首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Bainiuchang deposit in Yunnan Province,China,is located geographically between the Gejiu ore field and the Dulong ore field.In addition to the>7000 t Ag reserves,the deposit also boasts of large-scale Pb,Zn and Sn reserves with a lot of dispersed elements(In,Cd,Ge,Ga,etc.).We have determined systematically the Pb isotope composition of the deposit.The Pb isotope ratios of the ores that are of sea-floor exhalative sedimentary origin in the northwest of the mining district,are ~(206)Pb/~(204)Pb=17.758-18.537,~(207)pb/~(204)pb=15.175-15.862 and ~(208)pb/~(204)pb=37.289-39.424,while those of ores that are of magmatic hydrothermal superimposition origin in the southeast of the mining district, are ~(206)Pb/~(204)Pb=17.264-18.359,~(207)Pb/~(204)Pb=14.843-15.683 and ~(208)Pb/~(204)Pb=36.481-38.838, respectively.In terms of the Pb isotope composition of feldspar in magmatic rocks or magmatic whole- rock samples from the mining district,we have determined the Pb isotope composition and acquired the Pb isotope ratios as:~(206)Pb/~(204)Pb=18.224-18.700,~(207)Tpb/~(204)Pb=15.595-15.797 and ~(208)Pb/~(204)Pb= 38.193-39.608.Then,in the light of the Pb isotope composition of metamorphic rock samples from the Proterozoic basement exposed in the Dulong ore field,we have determined the Pb isotope composition and obtained the isotope ratios as:~(206)Pb/~(204)Pb=18.434-19.119,~(207)Pb/~(204)Pb=15.644-15.693,and ~(208)Pb/~(204)Pb=38.514-38.832.And the Pb isotope ratios of Cambrian sedimentary rocks,which are exposed in the Bainiuchang mining district,are ~(206)Pb/~(204)Pb=18.307-19.206,~(207)Pb/~(204)Pb= 15.622-15.809,and ~(206)Pb/~(204)Pb=38.436-39.932.By comparing the two types of ores with respect to their Pb isotope compositions,it is indicated that lead in the Bainiuchang deposit was derived largely from the lower-crust granulite which is earlier than Neoproterozoic in age,but the Yanshanian magmatic hydrothermal fluids probably provided a part of ore-forming elements such as Sn for the ore blocks in the south of the mining district.  相似文献   

2.
位于浙西北安吉港口的铅锌银(钼)多金属矿床,是新近在钦杭成矿带东北缘发现的一个产于大陆环境且具较好前景的矿床.文章通过对矿区坞山关杂岩体三套岩性单元、细粒花岗岩和方铅矿铅同位素的全面对比研究,探讨了矿床的铅物源岩浆岩.矿区中的方铅矿为含较高放射性成因铅的J-型铅,在铅同位素的V1-V2和△γ-Δβ图解中,本次研究的样品分别落入华南和岩浆作用上地壳混合地幔铅范围,显示出方铅矿与华南地球化学省壳幔混合岩浆作用的密切关系.矿区铅锌矿体的方铅矿铅同位素比值显示其具有共同的物质来源,并基本保持了细粒花岗岩206Pb/204Pb值的特征,而207Pb/204Pb值具有坞山关杂岩体和细粒花岗岩混合的特征,208Pb/204Pb和208Pb/206Pb值则仅显示出与细粒花岗岩最相近.方铅矿铅同位素比值特征和比值等值线分布形式显示,铅主要来源于细粒花岗岩,杂岩体对铅成矿贡献了少量的206Pb和207Pb,矿区地层对铅成矿贡献了一定的208Pb.安吉矿区进一步针对铅的找矿工作围绕细粒花岗岩展开,取得成果的可能性更大.  相似文献   

