首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Response surface methodology (RSM) employing the three‐level Box–Behnken factorial design was used to optimize the biosorption of Ag(I) by the macrofungus Pleurotus platypus. The initial Ag(I) concentration (100–300 mg/L), pH (3.0–9.0), and biomass dosage (1.0–5.0 g/L) were chosen as the process variables for the optimization. A coefficient of determination (R2) value (0.99), model F value (234.18), and its low p‐value (F < 0.0001) along with the lower value of coefficient of variation (2.44%) indicated the fitness of response surface quadratic model during the present study. At the optimum pH (6.0), initial metal concentration (220 mg/L), and biomass dosage (3.0 g/L), the model predicted 46.7 mg/g Ag(I) uptake and an experimental 46.77 mg/g Ag(I) uptake by P. platypus was obtained. This is the first report on Ag(I) sorption by P. platypus using statistical experimental design employing RSM which may be helpful towards the treatment of industrial effluent containing silver.  相似文献   

2.
This study was undertaken to determine the cadmium removal efficiency of Lemna minor when it was used for treatment of wastewater having different characteristics, i. e., pH, temperature and cadmium concentration. Plants were cultivated in different pH solutions (4.5–8.0) and temperatures (15–35°C) in the presence of cadmium (0.1–10.0 mg/L) for 168 h. The amount of biomass obtained in the study period, the concentrations of cadmium in the tissues and in the media and net uptake of cadmium by Lemna have been determined for each condition. The percentages of cadmium uptake (PMU) and bioconcentration factors (BCF) were also calculated. The highest accumulation was obtained for the highest cadmium concentration of 10.0 mg Cd/L as 11.668 mg Cd/g at pH 6.0, and as 38.650 mg Cd/g at 35°C and pH 5.0. The cadmium accumulation gradually increased with initial concentration of the medium, but the opposite trend was observed for the PMU. However, the maximum PMU was obtained as 52.2% in the solution with the lowest concentration of 0.1 mg Cd/L. A mathematical model was used to describe the cadmium uptake and the equation obtained was seen to fit the experimental data very well.  相似文献   

3.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

4.
In the present study, the effects of initial COD (chemical oxygen demand), initial pH, Fe2+/H2O2 molar ratio and UV contact time on COD removal from medium density fiberboard (MDF) wastewater using photo‐assisted Fenton oxidation treatment were investigated. In order to optimize the removal efficiency, batch operations were carried out. The influence of the aforementioned parameters on COD removal efficiency was studied using response surface methodology (RSM). The optimal conditions for maximum COD removal efficiency from MDF wastewater under experimental conditions were obtained at initial COD of 4000 mg/L, Fe2+/H2O2 molar ratio of 0.11, initial solution pH of 6.5 and UV contact time of 70 min. The obtained results for maximum COD removal efficiency of 96% revealed that photo‐assisted Fenton oxidation is very effective for treating MDF wastewater.  相似文献   

5.
This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated and optimal experimental conditions were ascertained. The results showed that when the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of MG followed the pseudo‐second‐order rate equation and fits the Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Tempkin equations well. The maximum removal of MG was obtained at pH 6 as 99.86% for adsorbent dose of 1 g/50 mL and 25 mg L?1 initial dye concentration at room temperature. Activated carbon developed from the peel of C. sativa fruit can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.  相似文献   

6.
Response surface methodology (RSM) was employed to investigate the effects of different operational parameters on the biological decolorization of a dye solution containing malachite green (MG) in the presence of macroalgae Chara sp. The investigated variables were the initial pH, initial dye concentration, algae amount, and reaction time. Central composite design (CCD) was used for the optimization of biological decolorization process. Predicted values were found to be in good agreement with experimental values (R2 = 0.982 and Adj‐R2 = 0.966), which indicated suitability of the employed model and the success of RSM. The results of optimization predicted by the model showed that maximum decolorization efficiency was achieved at the optimum condition of the initial pH 6.8, initial dye concentration 9.7 mg/L, algae amount 3.9 g, and reaction time 75 min. UV–VIS spectra and FT‐IR analysis showed degradation of MG.  相似文献   

