首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shelf‐edge deltas are a key depositional environment for accreting sediment onto shelf‐margin clinoforms. The Moruga Formation, part of the palaeo‐Orinoco shelf‐margin sedimentary prism of south‐east Trinidad, provides new insight into the incremental growth of a Pliocene, storm wave‐dominated shelf margin. Relatively little is known about the mechanisms of sand bypass from the shelf‐break area of margins, and in particular from storm wave‐dominated margins which are generally characterized by drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a continuous transition from gullied (with turbidites) uppermost slope upward to storm wave‐dominated delta front on the outermost shelf. The basal upper‐slope deposits are dominantly mass‐transport deposited blocks, as well as associated turbidites and debrites with common soft‐sediment‐deformed strata. The overlying uppermost slope succession exhibits a spectacular set of gullies, which are separated by abundant slump‐scar unconformities (tops of rotational slides), then filled with debris‐flow conglomerates and sandy turbidite beds with interbedded mudstones. The top of the study succession, on the outer‐shelf area, contains repeated upward‐coarsening, sandstone‐rich parasequences (2 to 15 m thick) with abundant hummocky and swaley cross‐stratification, clear evidence of storm‐swell and storm wave‐dominated conditions. The observations suggest reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave‐dominated, shelf‐edge delta front became unstable and collapsed down the slope; (ii) the excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by repeated infilling by debris flows and turbidites, and then new gullying and further infilling; and (iii) a renewed storm wave‐dominated delta‐front prograded out across the healed outer shelf, re‐establishing the newly stabilized shelf margin. The Moruga Formation study, along with only a few others in the literature, confirms the sediment bypass ability of storm wave‐dominated reaches of shelf edges, despite river‐dominated deltas being, by far, the most efficient shelf‐edge regime for sediment bypass at the shelf break.  相似文献   

2.
Abstract Although shelf‐edge deltas are well‐imaged seismic features of Holocene and Pleistocene shelf margins, documented outcrop analogues of these important sand‐prone reservoirs are rare. The facies and stratigraphic architecture of an outcropping shelf‐edge delta system in the Eocene Battfjellet Formation, Spitsbergen, is presented here, as well as the implications of this delta system for the generation of sand‐prone, shelf‐margin clinoforms. The shelf‐edge deltas of the Battfjellet Formation on Litledalsfjellet and Høgsnyta produced a 3–5 × 15 km, shelf edge‐attached, slope apron (70 m of sandstones proximally, tapering to zero on the lower slope). The slope apron consists of distributary channel and mouth‐bar deposits in its shelf‐edge reaches, passing downslope to slope channels/chutes that fed turbiditic lobes and spillover sheets. In the transgressive phase of the slope apron, estuaries developed at the shelf edge, and these also produced minor lobes on the slope. The short‐headed mountainous rivers that drained the adjacent orogenic belt and fed the narrow shelf, and the shelf‐edge position of the discharging deltas, made an appropriate setting for the generation of hyperpycnal turbidity currents on the slope of the shelf margin. The abundance of organic matter and of coal fragments in the slope turbidites is consistent with this notion. Evidence that many of the slope turbidites were generated by sustained turbidity currents that waxed then waned includes the presence of scour surfaces and thick intervals of plane‐parallel laminae within turbidite beds in the slope channels, and thick spillover lobes with repetitive alternations of massive and flat‐laminated intervals. The examined shelf‐edge to slope system, now preserved mainly below the shelf break and dominated by sediment gravity‐flow deposits, has a threefold stratigraphic architecture: a lower, progradational part, in which the clinoforms have a slight downward‐directed trajectory; a thin aggradational zone; and an upper part in which clinoforms backstep up onto the shelf edge. A greatly increased density of erosional channels and chutes marks the regressive‐to‐transgressive turnaround within the slope apron, and this zone becomes an angular unconformity up near the shelf edge. This unconformity, with both subaerial and subaqueous components, is interpreted as a sequence boundary and developed by vigorous sand delivery and bypass across the shelf edge during the time interval of falling relative sea level. The studied shelf‐margin clinoforms accreted mostly during falling stage (sea level below the shelf edge), but the outer shelf later became estuarine as sea level became re‐established above the shelf edge.  相似文献   