3.
The Huogeqi orefield located on the northern side of Mt. Langshan, Inner Mongolia occurs in the Middle Proterozoic Langshan Group metamorphic rocks, and the orebodies arc stratiform. In the past twenty years, many Chinese geologists have conducted researches on the Huogeqi Cu-Pb-Zn deposit, but there has been still a controversy on its origin. Some advocate that the deposit is of sedimentary-metamorphic rcworking origin, some hold that it is of sea-floor SEDEX origin, and others have a preference for magmatic superimposition origin. The crux of the controversy is that there is no common understanding about the source of ore-forming materials. In this paper, the Pb isotopic compositions of regional Achaean-Early Proterozoic basement rocks, various types of sedimentary- metamorphic rocks and volcanic rocks in the mining district, Late Proterozoic and Hercynian magmatic rocks arc introduced and compared with the orc-lead composition, so as to constrain the source of the ore lead. The result indicates that (1) sulfides in the ores have homogeneous Pb isotopic compositions, showing a narrow variation range. Their ^206pb/^204pb ratios arc within a range of 17.027- 17.317; ^207Pb/^204pb ratios, 15.451-15.786 and ^208Pb/^204pb ratios, 36.747-37.669; (2) the Pb isotopic compositions of the regional Achaean-Early Proterozoic basement rocks arc characteristic of the old Pb isotopic composition at the early-stage evolution of the Earth, which varies over a wider range, reflecting significant differences in Pb isotopic compositions of the ores. All this indicates that the source of ore lead has no bearing on the basement rocks; (3) the sedimentary-metamorphic rocks in the mining district arc characterized by highly variable and more radiogenic Pb isotopic compositions and their Pb isotopic ratios arc obviously higher than those of ores, demonstrating that ore lead did not result from metamorphic rcworking of these rocks; (4) Pb isotopic compositions of Late Proterozoic diorite-gabbro and Hercynian granite are higher than those of ores. Meanwhile, the Pb isotopic compositions of sulfides in the small-sized strata-penetrating mineralized veinlets formed at later stages arc completely consistent with that of sulfides in stratiform-banded ores, suggesting that these veiniets arc the product of autochthonous rcworking of the stratiform-banded ores during the period of metamorphism and the late magmatic superimposition-mineralization can be excluded; (5) amphibolite, whose protolith is basic volcanic rocks, has the same Pb isotopic compositions as ores, implying that ore lead was derived probably from basic volcanism. So, the source of ore-forming materials for the Huogeqi deposit is like that of the volcanic massive sulfide (VMS) deposits. However, the orebodies do not occur directly within the volcanic rocks, and instead they overlie the volcanic rocks, showing some differences from those typical VMS-type deposits.  相似文献   

4.
Abstract: The Dajing Cu‐polymetallic ore deposit in Linxi county, Inner Mongolia Autonomous Region, China, is economically a valuable Cu–Sn–Ag–Zn–Pb deposit in the southern section of the Da Hinggan metallogenic province. For the analyzed 23 samples of sulfide minerals, including chalcopyrite, pyrite, sphalerite and galena, the δ34S values range from –1.8 to +3.8 % with an average of +0.65 %. The narrow distributions of the δ34S values with +1 % peak value, including the published data, and the δ13C values around –5 % indicate that the sulfur and carbon of the hydrothermal fluids are derived from a hypomagmatic source, and exclude the possibility that the hosted strata, i.e., the Upper Permian Linxi Formation, provided certain amounts of sulfur and carbon. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of sulfide ores range respectively within 18.257‐18.368, 15.476‐15.609, and 37.916‐38.355 with the model ages of 122–209 Ma. The black shale, however, contains higher radiogenic lead with the 206Pb/204Pb ratios of 18.473‐20.156, differing from the ores. However, the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the ore, basaltic porphyrite and feldspar leads are similar, and lie on the same lines in the diagrams of 208Pb/204Pb vs. 206Pb/204Pb and 207Pb/204Pb vs. 206Pb/204Pb. The fact that these mixing lines are composed of the two end members, the mantle and orogenic belt, strongly supports that all the metallogenic elements were carried by the hypomagma mixing the matters of the mantle and orogenic belt prior to the Mesozoic. Therefore, the Dajing ore deposit is a typical mag–matic–hydrothermal vein type ore deposit associated with subvolcanic rocks.  相似文献   