7.
The Cercis siliquastrum tree leaves are introduced as a low cost biosorbent for removal of Ag(I) from aqueous solution in a batch system. FT‐IR, XRD analysis, and potentiometric titration illustrate that the adsorption took place and the acidic functional group (carboxyl) of the sorbent was involved in the biosorption process. In addition, it was observed that the pH beyond pHpzc 4.4 is favorable for the removal procedure. The effect of operating variables such as initial pH, temperature, initial metal ion concentration, and sorbent mass on the Ag(I) biosorption was analyzed using response surface methodology (RSM). The proposed quadratic model resulting from the central composite design approach (CCD) fitted very well to the experimental data. The optimum condition obtained with RSM was an initial concentration of Ag(I) of 85 mg L?1, pH = 6.3 and sorbent mass 0.19 g. The applicability of different kinetic and isotherm models for current biosorption process was evaluated. The isotherm, kinetic, and thermodynamic studies showed the details of sorbate‐sorbent behavior. The competitive effect of alkaline and alkaline earth metal ions during the loading of Ag(I) was also considered.  相似文献   

8.
An optimized analysis method based on headspace liquid phase microextraction (HS‐LPME) and gas chromatography coupled with mass spectrometry was proposed for the determination of trihalomethanes (THMs) in drinking water. The response surface method (RSM) was used to optimize the extraction of THMs for analysis by HS‐LPME. The temperature, extraction time and NaCl concentration were found to be important extraction parameters. The coefficient of determination (R2) for the model was 94.97%. A high probability value (P < 0.0001) for the regression indicated that the model had a high level of significance. The optimum conditions were seen to be: temperature 42.0°C, NaCl concentration 0.30 g/mL, and extraction time 28 min. The response variable was the summation of the THMs chromatography peak areas and the reproducibility of this was investigated in five replicate experiments under the optimized conditions. The relative standard deviations (RSD%) of the THMs ranged from 8.0–11.6%. The limits of detection (LODs), based on a signal‐to‐noise ratio (S/N) of three ranged from 0.42–0.78 μg/L, and were lower than the maximum limits for THMs in drinking water established by the WHO.  相似文献   

9.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

10.
Response surface methodology (RSM) and artificial neural networks (ANNs) based on a multivariate central composite design (CCD) were applied to model and optimize the photocatalytic degradation of N,N‐diethyl‐m‐toluamide (DEET). The individual and interaction effects of three main operating factors (mass of TiO2, initial DEET concentration, and irradiation intensity) on process efficiency were estimated, proving their important effect on % DEET removal. Among the independent variables, TiO2 concentration displayed the highest effect on DEET degradation followed by initial DEET concentration and UV intensity. The optimization and prediction capabilities of ANNs and RSM were compared on the basis of root mean squared error, mean absolute error, absolute average deviation, and correlation coefficient values. Results proved the usefulness and capability of the experimental design strategy for successful investigation and modeling of the photocatalytic process. Moreover, the selected ANN gave better estimation capabilities throughout the range of variables than RSM. Based on the models and the related experimental conditions, the optimal values of each parameter were determined. Under optimum conditions, DEET and total organic carbon (TOC) followed pseudo‐first order kinetics. Nearly complete degradation of DEET took place within 15 min whereas high TOC removal percentages (>85%) was achieved after 90 min irradiation time.  相似文献   

11.
The amination water (AW) effluent stream from the industrial production of the trifluraline herbicide was submitted to an oxidation‐coagulation treatment with potassium ferrate, combined with advanced oxidation processes. The experimental results obtained by analysis of variance (ANOVA) for the oxidation‐coagulation‐Fenton process, evaluating the variables pH (A), Fe(VI) concentration (B), and H2O2 concentration (C), demonstrated that the regression equation resulting from the Response Surface Methodology (RSM) experimental design, for the quadratic model, was ηAbs (%) = 36.9– 21.58A + 8.37A2 + 1.36B + 0.92B2 + 1.08C + 1.52C2 + 1.27AB – 1.34AC + 1.33BC. The maximum absorptiometric color reduction occurred at pH 3, with corresponding maximum amounts of iron and hydrogen peroxide. The absorptiometric color and COD reduction were 96% and 57%, respectively. For the oxidation‐coagulation‐photo‐Fenton process, the analyzed variables were pH (A), Fe(VI) concentration (B), H2O2 concentration (C), and temperature (D). The regression equation resulting from the quadratic model was ηAbs (%) = 38.3 – 20.2A + 8.12A2 – 0.27B + 3.73B2 + 0.3C + 3.6C2 + 1.67D + 3.1D2 + 1.72AB + 0.51AC – 1.82AD + 0.74BC – 1.11BD + 0.03CD. The ANOVA response showed that the highest absorptiometric color reduction occurred at pH 3, with respective maximum amounts of iron and hydrogen peroxide at 60°C. The maximum efficiencies achieved by the proposed treatment process for the trifluraline effluent stream were 95% and 85%, for absorptiometric color and COD reduction, respectively.  相似文献   

