首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moonmilk represents a conspicuous but controversially discussed precipitate of cave settings. Here, new electron backscatter diffraction microscopic and petrographic evidence on the origin of moonmilk calcite is presented. Calcite fibres in a moonmilk mat from the walls of an active cave (Tunnel‐Cave) in Devonian massive limestones in the northern part of the Rhenish Massif (Germany) show orientations of the crystallographic c‐axis independent of the morphological fibre orientation. This observation and the morphology of the fibres are in agreement with microbially induced, as opposed to abiogenic, calcite precipitation. Carbon‐isotope data are higher (1·9 to 3·3‰) than those commonly measured regionally in speleothem calcite (stalagmites, stalactites and flowstones), an observation attributed to kinetic effects. In combination, these findings add independent evidence to the complex interplay of inorganic and bio‐induced carbonate precipitation in cave environments.  相似文献   

2.
Dolomite [CaMg(CO3)2] forms in numerous geological settings, usually as a diagenetic replacement of limestone, and is an important component of petroleum reservoir rocks, rocks hosting base metal deposits and fresh water aquifers. Dolomite is a rhombohedral carbonate with a structure consisting of an ordered arrangement of alternating layers of Ca2+ and Mg2+ cations interspersed with anion layers normal to the c‐axis. Dolomite has symmetry, lower than the (CaCO3) symmetry of calcite primarily due to Ca–Mg ordering. High‐magnesium calcite also has symmetry and differs from dolomite in that Ca2+ and Mg2+ ions are not ordered. High‐magnesium calcite with near‐dolomite stoichiometry (≈50 mol% MgCO3) has been observed both in nature and in laboratory products and is referred to in the literature as protodolomite or very high‐magnesium calcite. Many dolomites display some degree of cation disorder (Ca2+ on Mg2+ sites and vice versa), which is detectable using transmission electron microscopy and X‐ray diffractometry. Laboratory syntheses at high temperature and pressure, as well as studies of natural dolomites show that factors affecting dolomite ordering, stoichiometry, nucleation and growth include temperature, alkalinity, pH, concentration of Mg and Ca, Mg to Ca ratio, fluid to rock ratio, mineralogy of the carbonate being replaced, and surface area available for nucleation. In spite of numerous attempts, dolomite has not been synthesized in the laboratory under near‐surface conditions. Examination of published X‐ray diffraction data demonstrates that assertions of dolomite synthesis in the laboratory under near‐ambient conditions by microbial mediation are unsubstantiated. These laboratory products show no evidence of cation ordering and appear to be very high‐magnesium calcite. Elevated‐temperature and elevated‐pressure experiments demonstrate that dolomite nucleation and growth always are preceded by very high‐magnesium calcite formation. It remains to be demonstrated whether microbial‐mediated growth of very high‐magnesium calcite in nature provides a precursor to dolomite nucleation and growth analogous to reaction paths in high‐temperature experiments.  相似文献   

3.
Needle fibre calcite is one of the most ubiquitous habits of calcite in vadose environments (caves deposits, soil pores, etc.). Its origin, either through inorganic, indirect or direct biological processes, has long been debated. In this study, investigations at 11 sites in Europe, Africa and Central America support arguments for its biogenic origin. The wide range of needle morphologies is the result of a gradual evolution of the simplest type, a rod. This rod is the elementary brick which, by aggregation and welding, builds more complex needles. The absence of cross‐welded needles implies that they are welded in a mould, or under a longitudinal and unidirectional constraint, before being released inside the soil pores. The difference between the lengthening of the needles and the c axis can be explained by the existence of needles observed under a scanning electron microscope in organic sleeves, which can act as a mould during rod growth. Complex morphologies with epitaxial outgrowths on straight rods cannot have grown entirely inside organic microtubes; they must result from soil diagenesis after the release of straight rods in a soil‐free medium. Whisker crystals are interpreted as the result of growth and coalescence of euhedral crystals on a rod. Rhomb chains are considered to be the consequence of successive epitaxial growth steps on a needle during variations in growth conditions. Isotopic signatures for needle fibre calcite vary from ?16·63‰ to +1·10‰ and from ?8·63‰ to ?2·25‰ for δ13C and δ18O, respectively. The absence of high δ18O values for needle fibre calcite precludes a purely physicochemical origin (evaporative) for this particular habit of calcite. As epitaxial growth cannot precipitate in the same conditions as initial needles, needle fibre calcite stable isotopic signatures should be used with caution as a proxy for palaeoenvironmental reconstructions. In addition, it is suggested that the term needle fibre calcite should be kept for the original biogenic form. The other habit should be referred to as epitaxial forms of needle fibre calcite.  相似文献   