5.
那更康切尔银矿是东昆仑造山带的大型热液脉型独立银矿床,有望达到超大型规模。以矿区地质特征为研究基础,开展硫化物硫-铅同位素、二长花岗岩和花岗闪长岩铅同位素研究,探讨成矿物质来源及两类岩体与成矿的关系。矿区硫化物样品(黄铁矿、方铅矿和闪锌矿)的δ34S值介于-6.1‰~3.9‰之间,主体δ34 S值介于-4‰~2.1‰之间,数值集中,指示成矿物质硫源具有深源岩浆硫的特征。矿石铅同位素组成中206 Pb/204 Pb、207 Pb/204 Pb、208 Pb/204 Pb的变化范围分别为18.28~18.62、15.6~15.73、38.38~39.1,矿石铅具有壳幔混合源的特点。矿区内二长花岗岩LA-ICP-MS锆石U-Pb年龄为239±1 Ma,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i值分别为18.389~18.585、15.638~15.648、38.288~38.558;花岗闪长岩LA-ICP-MS锆石U-Pb年龄为252±1 Ma,(206Pb/204Pb)i、(207Pb/204Pb)i、(208Pb/204Pb)i值分别为18.348~18.447、15.625~15.629、38.394~38.412,铅同位素组成投图显示成矿与2类岩浆岩关系较弱,与区域上鄂拉山组火山岩呈较明显的线性相关。那更康切尔银矿与邻区哈日扎铅锌银矿床具有相似的成矿物质来源,硫源具有同一性,且矿石铅同位素组成表现出很明显的线性关系,表明2个矿床的成矿物质具有相近或相似的源区或演化过程。成矿地质条件、成矿物质来源及成矿流体特征均表明两者属中-低温热液脉型矿床。综合本文及前人对那更康切尔银矿床的研究,构建了成矿模式和找矿模型,为区域内同类型银矿床的找矿工作提供了指导作用。  相似文献   

6.
江西冷水坑矿田是武夷山地区重要的银铅锌集中区之一。无论是世界上少有的斑岩型银铅锌矿床还是火山沉积 热液改造矿床都独具特色,具有很高的研究意义。该矿田的黄铁矿、闪锌矿和方铅矿等硫化物的δ34S值变化为-380‰~694‰,平均为187‰。大约为-411‰的δ13C值与峰值约为2‰的δ34S值的很窄分布表明成矿流体中的碳和硫来源于深部岩浆,并不排除地层提供一部分硫和碳的可能性。硫化物矿石的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为17771~17867、15564~15685和38235~38652。地层中火山岩、火山岩沉积岩以及变质岩石的 206Pb/204Pb比值为17899~18220,与矿石铅既有联系又有分离。然而,矿石和花岗斑岩的长石铅中206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值是相近的,它们在208Pb/204Pb 206Pb/204Pb和207Pb/204Pb 206Pb/204Pb图上落在同一条直线上。这条铅同位素混合线两个端员分别为上地壳和地幔。这些证据都强烈地支持了成矿物质主要来源于斑岩岩浆系统,地层对于成矿流体和物质的贡献不可或缺。冷水坑是一个典型的与次火山岩有关的岩浆热液成因的Ag Pb Zn矿田,成矿作用均发生于中国东部燕山中期陆内环境。  相似文献   

7.
哈毕力格铀矿床位于华北陆块北缘中段,主要受乌兰哈达—猴儿山背斜和区内断裂控制。铀矿化主要产于新太古界乌拉山群第二岩段石英岩中,一直被认为是变质成因铀矿床。在分析该矿床成矿地质背景和矿化特征的基础上,系统研究了矿石与围岩中黄铁矿的硫、铅同位素特征。数据表明,硫同位素组成变化于-4.7‰~12.9‰之间,暗示成矿流体主要来自岩浆热液,同时遭受了地层物质的混染。铅同位素组成(208Pb/204Pb=36.147~42.968,207Pb/204Pb=15.919~34.268, 206Pb/204Pb=19.488~168.032)远高于单阶段演化模式组成,不同样品的207Pb/204Pb-206Pb/204Pb线性关系良好,为典型的二阶段铅同位素演化体系,表明变质地层为成矿作用提供了铀源。通过放射性207Pb/206Pb计算,结合区域岩浆演化,认为古元古代(~1 805 Ma)区域变质作用促使乌拉山群铀发生初步富集,晚古生代(374 Ma)花岗闪长质岩浆分异出大量流体活化萃取变质地层中的铀,在有利构造空间富集成矿。  相似文献   