12.
In this study, the biosorption of Cd(II), Ni(II) and Pb(II) on Aspergillus niger in a batch system was investigated, and optimal condition determined by means of central composite design (CCD) under response surface methodology (RSM). Biomass inactivated by heat and pretreated by alkali solution was used in the determination of optimal conditions. The effect of initial solution pH, biomass dose and initial ion concentration on the removal efficiency of metal ions by A. niger was optimized using a design of experiment (DOE) method. Experimental results indicated that the optimal conditions for biosorption were 5.22 g/L, 89.93 mg/L and 6.01 for biomass dose, initial ion concentration and solution pH, respectively. Enhancement of metal biosorption capacity of the dried biomass by pretreatment with sodium hydroxide was observed. Maximal removal efficiencies for Cd(II), Ni(III) and Pb(II) ions of 98, 80 and 99% were achieved, respectively. The biosorption capacity of A. niger biomass obtained for Cd(II), Ni(II) and Pb(II) ions was 2.2, 1.6 and 4.7 mg/g, respectively. According to these observations the fungal biomass of A. niger is a suitable biosorbent for the removal of heavy metals from aqueous solutions. Multiple response optimization was applied to the experimental data to discover the optimal conditions for a set of responses, simultaneously, by using a desirability function.  相似文献   

13.
Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso‐octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C0: 100–900 mg/L), adsorbent dosage (m: 2–22 g/L), time of adsorption (t: 15–735 min), and temperature (T: 10–50°C). Regression analysis showed good fit of the experimental data to the second‐order polynomial model with coefficient of determination R2‐value of 0.9390 and Fisher F‐value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30°C.  相似文献   

14.
For the first time ever, Enteromorpha compressa macroalgae (ECM), which is commonly found in Turkey, has been used as biosorbent by us. This study aims to investigate the biosorption of Cd2+ from aqueous solutions in a batch system by using an alga of ECM in different concentrations, pH levels, agitation rates (90–150 rpm), and contact periods. The maximum biosorption capacity of the ECM was found to be 9.50 mg/g at pH 6, Cd2+ initial concentration of 10 mg/L and agitation rate 150 rpm. Cadmium removal efficiency was about 95%. The experimental isotherm data were analyzed using the Langmuir and Freundlich equations. Isotherm parameters for both equations were determined and discussed. The stated biosorption mechanism is explained by the Freundlich isotherm (r2 = 0.998) theory. Two simplified kinetic models including a pseudo‐first‐ and second‐order equation were selected to follow the biosorption process. Kinetic parameters; rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the biosorption of cadmium onto ECM could be described by the pseudo‐second‐order equation (r2 > 0.99).  相似文献   

15.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

16.
Removal of copper, nickel, and zinc ions from synthetic electroplating rinse water was investigated using cationic exchange resin (Ceralite IR 120). Batch ion exchange studies were carried out to optimize the various experimental parameters (such as contact time, pH, and dosage). Influence of co‐existing cations, chelating agent EDTA on the removal of metal ion of interest was also studied. Sorption isotherm data obtained at different experimental conditions were fitted with Langmuir, Freundlich, Redlich–Peterson, and Toth models. A maximum adsorption capacity of 164 mg g?1 for Cu(II), 109 mg g?1 for Ni(II), and 105 mg g?1 for Zn(II) was observed at optimum experimental conditions according to Langmuir model. The kinetic data for metal ions adsorption process follows pseudo second‐order. Presence of EDTA and co‐ions markedly alters the metal ion removal. Continuous column ion exchange experiments were also conducted. The breakeven point of the column was obtained after recovering effectively several liters of rinse water. The treated rinse water could be recycled in rinsing operations. The Thomas and Adams–Bohart models were applied to column studies and the constants were evaluated. Desorption of the adsorbed metal ions from the resin column was studied by conducting a model experiments with Cu(II) ions loaded ion exchange resin column using sulfuric acid as eluant. A novel lead oxide coated Ti substrate dimensionally stable (DSA) anode was prepared for recovery of copper ions as metal foil from regenerated liquor by electro winning at different current densities (50–300 A cm?2).  相似文献   