3.
The Early Miocene Bílina Palaeodelta consists of fluvio‐deltaic and lacustrine clastics deposited along the south‐eastern margin of the extensional Most Basin, part of the Eger Graben in north Bohemia (Czech Republic). The Bílina succession shows evidence of repeated advances of an axial deltaic system across a thick accumulation of organic material and clay in the hangingwall of an active fault. Exposures up to ca 4·5 km long in the Bílina open‐cast mine help bridge the gap between seismic scale and typical outcrop scale of observation and thus allow the relationships between small‐scale and basin‐scale stratal geometries to be evaluated. The Bílina Palaeodelta deposits include sand‐dominated, fluvial channel fills and heterolithic sheets interpreted as delta plain strata, sand‐dominated mouth‐bar wedges and heterolithic sheets of prodeltaic deposits, passing distally into lacustrine clays. The depositional environment is interpreted as a fluvial‐dominated, mixed‐load, lacustrine delta with a high degree of grain‐size segregation at the feeder‐channel mouths. On the largest temporal and spatial scales, variable tectonic subsidence controlled the overall advance and retreat of the delta system. The medium‐term transgressive‐regressive history was probably driven by episodes of increased subsidence rate. However, at this temporal scale, the architecture of the deltaic sequences (deltaic lobes and correlative lacustrine deposits) was strongly affected by: (i) compaction of underlying peat and clay which drove lateral offset stacking of medium‐term sequences; and (ii) growth of a fault‐propagation fold close to the active Bílina Fault. At the smallest scale, the geometries of individual mouth bars and groups of mouth bars (short‐term sequences) reflect the interaction among sediment loading, compaction and growth faulting that produced high‐frequency relative lake‐level fluctuations and created local accommodation at the delta front.  相似文献   

4.
Seismically‐induced event deposits embedded in the sedimentary infill of lacustrine basins are highly useful for palaeoseismic reconstructions. Recent, well‐documented, great megathrust earthquakes provide an ideal opportunity to calibrate seismically‐induced event deposits for lakes with different characteristics and located in different settings. This study used 107 short sediment cores to investigate the sedimentary impact of the 1960 Mw 9·5 Valdivia and the 2010 Mw 8·8 Maule earthquakes in 17 lakes in South‐Central Chile (i.e. lakes Negra, Lo Encañado, Aculeo, Vichuquén, Laja, Villarrica, Calafquén, Pullinque, Pellaifa, Panguipulli, Neltume, Riñihue, Ranco, Maihue, Puyehue, Rupanco and Llanquihue). A combination of image analysis, magnetic susceptibility and grain‐size analysis allows identification of five types of seismically‐induced event deposits: (i) mass‐transport deposits; (ii) in situ deformations; (iii) lacustrine turbidites with a composition similar to the hemipelagic background sediments (lacustrine turbidites type 1); (iv) lacustrine turbidites with a composition different from the background sediments (lacustrine turbidites type 2) and (v) megaturbidites. These seismically‐induced event deposits were compared to local seismic intensities of the causative earthquakes, eyewitness reports, post‐earthquake observations, and vegetation and geomorphology of the catchment and the lake. Megaturbidites occur where lake seiches took place. Lacustrine turbidites type 2 can be the result of: (i) local near‐shore mass wasting; (ii) delta collapse; (iii) onshore landslides; (iv) debris flows or mudflows; or (v) fluvial reworking of landslide debris. On the contrary, lacustrine turbidites type 1 are the result of shallow mass wasting on sublacustrine slopes covered by hemipelagic sediments. Due to their more constrained origin, lacustrine turbidites type 1 are the most reliable type of seismically‐induced event deposits in quantitative palaeoseismology, because they are almost exclusively triggered by earthquake shaking. Moreover, they most sensitively record varying seismic shaking intensities. The number of lacustrine turbidites type 1 linearly increases with increasing seismic intensity, starting with no lacustrine turbidites type 1 at intensities between V½ and VI and reaching 100% when intensities are higher than VII½. Combining different types of seismically‐induced event deposits allows the reconstruction of the complete impact of an earthquake.  相似文献   

5.
Shelf‐edge deltas record the potential magnitude of sediment delivery from shallow water shelf into deep water slope and basin floor and, if un‐incised, represent the main increment of shelf‐margin growth into the basin, for that period. The three‐dimensional complexity of shelf‐edge delta systems and along‐strike variability at the shelf edge in particular, remains understudied. The Permian–Triassic Kookfontein Formation of the Tanqua Karoo Basin, South Africa, offers extensive three‐dimensional exposure (>100 km2) and therefore a unique opportunity to evaluate shelf‐edge strata from an outcrop perspective. Analysis of stratal geometry and facies distribution from 52 measured and correlated stratigraphic sections show the following: (i) In outer‐shelf areas, parasequences are characterized by undeformed, river‐dominated, storm‐wave influenced delta mouth‐bar sandstones interbedded with packages showing evidence of syn‐depositional deformation. The amount and intensity of soft‐sediment deformation increases significantly towards the shelf edge where slump units and debris flows sourced from collapsed mouth‐bar packages transport material down slope. (ii) On the upper slope, mouth‐bar and delta‐front sandstones pinch out within 2 km of the shelf break and most slump and debris flow units pinch out within 4 km of the shelf break. (iii) Further down the slope, parasequences consist of finer‐grained turbidites, characterized by interbedded, thin tabular siltstones and sandstones. The results highlight that river‐dominated, shelf‐edge deltas transport large volumes of sand to the upper slope, even when major shelf‐edge incisions are absent. In this case, transport to the upper slope through slumping, debris flows and un‐channellized low density turbidites is distributed evenly along strike.  相似文献   