8.
Using the high-precision technique of MC-ICP mass spectrometry, the isotope composition of lead was studied for the first time in sulfides of different mineral associations at the Verninskoe deposit that belong to large gold deposits of the Lena Province. In 23 monofractions of sulfides (pyrite, arsenopyrite, galena, and sphalerite), the Pb-Pb data showed a pronounced heterogeneity of the isotope composition of ore lead (206Pb/204Pb = 18.21–18.69, 207Pb/204Pb = 15.59–15.67, and 208Pb/204Pb = 37.98–38.63) for the deposit as a whole. This heterogeneity is also seen to a lesser degree within individual samples. In this case, a correlation takes place between the isotope composition of ore Pb and the type of mineral association: the sulfides in earlier associations are characterized by lower contents of the 206Pb, 207Pb, and 208Pb radiogenic isotopes compared to the minerals of later parageneses. The comparison of Pb-Pb isotope characteristics of ore mineralization of the Verninskoe deposit to those of the Sukhoi Log deposit (the greatest in the Lena Province) testifies to the geochemical similarity of the sources of ore Pb involved in the formation of these deposits. The sources as such were terrigenous rocks of the Bodaibo synclinorium formed mainly as a result of the disintegration of Precambrian rocks of the Siberian craton.  相似文献   

9.
The polymetallic(Pb,Zn,Cu,etc) ore belt on the southwestern margin of Tarim is one of the major regions with the greatest prospecting potential in Xinjiang.Reported in this paper are the lead isotope data for 66 sulfide samples(including 50 galena samples,15 chalcopyrite samples and 1 pyrite sample) collected from such representative deposits as Tamu,Tiekelike,Kalangu,Abalieke,etc.in this ore belt.The Pb isotopic ratios of 206 Pb/204 Pb,207 Pb/204 Pb and 208 Pb/204 Pb in the galena samples range from 17.931 to 18.176,15.609 to 15.818 and 38.197 to 38.944,with the average values of 18.017,15.684 and 38.462,respectively.Those in the chalcopyrite samples range from 17.926 to 18.144,15.598 to 15.628 and 38.171 to 38.583,with the average values of 18.020,15.606 and 38.262,respectively.The pyrite sample has the Pb isotopic ratios of 206 Pb/204 Pb,207 Pb/204 Pb and 208 Pb/204 Pb to be 17.980,15.604 and 38.145,respectively.In combination with the previous Pb isotope data for sulfides,it is found that there is only a slight variation in the Pb isotopic composition of galena,chalcopyrite,sphalerite and pyrite in the ore belt.However,there is some difference in Pb isotopic characteristics between galena and chalcopyrite,especially the Pb isotopic composition of galena shows an obvious linear correlation with some other relevant parameters(e.g.β and γ).The comprehensive analysis suggested that lead in galena(maybe including sphalerite and pyrite) was derived principally from wall rocks and underlying basement,and that in chalcopyrite only originated from the basement.The single-stage model ages of these sulfides couldn’t indicate the time limit of metallogenesis(Pb,Zn,Cu,etc.),and the positive linear correlations for the Pb isotopic composition of galena are of no single-stage and two-stage Pb-Pb isochron significance.Furthermore,there are significant differences in Pb isotopic composition characteristics between the genetic type of deposits in this polymetallic ore belt and the Mississippi Valley type(MVT).In addition,the authors also pointed out that there is a phenomenon of differentiation(not paragenesis) for lead and copper elements during the process of metallogenesis in this ore belt.  相似文献   