17.
The present work involves the study of Se(IV) adsorption onto granular activated carbon (GAC) and powdered activated carbon (PAC). The adsorbents are coated with ferric chloride solution for the effective removal of selenium. The physico-chemical characterization of the adsorbents is carried out using standard methods, e. g., proximate analysis, scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), thermo-gravimetric (TGA) and differential thermal analysis (DTA), etc. The FTIR spectra of the GAC and PAC indicate the presence of various types of functional groups, e. g., free and hydrogen bonded OH groups, silanol groups (Si-OH), alkenes, and CO group stretching from aldehydes and ketones on the surface of adsorbents. Batch experiments are carried out to determine the effect of various factors such as adsorbent dose (w), initial pH, contact time (t), and temperature (T) on the adsorption process. The optimum GAC and PAC dosage is found to be 10 g/L and 8 g/L, respectively, for Se(IV) removal with C0 = 100 mg/L. The percent removal of Se(IV) increases with increasing adsorbent concentration, while removal per unit weight of adsorbent increases with decreasing adsorbent concentration. Se(IV) adsorption onto both the GAC and PAC adsorbents is high at low pH values, and decreases with increased initial pH. The results obtained are analyzed by various kinetic models. The parameters of pseudo-first order, pseudo-second order kinetics, and Weber-Morris intra particle kinetics are determined. It is seen that the sorption kinetics of Se(IV) onto GAC and PAC can be best represented by the pseudo-second order kinetic model.  相似文献   

18.
Nymphaea rubra stem was used as a low cost and easily available biosorbent for the removal of Reactive Red 2 dye from an aqueous solution. Initially, the effects of biosorbent dosage (0.2–1.0 g L–1), pH (1–6), and dye concentration (30–110 mg L–1) on dye removal were studied. Batch experiments were carried out for biosorption kinetics and isotherm studies. The results showed that dye uptake capacity was found to increase with a decrease in biosorbent dosage. Equilibrium uptake capacity was found to be greatest at a pH value of 2.0, when compared to all other pH values studied. The equilibrium biosorption isotherms were analyzed by the Freundlich and Langmuir models. The equilibrium data was found to fit very well with the Freundlich isotherm model when compared to the Langmuir isotherm model. The kinetic data was analyzed using pseudo-first order and pseudo-second order kinetic models. From the results, it was observed that the kinetic data was found to fit the pseudo-second order kinetic model very well. The surface morphology of the stem of the N. rubra biosorbent was exemplified by scanning electron microscopy. Fourier transform infrared analysis was employed to confirm the existence of an amine group in the stem of N. rubra.  相似文献   

19.
In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0–7.0, initial metal concentration 0.0–300 mg/L and contact time 0–120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r2 < 0.99). The biosorption kinetic data were fitted well with the pseudo‐second‐order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions.  相似文献   

20.
The manufacturing of phosphoric acid from natural calcium phosphate generates a solid residue containing 25–30% humidity. This solid residue (phosphogypsum) generates acidic solution (pH ≈ 2.5) containing several toxic ionic species, that coat its grains. Fluorides and heavy metals such as cadmium are considered the most harmful species contained in the released solution from phosphogypsum. The purpose of this work is to study the trapping of fluorides and cadmium in phosphogypsum as well as effluent neutralization before its discharge into natural recipient. Therefore, calcium carbonate finely ground was added and fully mixed with wet phosphogypsum. A four factors central composite design was used to model and to optimize the operating parameters that govern the process. The studied factors were temperature, reaction time, mass, and grains size of CaCO3. Considered responses were pH, F, and Cd2+ concentrations in the released solution after reaction with CaCO3. The optimum operating conditions were quite efficient to trap, respectively, 99% Cd2+ and 97% of F with a final pH of 6.66. So an original, easy, simple, and cost effective method to trap some toxic species on phosphogypsum through CaCO3 addition would likely to be integrated in phosphoric acid manufacturing plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号