure mechanisms, out‐of‐plane vulnerabilities and the effect of different gap filling materials and load transfer mechanisms were rigorously studied. The experimental results indicate that the undesirable interaction between infill panels and bounding frame is significantly reduced using the proposed low seismic damage detailing concept. Direct shear failure of columns at an early stage is prevented, and structural redundancy at high levels of excitation can be provided. In general, the structural stability and integrity, and displacement ductility of infilled RC frames can remarkably be improved. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Bulletin of Earthquake Engineering - The paper investigates the effect of novel structural detailing on the progressive collapse behavior of reinforced concrete (RC) frame structures. The role of...  相似文献   

9.
总结采用梁有效翼缘来考虑楼板及配筋对“强柱弱梁”机制形成的影响的实验和数值仿真研究。基于SAP2000采用三种侧向加载模式对RC框架结构不带楼板、不带楼板考虑梁刚度放大、带楼板的三个模型进行pushover分析,对力与位移的关系曲线、塑性铰的出铰顺序以及顶点位移与层间位移等方面进行探讨。结果表明:三个模型的“强柱弱梁”现象不带楼板的纯框架结构最明显,考虑梁刚度放大的模型次之,带楼板结构最不明显,证明负弯矩承载力和刚度等反映“强柱弱梁”的参数及塑性铰的出现顺序与楼板、板内配筋存在明显的对应关系;楼板及配筋影响框架结构的整体变形性能和塑性耗能能力,是抗震延性机制实现的重要影响因素。在后续的结构设计中,建议考虑实际楼板和钢筋建模进行计算分析。  相似文献   

10.
A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.  相似文献   

11.
针对钢筋混凝土框架结构的受力特点,采用增设摇摆刚架的抗震设计方法,以提高罕遇地震下建筑结构的安全性。建立了框架一摇摆刚架结构体系的计算模型,结合状态空间法与虚拟激励法,求解结构的平稳随机响应,并根据计算所得随机响应对框架一摇摆刚架体系的动力可靠度进行分析。以西部地区某已建成的6层框架结构为算例,探讨了罕遇地震作用下不同刚度比的摇摆刚架对新结构体系动力可靠度的影响。结果表明,通过增设不同刚度比的摇摆刚架,可以有效协调结构体系的变形模式,充分发挥结构的耗能能力,降低整体结构的条件失效概率。  相似文献   

12.
近年来,随着经济、技术的进步以及抗震意识的加强,建筑结构加固也飞速发展。在地震多发的农村地区,为了提高建筑结构的抗震性能,但同时又缺乏一定的经济基础和理论知识支撑,导致很多简单粗糙的支撑建筑结构的措施出现,这些支撑方案大多缺乏科学的设计与评估。本文针对这一现象,以某典型的非正规设计的3层2跨框架结构为例,分析评价支撑边框和支撑中框对该框架结构地震作用下抗倒塌性能的影响。通过增量动力分析(IDA)计算方法,结合结构易损性方程评估结构的抗倒塌能力,计算结果表明支撑中框和支撑边框能够将非正规结构在罕遇地震作用下的倒塌概率从17.5%降至2.4%和6%。在此基础上,进一步分析了2种支撑位置对结构在3个典型地震强度作用下对结构响应的影响。结果表明,支撑框架结构中框对结构抗倒塌能力的提升和抗震性能的保证效果比支撑边框更好,在条件允许的情况下,应优先考虑支撑中框。  相似文献   

13.
Since most current seismic capacity evaluations of reinforced concrete(RC) frame structures are implemented by either static pushover analysis(PA) or dynamic time history analysis,with diverse settings of the plastic hinges(PHs) on such main structural components as columns,beams and walls,the complex behavior of shear failure at beam-column joints(BCJs) during major earthquakes is commonly neglected.This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures.Based on the specifications of FEMA-356,a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established,allowing a sophisticated PA to be performed.To verify the validity of this method,the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements.By considering shear failure at BCJs,the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames,including seismic capacity and the progressive failure sequence of joints,in a precise and effective manner.  相似文献   

14.
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.  相似文献   

15.
This study explores seismic performance of steel frame buildings with SMA-based self-centering bracing systems using a probabilistic approach. The self-centering bracing system described in this study relies on superelastic response of large-diameter cables. The bracing systems is designed such that the SMA cables are always stressed in tension. A four-story steel frame building characterized until collapse in previous research is selected as a case-study building. The selected steel frame building is designed with SMA bracing systems considering various design parameters for SMA braces. Numerical models of these buildings are developed by taking into account the ultimate state of structural components and SMA braces as well as the effect of gravity frames on lateral load resistance. Nonlinear static analyses are conducted to assess the seismic characteristics of each frame and to examine the effect of SMA brace failure on the seismic load carrying capacity of SMA-braced frames. Incremental dynamic analyses (IDA) are performed to compute seismic response of the designed frames at various seismic intensity levels. The results of IDA are used to develop probabilistic seismic demand models for peak inter-story and residual inter-story drifts. Seismic demand hazard curves of peak and residual inter-story drifts are generated by convolving the ground motion hazard with the probabilistic seismic demand models. Results show that steel frames designed with SMA bracing systems provide considerably lower probability of reaching at a damage state level associated with residual drifts compared to a similarly designed steel moment resisting frame, especially for seismic events with high return periods. This indicates reduced risks for the demolition and collapse due to excessive residual drifts for SMA braced steel frames.  相似文献   