10.
The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide–carbonate–quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250–18.336, 207Pb/204Pb = 15.645–15.653, 208Pb/204Pb = 38.179–38.461; while for late pyrite 206Pb/204Pb = 18.102–18.378, 207Pb/204Pb = 15.635–15.646, 208Pb/204Pb = 38.149–38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.  相似文献   

11.
Lead isotope compositions of nine sulfide concentrates from ore samples from the Sar-Cheshmeh deposit are reported. They range from virtually unaltered granodiorite through varying degrees of potassic alteration to ores showing strong phyllic alteration (sericite veins). The samples without strong phyllic alteration have fairly uniform lead isotope compositions around 206Pb/204Pb=18.6, 207Pb/204Pb=15.6, and 208Pb/204Pb=38.7. Two samples with sericite veins have markedly more radiogenic lead. It is concluded that the fluid responsible for the potassic alteration and the associated mineralization was essentially magmatic, whereas convecting meteoric water from the country rock acted as a mineralizing solution during phyllic alteration. In the context of the plumbotectonics model, the deposit has a typical orogen signature intermediate between primitive and mature island-arc settings.  相似文献   

12.
Lead isotope ratios of galena from the carbonate-hosted massive sulphide deposits of Kabwe (Pb-Zn) and Tsumeb (Pb-Zn-Cu) in Zambia and Namibia, respectively, have been measured and found to be homogeneous and characteristic of upper crustal source rocks. Kabwe galena has average isotope ratios of 206/204Pb = 17.997 ± 0.007, 207/204Pb = 15.713 ± 0.010 and 208/204Pb = 38.410 ± 0.033. Tsumeb galena has slightly higher 206/204Pb (18.112 ± 0.035) and slightly lower 207/204Pb (15.674 ± 0.016) and 208/204Pb (38.276 ± 0.073) ratios than Kabwe galena. The isotopic differences are attributed to local differences in the age and composition of the respective source rocks for Kabwe and Tsumeb. The homogeneity of the ore lead in the two epigenetic deposits suggests lead sources of uniform isotopic composition or, alternatively, thorough mixing of lead derived from sources with relatively similar isotopic compositions. Both deposits have relatively high 238U/204Pb ratios of 10.31 and 10.09 for Kabwe and Tsumeb galenas, respectively. These isotope ratios are considered to be typical of the upper continental crust in the Damaran-Lufilian orogenic belt, as also indicated by basement rocks and Cu-Co sulphides in stratiform Katangan metasediments which have a mean μ-value of 10.25 ± 0.12 in the Copperbelt region of Zambia and the Democratic Republic of Congo (formerly Zaire). The 232Th/204Pb isotope ratios of 43.08 and 40.42 for Kabwe and Tsumeb suggest Th-enriched source regions with 232Th/235U (κ-values) of 4.18 and 4.01, respectively. Model isotopic ages determined for the Kabwe (680 Ma) and Tsumeb (530 Ma) deposits indicate that the timing of the mineralisation was probably related to phases of orogenic activity associated with the Pan-African Lufilian and Damaran orogenies, respectively. Galena from the carbonate-hosted Kipushi Cu-Pb-Zn massive sulphide deposit in the Congo also has homogeneous lead isotope ratios, but its isotopic composition is comparable to that of the average global lead evolution curve for conformable massive sulphide deposits. The μ (9.84) and κ (3.69) values indicate a significant mantle component, and the isotopic age of the Kipushi deposit (456 Ma) suggests that the emplacement of the mineralisation was related to a post-tectonic phase of igneous activity in the Lufilian belt. The isotope ratios (206/204Pb, 207/204Pb, 208/204Pb) of the three deposits are markedly different from the heterogeneous lead ratios of the Katangan Cu-Co stratiform mineralisation of the Copperbelt as well as those of the volcanogenic Nampundwe massive pyrite deposit in the Zambezi belt which typically define radiogenic linear trends on lead-lead plots. The host-rock dolomite of the Kabwe deposit also has homogeneous lead isotope ratios identical to the ore galena. This observation indicates contamination of the Kabwe Dolomite Formation with ore lead during mineralisation. Received: 8 September 1997 / Accepted: 21 August 1998  相似文献   