6.
Submarine canyons are conduits for the distribution of sediment across continental margins. Although many canyons connect directly with fluvial or marine littoral system feeders, canyons detached from direct hinterland supply are also recognized. The fill of detached canyons remains enigmatic, because their deep‐water setting restricts analysis of their evolution and stratigraphic architecture. Therefore, this study aims to investigate the sedimentary processes that infilled deep‐water canyons and the resulting architecture. Miocene outcrops of an exhumed deep‐water system from the East Coast Basin, New Zealand, are documented and compared with the morphology and seismic scale architecture of a modern detached canyon system on the same convergent margin. The outcropping system preserves the downstream margin of a sub‐basin deposited at palaeo‐water depths >700 m. A 6 km wide by 430 m deep incision is filled by heterogeneous siliciclastic sediments, 50% of which comprise graded thin‐beds with traction structures, interpreted to result from oscillatory flows. These are intercalated with concave‐up lenses, up to 15 m thick, of sigmoidally‐bedded, amalgamated sandstones, which preserve ripple casts on bed bases, interpreted as deposits at the head of a deep‐marine canyon. Palaeo‐flow was eastward, into the sub‐basin margin. On the adjacent margin of the sub‐basin down‐dip, stacked and amalgamated sandstones and conglomerates represent the fill of a submarine channel complex, at least 3 km wide. The channels are inferred to have been fed by the up‐dip canyon, which traversed the intervening structural high; similar relationships are seen in the bathymetry data. Seismic studies on this margin demonstrate that multiple phases of canyon cut and fill may occur, with downstream architectural evolution comparable to that seen at outcrop, demonstrating that detached canyons may act as sediment conduits. Breaching of developing sea‐floor structures by detached canyons can modify tortuous sediment pathways, supplying sediment to otherwise starved areas of the slope.  相似文献   

7.
《Sedimentology》2018,65(6):1918-1946
In southern Patagonia, outcrops of the Upper Cretaceous Cerro Toro Formation preserve a >150 km long deep‐water axial channel belt in the Magallanes–Austral Basin, providing a unique opportunity to investigate longitudinal variations in the depositional characteristics of a deep‐water channel system. This study documents sedimentological, stratigraphical and geochronological data from the Cerro Toro Formation in the Argentine sector of the basin. New results are integrated with previous work from the Chilean basin sector to conduct a basin‐scale comparison of the timing of deposition, provenance and lithofacies proportions. The Cerro Toro channel belt includes a nearly 1000 m thick section characterized by high‐density turbidites and mass‐wasting deposits. Two ash beds from the base of the section yield U–Pb zircon ages of 90·4 ± 2 Ma and 88·0 ± 3 Ma, indicating similar initiation ages as documented in the Chilean sector. The U–Pb detrital zircon age spectra from samples in the study area reveal similar provenance trends to samples from the Chilean basin sector, with peak age populations at 310 to 260 Ma, 160 to 135 Ma and 110 to 82 Ma. The maximum depositional age of the channel belt in the Argentine sector is 87·8 ± 1·5 Ma and all new geochronology data corroborate an 86 to 80 Ma depositional age for the main Cerro Toro channel belt. Statistical analyses of 7370 beds from nearly 8000 m of new and previously published stratigraphic sections along the entire outcrop belt suggest progressive variations in the down‐system proportion of lithofacies. In the up‐slope region, lithofacies representing mass wasting processes (for example, debris‐flow and mass‐transport deposits) account for ca 29% of the stratigraphic thickness, as opposed to 5% in the down‐slope region of the channel belt, where turbidity current deposits are more prevalent. The proportion of beds >1 m thick also decreases systematically down slope, particularly for conglomeratic turbidite deposits. This work highlights that: (i) the proportion of thick beds and distribution of lithofacies are key down‐system changes in the stratigraphic fill of this deep‐water channel belt; (ii) detrital zircon trends suggest a relatively well‐mixed longitudinal depositional system; and (iii) geochronology of the main Cerro Toro outcrop belt supports but does not necessitate the model of a single, roughly age‐equivalent, channel system. This study has implications for understanding the downslope variability in depositional processes, stratigraphic architecture and reservoir quality of submarine channel systems.  相似文献   