16.
针对目前RC框架结构地震易损性分析中整体损伤模型研究的薄弱性以及广泛采用的层间位移角方法不能准确反应结构在地震作用下损伤机理的现状,本文基于现有损伤模型的对比分析,提出了一种较准确反映地震破坏机理同时便于应用的最大变形和滞回耗能非线性组合的双参数损伤模型。以8层RC框架结构为例,进行50条地震波作用下的结构增量动力分析,分别绘制了变形和能量2种单参数模型以及牛荻涛模型和本文模型两种双参数模型的结构损伤曲线与易损性曲线,并进行了模型的对比分析和检验评估。分析结果表明:仅以层间位移角作为结构整体损伤指标会高估结构的抗倒塌性能,仅以能量作为结构整体损伤指标会低估结构损伤的超越概率。本文模型能较好地平衡最大变形和累积损伤对结构损伤的影响程度。  相似文献   

17.
Performance-Based Seismic Design is now widely recognized as the pre-eminent seismic design and assessment methodology for building structures. In recognition of this, seismic codes may require that buildings achieve multiple performance objectives such as withstanding moderate, yet frequently occurring earthquakes with minimal structural and non-structural damage, while withstanding severe, but rare earthquakes without collapse and loss of life. These objectives are presumed to be satisfied by some codes if the force-based design procedures are followed. This paper investigates the efficacy of the Eurocode 8 force-based design provisions with respect to RC frame building design and expected seismic performance. Four, eight, and 16-storey moment frame buildings were designed and analyzed using the code modal response spectrum analysis provisions. Non-linear time-history analyses were subsequently performed to determine the simulated seismic response of the structures and to validate the Eurocode 8 force-based designs. The results indicate the design of flexural members in medium-to-long period structures is not significantly influenced by the choice of effective member stiffness; however, calculated interstorey drift demands are significantly affected. This finding was primarily attributed to the code’s enforcement of a minimum spectral ordinate on the design spectrum. Furthermore, design storey forces and interstorey drift demand estimates (and therefore damage), obtained by application of the code force-based design procedure varied substantially from those found through non-linear time-history analysis. Overall, the results suggest that though the Eurocode 8 may yield life-safe designs, the seismic performance of frame buildings of the same type and ductility class can be highly non-uniform.  相似文献   

18.
针对平面不规则RC框架结构,从构件安全层次出发提出基于传力路径的减震设计方法。首先根据广义结构刚度法的基本原理计算结构中所有构件的重要性系数,再假定消能支撑的截面参数,取每层最重要的构件位置布置支撑,经支撑在最不利地震组合下的轴力验算后确定支撑的最终设计参数和数量,然后考虑远场、近场有脉冲以及近场无脉冲地震动从双向输入对结构响应的影响,对减震前、后结构分别进行动力时程分析。分析结果表明,利用此方法优化布置支撑能为结构中重要构件提供有效保护,且在小、中、大震下消能支撑均能运作良好,使整体结构响应得到很好地控制。  相似文献   

19.
综述了用于提高填充墙钢筋混凝土(RC)框架结构抗震性能和改善结构损伤模式的几类加固措施,从工艺、加固效果和破坏形式3个角度进行了分析。在建筑结构设计过程中,填充墙通常被视为一种典型的脆性非均质非结构构件,忽视了填充墙与RC框架之间的相互作用。地震调查报告表明,在结构遭受地震作用时,填充墙通常先于钢筋混凝土框架发生破坏,未经合理设计的填充墙RC框架结构将在地震作用下产生严重不良后果。试验结果和数值模拟分析结果证明,砌块的强度越低、砂浆的强度越高,结构的承载能力和刚度退化越慢、耗能能力越好。文中根据目前已有的建筑材料改性试验结果,从改性机理出发,分析了一系列有利于提高结构抗震性能的新型材料,并对结构的设计方案进行了探讨。  相似文献   

20.
增大柱端抗弯承载力是抗震"能力设计"措施中引导钢筋混凝土框架结构形成梁铰型有利耗能机构的关键措施。本文以6层确定性钢筋混凝土框架结构为分析对象,通过结构易损性分析评估了不同强柱系数取值对钢筋混凝土框架结构抗震性能的影响。结构易损性分析表明增大柱端抗弯承载力是改善结构抗震性能的有效措施,增大强柱系数提高了结构的变形能力,使不同破坏极限状态之间形成较大的"梯度",对防止强烈地震作用下结构的突然倒塌提供了预示。结构易损性曲线对评估结构抗震性能、选用合适的目标强柱系数提供了量化标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号