13.
A collection of galena from the Nezhdaninsky gold deposit (62 samples), as well as galena from the Menkeche silver-base-metal deposit and the Sentyabr occurrence and K-feldspar from intrusive rocks of the Tyry-Dyby ore cluster have been studied using the high-precision (±0.02%) MC-ICP-MS method. Particular ore zones are characterized by relatively narrow variations of isotope ratios (no wider than σ6/4 = 0.26%). Vertical zoning of Pb isotopic composition is not detected. Variation in Pb isotope ratios mainly depends on the type of mineral assemblage. Galena of the gold-sulfide assemblage dominating at the Nezhdaninsky deposit is characterized by the following average isotope ratios: 206Pb/204Pb = 18.472, 207Pb/204Pb = 15.586, and 208Pb/204Pb = 38.605. Galena from the regenerated silver-base-metal assemblage is distinguished by less radiogenic lead isotope ratios: 18.420, 15.575, and 38.518, respectively. In lead from the Nezhdaninsky deposit, the component, whose source is identified as Permian host terrigenous rocks, is predominant. The data points of isotopic composition of lode lead make up a linear trend within the range of μ2 = 9.5-9.6. K-feldspar of granitic rocks has less radiogenic and widely varying lead isotopic composition compared to that of galena. The isotopic data on Pb and Sr constrain the contribution of Late Cretaceous granitic rocks as a source of gold mineralization at the Nezhdaninsky deposit. The matter from the Early Cretaceous fluid-generating magma chamber participated in the ore-forming system of the Nezhdaninsky deposit. The existence of such a chamber is confirmed by the occurrence of Early Cretaceous granitoid intrusions on the flanks of the Nezhdaninsky ore field. The greatest contribution of magmatic lead (~30%) is noted in galena from the silver-base-metal mineral assemblage. This component has isotopic marks characteristic of lower crustal lead: the elevated 208Pb/206Pb ratio relative to the mean crustal value and the lower 207Pb/204Pb ratio. Taken together, they determine a high Th/U ~ 4.0 in the source and μ2 = 9.37–9.50. This conclusion is consistent with the contemporary tectonic model describing evolution of the South Verkhoyansk sector of the Verkhoyansk Foldbelt and the Okhotsk Terrane.  相似文献   

14.
辽宁八家子铅—锌矿床的铅同位素研究   总被引:4,自引:1,他引:4  
蒋少涌  魏菊英 《地质论评》1992,38(2):120-130
笔者对八家子矿床矿石铅、岩体长石铅和高于庄组沉积地层铅同位素的详细研究表明,矿石铅是由下地壳基底岩石铅、上地壳高于庄组沉积地层铅和高于庄组沉积矿石铅三端元混合的产物。与矿化关系密切的黑云母石英闪长岩浆来自一个铀亏损区,推测岩浆房在下地壳,岩浆上侵过程中同化了部分围岩。矿床成因类型应为沉积—岩浆热液活化型交代充填铅—锌矿床。  相似文献   

15.
湘东北七宝山铜多金属矿床地质特征及成因探讨   总被引:8,自引:0,他引:8  
本文在论述七宝山铜金多属矿床地质特征的基础上 ,从地层、构造、岩浆岩等方面系统阐述了成矿地质条件 ,从硫同位素铅同位素及包体地球化学等方面入手探讨了成矿物质来源 ,矿床硫同位素范围窄 ,δ34 S=( 1.8~ 5.6)× 10 -3 ,硫同位素组成以重硫型为主 ,接近陨石硫同位素组成。铅同位素 2 0 6Pb/ 2 0 4 Pb=18.2 91,2 0 7Pb/ 2 0 4 Pb=15.617,2 0 8Pb/ 2 0 4 Pb=38.642 ,为幔源铅。流体包裹体成分反映出成矿热液为岩浆热液 ,矿床成因为地洼区内多位一体的岩浆高中温交代—热液矿床。  相似文献   