8.
In recent years it has become clear that many shallow‐marine heterolithic and mudstone‐dominated successions are deposited as mud belts forming part of subaqueous deltas that are related to major fluvial sources either upstream or along shore. Here the Havert Formation is presented as an ancient example of this kind of system. The Havert Formation in the south‐western Barents Sea represents shelf margin clinoforms consisting predominantly of heterolithic deposits. Sediments were mainly derived from the east (Ural Mountains), but a smaller system prograded northward from Fennoscandia. The Havert Formation holds a lot of interest due to: (i) its stratigraphic position, directly above the Permo–Triassic boundary and contemporaneous to the emplacement of the Siberian Traps; (ii) the fact that it represents the first siliciclastic input in the south‐western Barents Sea and it shows interaction between Uralian‐derived and Fennoscandian‐derived sediments; and (iii) its hydrocarbon potential. This study is focused on a detailed sedimentological analysis of cored intervals of the (Ural‐derived) Havert Formation, in combination with seismic interpretation, well‐log correlations and palynological analysis of the Havert and overlying Klappmyss formations. The cored intervals belong to the shelf environment of the Havert shelf‐margin clinoforms (300 to 500 m thick). This sedimentological analysis distinguishes six facies associations, spanning from tidally‐influenced channels at the shoreline to mud‐rich subaqueous platform and foresets of the subaqueous delta. Seismic lines and well‐log correlations show the larger‐scale evolution of the Ural‐derived Havert Formation, characterized by episodes of low‐accommodation and high‐accommodation. The palynological analyses provide the first detailed study of the Havert Formation in the Nordkapp Basin, revising its depositional age in the region as Induan to early Olenekian (Smithian). Furthermore, they strengthen the environmental interpretation; palynofacies present on the shelf record flora of tidally‐influenced coastal plains, whereas the palynofacies in the deep‐water slope contain only amorphous organic matter.  相似文献   

9.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

10.
《Sedimentology》2018,65(3):809-841
Degradation of basin‐margin clinothems around the shelf‐edge rollover zone may lead to the generation of conduits through which gravity flows transport sediment downslope. Many studies from seismic‐reflection data sets show these features, but they lack small‐scale (centimetre to metre) sedimentary and stratigraphic observations on process interactions. Exhumed basin‐margin clinothems in the Tanqua depocentre (Karoo Basin) provide seismic‐reflection‐scale geometries and internal details of architecture with depositional dip and strike control. At the Geelhoek locality, clinothem parasequences comprise siltstone‐rich offshore deposits overlain by heterolithic prodelta facies and sandstone‐dominated deformed mouth bars. Three of these parasequences are truncated by a steep (6 to 22°), 100 m deep and 1·5 km wide asymmetrical composite erosion surface that delineates a shelf‐incised canyon. The fill, from base to top comprises: (i) thick‐bedded sandstone with intrabasinal clasts and multiple erosion surfaces; (ii) scour‐based interbedded sandstone and siltstone with tractional structures; and (iii) inverse‐graded to normal‐graded siltstone beds. An overlying 55 m thick coarsening‐upward parasequence fills the upper section of the canyon and extends across its interfluves. Younger parasequences display progressively shallower gradients during progradation and healing of the local accommodation. The incision surface resulted from initial oversteepening and high sediment supply triggering deformation and collapse at the shelf edge, enhanced by a relative sea‐level fall that did not result in subaerial exposure of the shelf edge. Previous work identified an underlying highly incised, sandstone‐rich shelf‐edge rollover zone across‐margin strike, suggesting that there was migration in the zone of shelf edge to upper‐slope incision over time. This study provides an unusual example of clinothem degradation and readjustment with three‐dimensional control in an exhumed basin‐margin succession. The work demonstrates that large‐scale erosion surfaces can develop and migrate due to a combination of factors at the shelf‐edge rollover zone and proposes additional criteria to predict clinothem incision and differential sediment bypass in consistently progradational systems.  相似文献   