4.
Geochemical evidence of microbial activity within ooids   总被引:1,自引:0,他引:1       下载免费PDF全文
Ooid formation remains elusive despite their importance as palaeoclimatic indicators and important contributors to global carbonate budget. Based on stable isotopes, nutrient and elemental analyses on solid components and ooidal leachates, this study supports the notion of microbial involvement in the development of ooids from Great Bahama Bank. Carbon and nitrogen isotopic analyses on organic fractions identified geochemical signatures of microbial activity. The δ13C values for organic carbon in the bulk (?11·9 to ?16·9‰); intercrystalline/intracrystalline (?11·9 to 16·7‰); and intracrystalline phases (?12·4 to ?17·7‰) were similar and, except for the more enriched values of ooids from Butterfly Beach, were within the range of photosynthesisers. The δ15N values for the bulk (+0·5 to ?0·2‰); intercrystalline/intracrystalline (?0·3‰ to ?0·7‰) and intracrystalline organic matter (?0·3 to ?1·7‰) showed a narrow range consistent with nitrogen fixation. While positive δ15N and δ18O values of the leached from the ooids provided evidence of denitrification, the carbonate associated sulphate δ34SCAS of the bulk sediments (+19·2 to +19·6‰) and δ34S of the leachates (+16·6 to +18·3‰) provided weak indication of sulphate reduction, suggesting either that high concentrations of isotopically enriched S are overriding bio‐signatures of sulphate reduction or that microbes are preferentially using as an electron acceptor. In contrast, the elevated sulphate concentrations of the leachates suggest the occurrence of microbial sulphide oxidation within ooids. The high Mg/Ca of the leachates and scanning electron microscope analyses provide putative evidence of amorphous calcium carbonate and a formative role in CaCO3 precipitation. Together, these findings indicate that a redox dependent microbial consortium may influence CaCO3 precipitation in the form of ooid accretion, cementation and micritization. It is also inferred that ooid deposits are not suitable indicators of palaeoclimate because ooids are affected throughout their life by a complex chain of abiotic and biological processes which can lead to large geochemical offsets.  相似文献   

5.
The results of electron-microscopy investigations of calcite precipitated in a water-conducting fracture in a ca. 1800 Ma granitic rock from 207 m below sea level at the island of Aspo on the southeastern (Baltic) coast of Sweden are compared with measurements of carbon, oxygen, and sulfur isotope composition of the calcite and embedded pyrite. Parts of the calcite had extremely low delta 13C values, indicative of biological activity, and contained bacteria-like microfossils occurring in colonies and as typical biofllms. X-ray microanalysis demonstrated these fossils to be enriched in carbon. Our results provide evidence for ancient life in deep granitic rock aquifers and suggest that the modern microbial life found there is intrinsic. Modeling historical and present geochemical processes in deep granitic aquifers should, therefore, preferably include biologically catalyzed reactions. The results also suggest that the search for life on other planets, e.g., Mars, should include subsurface material.  相似文献   