16.
大别山北缘中生代火山-侵入岩的14个夺铅同位素组成表现为高的非放射性成因^204Pb,较低的^206Pb/^204Pb比值和低且相对一致的^207Pb/^204Pb比值,属于明显的低U/Pb体系,并暗示它们由具低μ值的源岩衍生的。  相似文献   

17.
P点铅及其应用意义   总被引:3,自引:0,他引:3  
韩发  孟祥金 《矿床地质》2004,23(1):77-81
在铅同位素研究中,异常铅是经常遇到并难于解释的问题。在一个矿区或矿带范围内,某些矿床的铅同位素资料中往往显示存在两种类型的铅:具有单阶段演化历史的正常铅和具有两个(或多个)阶段演化历史的异常铅。在常规的铅同位素组成图解上,这两种铅的数据点有时构成异常铅等时线,正常铅则位于等时线上含放射性成因铅最低的位置处。如果这种正常铅能给出合理的矿化年龄,并且该年龄与容矿围岩的成岩年龄基本一致,但显著老于异常铅瞬间增长模式年龄,那么,这种正常铅可能是异常铅等时线的起点,笔者称其为P点铅。显然,异常铅是后期放射性成因铅加入到P点铅形成的,P点铅的模式年龄为异常铅来源区的年龄:利用P点铅及异常铅等时线的资料,可以计算获得异常铅的矿化年龄。因此,P点铅这个概念的提出,为探讨矿化年龄问题开辟了一条新途径。文章还以加拿大和北欧地区某些矿床的铅同位素资料为例,讨论了在实际成矿过程中是否有P点铅存在的问题,讨论了P点铅在矿床成因研究中的重要意义。并给出了如何判断P点铅的具体条件。  相似文献   

18.
The lead isotopic composition of 33 sulfide samples from orebodies of the Sukhoi Log deposit was studied by high-precession MC-ICP-MS with a precision of ±0.02% (±2SD from 120 analyses of the SRM 981 standard sample). The deposit is located in the Bodaibo gold mining district in the northern Baikal-Patom Highland. Gold mineralization is hosted in Neoproterosoic black slates. Variations of lead isotope ratios of the Sukhoi Log sulfides are generally typical of Phanerozoic deposits and ore fields. They are significant for 206Pb/204Pb (17.903–18.674), moderate for 208Pb/204Pb (37.822–38.457), and relatively narrow for 207Pb/204Pb (15.555–15.679). In the Pb-Pb isotope diagrams, the data points of pyrite and galena constitute a linear trend. The points corresponding to pyrite from metasomatic ore occupy the left lower part of the trend. Galena from late gold-quartz veins shows more radiogenic Pb, and corresponding data points are located in the upper part of the trend. According to the Stacey-Kramers model, the end points of the trend, which is regarded as a mixing line, have μ2 = 9.6 and μ2 = 13.2 and model Pb-Pb ages 455 and 130 Ma, respectively. The isotope characteristics of ore lead, their relationships in pyrite and galena, and the mixing trend of Pb isotopic compositions are clearly tied to two Paleozoic stages in the formation of the Sukhoi Log deposit (447 ± 6 and 321 ± 14Ma) and testify to the leading role of crustal sources, which are suggested as being the Neoproterozoic black-shale terrigenous-carbonate rocks.  相似文献   