11.
The northern Gioia Basin of the south‐east Tyrrhenian Sea is a slope basin, ~ 20 km wide and ~ 50 km long, with a bathymetry of ≤ 1300 m, bounded by the Calabro‐Sicilian landmass and the Aeolian Island Arc. Coarse sediment is supplied from the Calabrian margin, where the shelf is very narrow to non‐existent, whereas the wider shelf on the Sicilian margin prevents supply by storing river‐fed sediments. The basin is dominated by the Gioia–Mesima canyon/channel system paralleled by a tongue‐shaped depositional lobe. Multibeam bathymetric surveys, sea floor reflectivity data and airgun seismic profiles reveal the recent evolution of the submarine system. Slope canyons and basin‐floor levéed channels formed where major rivers built deltas at the shelfless Calabrian margin and strong hyperpycnal flows predominated. The channels are a few hundred metres wide and a few tens of metres deep, with a downslope change from a straight to meandering pattern where the slope gradient decreases from 3·2% to 1·7%. The Mesima Channel has its lower segment abandoned because of avulsion and crevasse‐splay formation at an upslope bend. The adjacent Gioia Channel has had its upper segment straightened and lower segment entrenched because of erosional deepening of the Stromboli Valley into which it debouches and which acts as the local base level. Overbank features include levées, coalescent splays and ‘yazoo’ channels; their nature and surface characteristics depend upon the magnitude and sediment grain‐size of spill‐over flows. On an adjoining narrow shelf sliver of the Calabrian margin, in contrast, the coalescing plumes of sediment suspension supplied by an array of smaller coastal streams were apparently spilling over the shelf edge, scouring a funnel‐shaped bypass depression with chutes and forming an elongate, non‐channellized depositional lobe at the slope base. The study demonstrates the impact of sediment source type, shelf width, basin‐floor gradient and base‐level change on the style of deep‐water sedimentation.  相似文献   

12.
The repetitive sedimentology of many Precambrian sheet‐dominated fluvial sandstones favoured their attribution to unconfined depositional processes. This article presents outcrop evidence for deep‐channelled drainage in the 1·9 Ga Burnside River Formation of Kilohigok Basin, Arctic Canada. On the ground, sheet‐like sandbodies with ubiquitous cross‐bedding are at first consistent with classic, unconfined depositional models. However, satellite and oblique‐aerial imagery of sections up to 15 km wide and 500 m thick reveals the occurrence of incised palaeovalleys hosting clustered, kilometre‐scale, channel bodies with attached large foreset bars pointing to downstream‐lateral accretion, sand sheets with aspect ratios (i.e. width to thickness) as high as 2500, and scattered aeolian intervals. The genetic association of these architectural elements points to aggradational fluvial piedmonts composed of low‐relief unit bars generated by braidplain channels several metres deep. Preservation of aeolianites was facilitated by fluctuating groundwater table and accommodation. Fluvial piedmonts were transected by weakly sinuous channel belts up to 25 m deep and characterized by through‐going or tributary planform. Aspect ratios comparable with those of late Palaeozoic to modern braided channels disprove the inference that all Precambrian streams readily widened in response to increased discharge. Previous facies models for large‐scale Precambrian sheet‐braided rivers failed to depict entire channel forms, possibly because they could not be resolved by ground‐based observations. Based on their limited geomorphic variability and abundance of architectural elements with very high aspect ratios, this study recommends that large sheet‐braided fluvial systems should still be considered separately from their post‐Silurian (i.e. vegetated) braided counterparts. Parallels between sheet‐braided and modern dryland rivers do not, however, reconcile with the deep, perennial, channelized processes described here. Yet, distal sand‐bed and perennial reaches of modern sandur plains remain the closest analogue to sheet‐braided rivers. This conjecture contradicts the assumption that all Precambrian rivers were prone to simulate seasonal behaviours independently from their actual climate regime.  相似文献   

13.
Well‐exposed Triassic rift strata from the Ischigualasto–Villa Unión Basin (NW Argentina) include a 80 to ca 515 m thick lacustrine‐dominated package that can be correlated across a half‐graben using key stratigraphic surfaces (sequence boundaries, lacustrine flooding surfaces and forced regressive surfaces). The characteristics of the synrift lacustrine fill in different parts of the half‐graben have been examined and the mechanisms controlling sedimentation inferred. A variety of sedimentary environments are recognized including; volcaniclastic floodplain, mildly saline lake and playa lake, offshore lacustrine, delta front to fluvial‐dominated and wave‐dominated deltas, distributary and fluvial channel, and interdistributary bay. The succession can be divided into four stratigraphic sequences (SS1 to SS4), the oldest of which (SS1) contains volcaniclastic, fluvial and saline lake deposits; it is thickest close to the western border fault zone, reflecting more rapid subsidence here. Accommodation exceeded sediment and water input during SS1. The second and third sequences (SS2 and SS3) mark the onset of widespread lacustrine sedimentation, reflecting a balance between accommodation creation and water and sediment fluxes. Sequences SS2 and SS3 are represented by offshore meromictic lacustrine and deltaic deposits, the latter mostly sourced from the flexural and southern axial margins of the half‐graben. The presence of stacked parasequences bound by lacustrine flooding surfaces is related to climatically induced lake‐level fluctuations superimposed on variable rates of subsidence on the controlling rift border fault zone. The youngest sequence (SS4) is represented by the deposits of littoral lacustrine and shallow shelf deltas distinguished by a change in lithofacies, palaeocurrents and sandstone composition, suggesting a switch in sediment supply to the footwall margin to the NW. The change in the sediment source is related to reduced footwall uplift, the possible presence of a relay ramp and/or supply from a captured antecedent drainage network. During SS4, the rate of creation of accommodation was exceeded by the sediment and water discharge. The stratigraphic evolution of lacustrine strata in the half‐graben was mainly controlled by tectonic processes, including subsidence rate and the growth and evolution of the border fault zone, but changing climate (inducing changes in water balance and lake level) and autocyclic processes (delta lobe switching) were also important.  相似文献   