6.
Autogenic cycles of channelization, terminal deposit formation, channel backfilling and channel abandonment have been observed in the formation of fans and deltas. In subcritical flow, these terminal deposits are characterized as mouth bars that lead to flow bifurcation, backwater and eventual channel backfilling. Similar, although less well characterized, cycles also take place on supercritical subaerial and submarine fans. This study investigates the hydraulics and morphodynamics of autogenic incision and backfilling cycles associated with supercritical distributive channel flow in alluvial fans. The research questions of the study are: (i) how are supercritical autogenic cycles on alluvial fans different from the subcritical cycles; (ii) what are the hydraulic and sediment transport characteristics at the various stages of autogenic feedback cycles; and (iii) what role do the cycles play in the overall fan evolution? These questions are investigated in the laboratory, and emphasis is placed on measuring the hydraulic and topographic evolution of the systems during the cycles. The cycles arise quasi‐periodically under constant water and sediment discharge. Periods of sheet‐like flow are competent to move sediment () but not competent enough to carry the full imposed load. The net result is preferential deposition near the inlet, resulting in fan steepening and an increase in flow competency with time. At a sediment supply to capacity ratio of , the sheet‐like flow is unstable to small erosional events near the inlet, resulting in the collapse of the distributed flow to a strong channelized state. During channelization, a graded () supercritical (Fr > 1) channel develops and transports eroded and fed sediment up to and through the fan front – extending the fan, initiating a lobe shaped deposit and reducing the local slope. The slopes defined by a sheet‐like flow with and channelized flow with set the maximum and minimum slopes on the fan, respectively. Once formed, graded channels act as bypass conduits linking the inlet with the terminal deposit. On average, deposits are up to six channel depths in thickness and have volumes approximately five times that of the excavated channel. The main distinctive characteristics of the supercritical cycles relate to how the flow interacts with the terminal deposit. At the channel to deposit transition, the flow undergoes a weak hydraulic jump, resulting in rapid sedimentation, dechannelization and lateral expansion of the flow, and deposition of any remaining sediment on top of the channel fill and floodplain. This process often caps the channel as the deposit propagates up channel erasing memory of the excavated channel.  相似文献   

7.

Six minor sulphide occurrences hosted by the Lower Devonian Buchan Group have been investigated. Sulphide minerals and associated phases are hosted by both dolostone and limestone lithologies along stylolitized bedding planes, cross‐cutting fractures, low angle minor faults and in cavities. Mineralization was closely associated with minor structures of inferred Tabberabberan age (Middle Devonian), which it appears to have post‐dated, but was largely strata‐bound in nature. The mineralogy of the occurrences is simple and characterized by the following generalized paragenesis which reflects the increasing oxidation state and pH of the mineralizing fluids: pyrite (pseudomorphous after marcasite)‐galena ± sphalerite ± pyrite‐dolomite ± barite‐calcite ± fluorite ± dolomite.

The sulphur isotope composition of sulphide minerals varies from ‐32.1 to +4.1‰, with iron and base metal sulphide minerals forming two distinct populations around ‐25‰ and 0‰, respectively. A single barite sample gives a sulphur isotope composition of +22.4‰, which is similar to that estimated for Early Devonian seawater. Fluid inclusions in fluorite and calcite homogenize at temperatures in the range 160 to 212° C and have average salinities of approximately 10 wt% NaCI eq. Sphalerite contains up to 1.81 wt% iron which correlates with colour, and up to 1.43 wt% cadmium. The Pb isotopic pattern of galena suggests a source region with U/Pb(= μ) lower than the crustal average, and a high Th/U.

A genetic hypothesis is proposed which involves the circulation of saline fluids through the Snowy River Volcanics, which directly underlie the Buchan Group, during or at some time after the Tabberabberan Orogeny. Although the Buchan occurrences show features characteristic of both Mississippi Valley‐type and stratiform ore deposits, they are most directly comparable to the epigenetic zones of Irish carbonate‐hosted base‐metal deposits. However, Pb‐Zn sulphide mineralization at Buchan appears to have been associated with minor compressional structures, suggesting that a simple correlation with the Irish deposits is not directly applicable.  相似文献   

8.
Although initial studies have demonstrated the applicability of Ni isotopes for cosmochemistry and as a potential biosignature, the Ni isotope composition of terrestrial igneous and sedimentary rocks, and ore deposits remains poorly known. Our contribution is fourfold: (a) to detail an analytical procedure for Ni isotope determination, (b) to determine the Ni isotope composition of various geological reference materials, (c) to assess the isotope composition of the Bulk Silicate Earth relative to the Ni isotope reference material NIST SRM 986 and (d) to report the range of mass‐dependent Ni isotope fractionations in magmatic rocks and ore deposits. After purification through a two‐stage chromatography procedure, Ni isotope ratios were measured by MC‐ICP‐MS and were corrected for instrumental mass bias using a double‐spike correction method. Measurement precision (two standard error of the mean) was between 0.02 and 0.04‰, and intermediate measurement precision for NIST SRM 986 was 0.05‰ (2s). Igneous‐ and mantle‐derived rocks displayed a restricted range of δ60/58Ni values between ?0.13 and +0.16‰, suggesting an average BSE composition of +0.05‰. Manganese nodules (Nod A1; P1), shale (SDO‐1), coal (CLB‐1) and a metal‐contaminated soil (NIST SRM 2711) showed positive values ranging between +0.14 and +1.06‰, whereas komatiite‐hosted Ni‐rich sulfides varied from ?0.10 to ?1.03‰.  相似文献   