19.
The Yinchanggou Pb-Zn deposit, located in southwestern Sichuan Province, western Yangtze Block, is stratigraphically controlled by late Ediacaran Dengying Formation and contains >0.3 Mt of metal reserves with 11 wt% Pb + Zn. A principal feature is that this deposit is structurally controlled by normal faults, whereas other typical deposits nearby (e.g. Maozu) are controlled by reverse faults. The origin of the Yinchanggou deposit is still controversial. Ore genetic models, based on conventional whole-rock isotope tracers, favor either sedimentary basin brine, magmatic water or metamorphic fluid sources. Here we use in situ Pb and bulk Sr isotope features of sulfide minerals to constrain the origin and evolution of hydrothermal fluids. The Pb isotope compositions of galena determined by femtosecond LA-MC-ICPMS are as follows: 206Pb/204Pb = 18.17–18.24, 207Pb/204Pb = 15.69–15.71, 208Pb/204Pb = 38.51–38.63. These in situ Pb isotope data overlap with bulk-chemistry Pb isotope compositions of sulfide minerals (206Pb/204Pb = 18.11–18.40, 207Pb/204Pb = 15.66–15.76, 208Pb/204Pb = 38.25–38.88), and both sets of data plotting above the Pb evolution curve of average upper continental crust. Such Pb isotope signatures suggest an upper crustal source of Pb. In addition, the coarse-grained galena in massive ore collected from the deep part has higher 206Pb/204Pb ratios (18.18–18.24) than the fine-grained galena in stockwork ore sampled from the shallow part (206Pb/204Pb = 18.17–18.19), whereas the latter has higher 208Pb/204Pb ratios (38.59–38.63) than the former (208Pb/204Pb = 38.51–38.59). However, both types of galena have the same 207Pb/204Pb ratios (15.69–15.71). This implies two independent Pb sources, and the metal Pb derived from the basement metamorphic rocks was dominant during the early phase of ore formation in the deep part, whereas the ore-hosting sedimentary rocks supplied the majority of metal Pb at the late phase in the shallow part. In addition, sphalerite separated from different levels has initial 87Sr/86Sr ratios ranging from 0.7101 to 0.7130, which are higher than the ore formation age-corrected 87Sr/86Sr ratios of country sedimentary rocks (87Sr/86Sr200 Ma = 0.7083–0.7096), but are significantly lower than those of the ore formation age-corrected basement rocks (87Sr/86Sr200 Ma = 0.7243–0.7288). Again, such Sr isotope signatures suggest that the above two Pb sources were involved in ore formation. Hence, the gradually mixing process of mineralizing elements and associated fluids plays a key role in the precipitation of sulfide minerals at the Yinchanggou ore district. Integrating all the evidence, we interpret the Yinchanggou deposit as a strata-bound, normal fault-controlled epigenetic deposit that formed during the late Indosinian. We also propose that the massive ore is formed earlier than the stockwork ore, and the temporal-spatial variations of Pb and Sr isotopes suggest a certain potential of ore prospecting in the deep mining area.  相似文献   

20.
张健  薛春纪  曹纪虎  彭姣 《地学前缘》2019,26(5):163-173
高庄金矿床是豫西南一处重要金矿,成矿时代、物质来源以及矿床成因类型尚不清楚。本文对高庄金矿石中载金矿物磁黄铁矿进行Re-Os测年,获得(137±2) Ma成矿年龄,表明金矿床为燕山晚期成矿。分别对载金矿物磁黄铁矿、容矿地层(二郎坪群火神庙组)和侵入岩体(堂坪岩体)进行了S、Pb和REE组成分析。矿石硫化物δ34SCDT值为-3.0‰~-1.5‰,平均值为-2.24‰,深源S特征明显,矿石S可能来源于容矿的二郎坪群火神庙组基性火山岩地层。矿石硫化物206Pb/204Pb、207Pb/204Pb、208Pb/204Pb的变化范围分别为17.106~17.505、15.469~15.602、37.835~38.194。堂坪岩体206Pb/204Pb、207Pb/204Pb、208Pb/204Pb的变化范围分别为18.244 3~19.238 2、15.594 8~15.693 5、38.504 2~39.616 3,二郎坪群火山岩206Pb/204Pb、207Pb/204Pb、208Pb/204Pb变化范围分别为18.176 8~18.669 2、15.607 1~15.801 9、38.375 9~39.080 9。矿石铅同位素组成与地层和岩体的岩石铅组成相近,表明岩体和地层都提供了成矿物质。矿石与二郎坪群火神庙组地层的REE球粒陨石标准化配分曲线都为平坦型。可见,豫西南高庄金矿形成于秦岭碰撞造山之后的燕山晚期陆内构造岩浆热液过程,成矿物质主要来源于矿体周围火山岩地层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号