14.
Deltas are important coastal sediment accumulation zones in both marine and lacustrine settings. However, currents derived from tides, waves or rivers can transfer that sediment into distal, deep environments, connecting terrestrial and deep marine depozones. The sediment transfer system of the Rhone River in Lake Geneva is composed of a sublacustrine delta, a deeply incised canyon and a distal lobe, which resembles, at a smaller scale, deep‐sea fan systems fed by high discharge rivers. From the comparison of two bathymetric datasets, collected in 1891 and 2014, a sediment budget was calculated for eastern Lake Geneva, based on which sediment distribution patterns were defined. During the past 125 years, sediment deposition occurred mostly in three high sedimentation rate areas: the proximal delta front, the canyon‐levée system and the distal lobe. Mean sedimentation rates in these areas vary from 0·0246 m year?1 (distal lobe) to 0·0737 m year?1 (delta front). Although the delta front–levées–distal lobe complex only comprises 17·0% of the analysed area, it stored 74·9% of the total deposited sediment. Results show that 52·5% of the total sediment stored in this complex was transported toward distal locations through the sublacustrine canyon. Namely, the canyon–levée complex stored 15·9% of the total sediment, while 36·6% was deposited in the distal lobe. The results thus show that in deltaic systems where density currents can occur regularly, a significant proportion of riverine sediment input may be transferred to the canyon‐lobe systems leading to important distal sediment accumulation zones.  相似文献   

15.
The Miocene Gorgoglione Flysch Formation records the stratigraphic product of protracted sediment transfer and deposition through a long‐lived submarine channel system developed in a narrow and elongate thrust‐top basin of the Southern Apennines (Italy). Channel‐fill deposits are exposed in an outcrop belt approximately 500 m thick and 15 km long, oriented oblique to the palaeoflow, which was roughly south‐eastward. These exceptional exposures of channel‐fill strata allow the stacking architectures and the evolution of the channel system to be analyzed at multiple scales, enabling the effects of syn‐sedimentary thrust tectonics and basin confinement on the depositional system development to be deciphered. Two end‐member types of elementary channel architecture have been identified: high‐aspect‐ratio, weakly‐confined channels, and low‐aspect‐ratio, incisional channels. Their systematic stacking results in a complex pattern of seismic‐scale depositional architectures that determines the stratigraphic framework of the deep‐water system. From the base of the succession, two prominent channel complex sets have been recognized, namely CS1 and CS2, consisting of amalgamated incisional channel elements and weakly‐confined channel elements. These channelized units are overlain by isolated incisional channels, erosional into mud‐prone slope deposits. The juxtaposition of different channel architectures is interpreted to have been governed by regional thrust‐tectonics, in combination with a high subsidence rate that promoted significant aggradation. In this scenario, the alternating ‘in sequence’ and ‘out of sequence’ tectonic pulses of the basin‐bounding thrusts controlled the activation of coarse‐clastic inputs in the basin and the resulting stacking architectures of channelized units. The tectonically‐driven confinement of the depositional system limited the lateral offset in channel stacking, preventing large‐scale avulsions. This study represents an excellent opportunity to analyze the stratigraphic evolution of a submarine channel system in tectonically‐active settings from an outcrop perspective. It should find wide applicability in analogous depositional systems, whose stratigraphic architecture has been influenced by tectonically‐controlled lateral confinement and associated lateral tilting.  相似文献   