9.
The Mawsmai cave and Krem Phyllut caves, East Khasi hills, Meghalaya, India has so far not yet attracted the attention of geomicrobiologists. Observations and hypotheses on the possible influence of identified microorganisms for speleothem formations in Meghalaya are reported for the first time. XRD studies identified calcite in speleothems and gypsum in cave wall deposits as the dominant minerals. SEM-EDAX showed interesting microfabric features showing strong resemblance with fossilised bacteria, calcified filaments, needle calcite and numerous nano scale calcite crystals, highly weathered and disintegrated crystals of calcite, that point towards a significant microbial influence in its genesis. Thin section petrography showed laminated stromatolitic features. The microorganisms identified by conventional isolation and further evaluation of isolates by molecular techniques include Bacillus cereus, Bacillus mycoides, Bacillus licheniformis, Micrococcus luteus, and Actinomycetes. Microscopic observations also showed unidentifiable cocci and four unidentifiable strains of CaSO4 (gypsum) precipitating bacteria. Experimental studies confirmed that these bacteria are able to precipitate calcium minerals (calcite, gypsum, minor amounts of dolomite) in the laboratory. These results allow us to postulate that species like these may contribute to active biogenic influence in the cave formations at Meghalaya.  相似文献   

10.
Recent studies on mineralogy, geochronology, fluid inclusion and stable isotope (Pb, Os, S, C, O, Sr) characteristics were reviewed to determine constraints for genetic models of the Chilean manto‐type copper deposits. The Chilean manto‐type deposits are divided into the two geologic categories of the northern areas (Arica–Iquique, Tocopilla–Taltal) and the central areas (Copiapó, La Serena, Santiago). The former is distributed in the coastal range composed of Jurassic andesite‐dominated volcano‐sedimentary piles and younger plutonic intrusions, and yields chalcocite (‐digenite) and bornite as the principal hypogene copper sulfides. The latter is hosted mostly in Lower Cretaceous volcano‐sedimentary sequences, and has chalcopyrite‐rich mineral associations. The fluid inclusion data indicate that the primary copper mineralization was commonly generated in the temperature range 150–360°C under low‐pressure conditions near the boiling curve, mediated with relatively saline brines. Generally, homogeneous Pb and S isotope compositions for primary copper minerals imply direct magma source or leaching of igneous rocks. Pb and Os isotope data published for some deposits, however, suggest that ore‐forming metals were derived mainly from the volcano‐sedimentary host rocks. The noticeably negative isotope ratios of primary sulfide sulfur and hydrothermal calcite carbon of some central area deposits indicate influx of sedimentary rock components, and the high 87Sr/86Sr initial ratios of hydrothermal calcite from the Tocopilla–Taltal area deposits imply contribution of the contemporaneous seawater or marine carbonates. These isotopic constraints imply a formation mechanism in which the Chilean manto‐type copper deposits formed epigenetically in the process of hydrothermal interaction of non‐magmatic surface‐derived brine with the volcano‐sedimentary host rocks, which is inferred to have been induced by a deep‐seated plutonic complex as the possible heat source.  相似文献   

11.
Chemical analysis of biotite in representative granitic rocks in Japan shows that the total Al (TAl) content changes with the metal type of the accompanying hydrothermal ore deposits and increases in the following order: Pb‐Zn and Mo deposits < Cu‐Fe and Sn deposits < W deposits < non‐mineralized granitic rocks. The TAl content of biotite in granitic rocks may be a useful indicator for distinguishing between mineralized and non‐mineralized granitic rocks. A good positive correlation is seen between the TAl content of biotite and the solidification pressure of the granitic rocks estimated by sphalerite and hornblende geobarometers and the mineral assemblages of the surrounding rocks. These facts suggest that the TAl content of biotite can be used to estimate the solidification pressure (P) of the granitic rocks. The following empirical equation was obtained: where TAl designates the total Al content in biotite on the basis O = 22. According to the obtained biotite geobarometer, it is estimated that Pb‐Zn and Mo deposits were formed at pressures below 1 kb, Cu‐Fe and Sn deposits at 1–2 kb, W deposits at 2–3 kb and non‐mineralized granitic rocks were solidified at pressures above 3 kb.  相似文献   