16.
This paper documents a subsurface trace fossil and ichnofabric study of the proximal parts of a structurally confined and channelized sand‐rich, lower slope and proximal basin‐floor deep‐marine system in the Middle Eocene Ainsa basin, Spanish Pyrenees. Five depositional environments are recognized based on sedimentary facies associations, depositional architecture and stratigraphic context (channel axis, channel off‐axis, channel margin, leveé‐overbank and interfan), as well as a channel abandonment phase. Each environment is characterized by distinct and recurring ichnofabrics. Ichnological measurements and observations were recorded from six cores recovered from six wells drilled at a spacing of between 400 m and 500 m at outcrop, and totalling 1213 m in length. From channel axis to levée‐overbank environments, there is a trend of increasing bioturbation intensity and ichnodiversity. Ichnofabrics in channel axis and channel off‐axis environments are characterized by low bioturbation intensity and low ichnodiversity. Thalassinoides‐dominated firmground ichnofabrics associated with erosive sediment gravity flows are common in these environments. In contrast, channel margin and levée‐overbank environments are characterized by ichnofabrics associated with high bioturbation intensity and ichnodiversity. Sediments of the interfan are characterized by the highest bioturbation intensity, associated with burrow mottling and an absence of primary sedimentary structures. This paper demonstrates that in core‐based studies, ichnofabric analysis is an important and valuable tool in discriminating between different environments in channelized deep‐marine siliciclastic systems. The results of this study should find wide applicability in reservoir characterization studies in the petroleum industry, in field‐based analogue ichnofabric studies and other core‐based studies in deep‐water siliciclastic systems worldwide such as the Integrated Ocean Drilling Program.  相似文献   

17.
The shore‐normal transport of fine‐grained sediments by shelf turbidity currents has been the focus of intense debate over the last 20 years. Many have argued that turbidity currents are unlikely to be a major depositional agent on the shelf. However, sedimentological, architectural, stratigraphic and palaeogeographic data from the Campanian Aberdeen Member, Book Cliffs, eastern Utah suggests otherwise and clearly demonstrates that storm‐generated and river flood‐generated underflows can transport a significant volume of fine‐grained sediments across the shelf. These across‐shelf flowing turbidity currents cut large subaqueous channel complexes up to 7 m deep, tens of kilometres basinward of their time‐equivalent shoreface. The shelf channels were filled with organic‐rich siltstones, mudstones and very fine‐ to fine‐grained Bouma‐like sandstone beds, including wave‐modified turbidites, hyperpycnites and classical turbidites. Deposition was above storm wave base. Palaeocurrent data reveal an overwhelmingly dominant across‐shelf (east–south‐east), offshore‐directed transport trend. Tectonic activity and/or concomitant palaeogeographic reorganization of the basin may favour the generation of these turbidite‐rich shelf deposits by altering the relative balance of wave versus fluvial energy. Increased erosion and sediment supply rates, because of tectonic uplift of the hinterland, may have increased the probability of fluvial dominance along the coastline and, hence, the possibility of submarine channelization in front of the river mouths. Additionally, the coastline may have become more sheltered from direct wave energy, thus allowing the fluvial processes to dominate. Seasonal increases in rainfall and storm activity may also favour the generation of across‐shelf underflows. On wave‐dominated shorelines, isolated shelf channels and lobes are most likely to be found down‐dip of fluvial‐feeder systems in relatively high sediment supply settings. These features are also most likely to occur in systems tracts that straddle a sequence boundary, especially those which are tectonically generated, as these would enhance the potential for altering basin morphology and, hence, the balance of fluvial and wave energy. Isolated shelf channels are recognized in older and younger strata in the Book Cliffs region, implying that wave‐supported gravity flows were a recurrent phenomena in the Campanian of Utah. It is probable that isolated shelf bodies are preserved in other stratigraphic intervals in the Cretaceous Western Interior of North America, and other basins worldwide, and are currently being overlooked or misidentified. Shoreface‐to‐shelf facies models should be revised to incorporate turbidite‐rich shelf deposits in some shelf settings.  相似文献   

18.
Shelf‐edge deltas play a critical role in shelf‐margin accretion and deepwater sediment delivery, yet much remains to be understood about the detailed linkage between shelf edge and slope sedimentation. The shelf edge separates the flat‐lying shelf from steeper slope regions, and is observable in seismic data and continuous outcrops; however, it is commonly obscured in non‐continuous outcrops. Defining this zone is essential because it segregates areas dominated by shelf currents from those governed by gravity‐driven processes. Understanding this linkage is paramount for predicting and characterizing associated deepwater reservoirs. In the Tanqua Karoo Basin, the Permian Kookfontein Formation shelf‐slope clinothems are well‐exposed for 21 km along depositional strike and dip. Two independent methods identified the shelf‐edge position, indicating that it is defined by: (i) a transition from predominantly shelf‐current to gravitational deposits; (ii) an increase in soft‐sediment deformation; (iii) a significant gradient increase; and (iv) clinothem thickening. A quantitative approach was used to assess the impact of process‐regime variability along the shelf edge on downslope sedimentation. Facies proportions were quantified from sedimentary logs and photographic panels, and integrated with mapped key surfaces to construct a stratigraphic grid. Spatial variability in facies proportions highlights two types of shelf‐edge depositional zones within the same shelf‐edge delta. Where deposition occurred in fluvial‐dominated zones, the slope is sand rich, channelized with channels widening downslope, and rich in collapse features. Where deltaic deposits indicate considerable tidal reworking, the deposits are thin and pinch‐out close to the shelf edge, and the slope is sand poor and lacks channelization. Amplification of tidal energy, and decrease in fluvial drive on the shelf, coincides with a decrease in mouth bar and shelf‐edge collapse, and a lack of channelization on the slope. This analysis suggests that process‐regime variability along the shelf edge exercised significant control on shelf‐edge progradation, slope channelization and deepwater sediment delivery.  相似文献   

19.
Abstract

The Xihu sag, which is the largest petroliferous sub-basin of the East China Sea Shelf Basin, formed in a continental back-arc setting. The Oligocene Huagang Formation consisting of a fluvial–lacustrine succession deposited during the compressional stage is the prime hydrocarbon-bearing interval in the Xihu sag. A third-order sequence-stratigraphic framework has been built, and component sand-body characteristics were investigated based on seismic attribute analysis and well-log correlation. Two overall upward-fining sequences, and an internal low-accommodation systems tract (LAST) (fluvial successions characterised by amalgamated fluvial channel sand bodies interlayered with rare overbank deposits) and high-accommodation systems tract (HAST) (intervals dominated by overbank or lacustrine deposits) have been identified. The thick, multi-storied channel-fill sandstone bodies deposited along the central depression belt, capped by extensive overbank or lacustrine mud deposits, characterise each sequence and form favourable reservoir–seal associations. Proximal-to-distal changes in lithofacies associations were also analysed. The sequence-stratigraphic and lithofacies analysis suggest the existence of an axial, large-scale river channel system in the Oligocene Xihu sag. On the basis of the restoration of basin geomorphology and seismic facies analysis, the depositional architectures of the axial paleodrainage system have been reconstructed. Overall, the Huagang sequences represent the sedimentary evolution of a large-scale fluvial system sourced from axial and lateral supply areas, to form river deltas into an interior-draining basin-centre lake. Two major fluvio-lacustrine transgression–regression cycles have been recorded. During the transgression cycle, the fluvial morphology was dominated by braided fluvial style; whereas during the regression cycle, the fluvial morphology was characterised by a combination of multiple fluvial channel styles in the LAST, from upstream to downstream low-sinuosity braided, high-sinuosity braided and anastomosing fluvial channel patterns were distributed and then replaced by large-scale lake flooding in the HAST. The braided channel centre, paleobathymetric lows of channel networks and delta-front bodies are sand-prone units. The fluvial sedimentation was governed by multiple parameters: tectonics, paleogeomorphology and climate fluctuations. This integrated study on fluvial sedimentation and evolution of the Oligocene drainage system enable us to propose a conceptual model depicting fluvial channel styles and component sand-body architecture in lacustrine rift basins with axial plus transverse sediment supplies. This model can serve as a reference to illustrate channel-sand-body and associated reservoir architecture in similar types of drainage systems in terrestrial basins.  相似文献   

20.
A multi‐channel, high‐resolution seismic reflection survey using a Micro‐GI airgun was carried out in the framework of the Russian‐German project PLOT (Paleolimnological Transect) on Lake Levinson‐Lessing, Taymyr Peninsula, in 2016. In total, ~70 km of seismic reflection profiles revealed in unprecedented detail the glacial and postglacial sedimentary infill of the lake basin. Five main seismic units have been recognized and interpreted as glacial (Unit V), subglacial and proglacial (Unit IV), marine (Unit III), fluvial‐lacustrine (Unit II) and lacustrine (Unit I) sediments. Of particular significance are imbricated, south‐orientated structures present in the southernmost part of the lake basin within Unit V and a large topographic ridge recognized in front of those structures. We interpret these structures as push moraines and an end moraine, respectively, left by the glacier after its retreat. The depositional pattern of the units above the moraines documents past lake‐level fluctuations. We interpret Unit IV, Unit III and Unit I as highstand deposits, and Unit II as lowstand deposits. Gas‐charged sediments dominate the northern part of the lake basin, whilst they occur only sporadically and in limited spatial extent in the central and southern parts of the lake. In the latter areas, the seismic and echo‐sounder data suggest recent tectonic activity. Our study contributes to the reconstruction of environmental conditions in the Taymyr Peninsula directly following the Early Weichselian deglaciation and shows that deep tectonic lake basins affected by several glaciations can preserve important palaeoenvironmental records, which contributes significantly to our understanding of palaeoenvironmental changes in the Taymyr Peninsula and the central Russian Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号