12.
This article highlights the relationship between speleothems growing inside gypsum caves and the particular climate that existed during their development. Speleothems in gypsum caves normally consist of calcium carbonate (calcite) or calcium sulphate (gypsum) and the abundance of such deposits greatly differs from zone to zone. Observations carried out over the last 20 years in gypsum caves subjected to very different climates (Italy, Spain, New Mexico, northern Russia, Cuba, Argentina) highlight wide variation in their cave deposits. In arid or semi-arid climates, the speleothems are mainly composed of gypsum, whilst in temperate, humid or tropical regions, carbonate formations are largely predominant. In polar zones no speleothems develop. These mineralogical details could be useful paleoclimatic indicators of climate change. The interpretation proposed is based on the fact that in gypsum karst the kind of speleothems deposited is determined by competition between the two principal mechanisms that cause precipitation of calcite and gypsum. These mechanisms are completely different: calcite speleothem evolution is mainly controlled by CO2 diffusion, while gypsum deposits develop mostly due to evaporation. Therefore, the prevalence of one kind of speleothem over the other, and the relationship between the solution–precipitation processes of calcite and gypsum, may provide evidence of a specific paleoclimate. Additionally, other non-common deposits in gypsum caves like moonmilk, cave rafts and dolomite speleothems can be used as markers for the prevalence of long, dry periods in humid areas, seasonal changes in climate, or rainfall trends in some gypsum areas. Moreover, the dating of gypsum speleothems could contribute paleoclimatic data relating to dry periods when calcite speleothems are not deposited. In contrast, the dating of calcite speleothems in gypsum caves could identify former wet periods in arid zones.  相似文献   

13.
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ13C) values of the carbonate sediment (?1‰ to ?2‰) have no relation to the oxygen isotope composition of the carbonate (δ18O) values (?7‰ to ?8‰), with both isotopes showing a low variability. The carbonate content is low (<20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ13C values between approximately +0.5‰ and +3‰, and δ18O values between ?1‰ and ?5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg–calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg–calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.  相似文献   

14.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

15.
Tufa deposits are potential terrestrial archives of palaeoenvironmental and palaeoclimatic information. This study assesses the potential of stable isotopic archives from two closely juxtaposed Holocene tufa sites in SE Spain. The Ruidera site contains deep‐water lacustrine micrites and tufas, whereas the nearby Alcaraz site represents a shallow barrage tufa. Understanding site characteristics is critical to interpreting the stable isotopic variations. These Holocene lacustrine micrites have isotopic compositions consistent with modern European lake shore microbial carbonates, where the isotopic chemistry is strongly influenced by hydrological and residence time effects. All the lacustrine micrite δ13C values were influenced by microenvironmental microbial effects to some degree. Because of these effects, stable isotope data from lacustrine microbial micrites and tufas will not normally yield precise information on the isotopic composition of palaeoprecipitation, temperature or vegetation composition of an area. In contrast, Holocene tufas that formed in shallow, fast‐flowing riverine settings may contain valuable palaeoclimatic archives. The tufa deposits must be largely autochthonous, as at Alcaraz, where in situ reed stem encrustations are present. Records of relative change in air temperature and changes in the source of airmasses are potentially resolvable in the δ18O data. These interpretations can be verified by other independent climatic data where chronology is constrained. Variations in riverine tufa δ13C values probably record changes in local vegetation and/or soil respiration. Covariation between δ18O and δ13C values may be intrinsically linked to climatic factors such as aridity. Tentative palaeoclimatic interpretations for the middle Holocene at Alcaraz based on the isotope data suggest warming (or increasing influence of Mediterranean‐sourced precipitation) between approximately 5000–3000 radiocarbon years BP, accompanied by increased aridity. These interpretations are consistent with the sparse independent palaeoclimatic data and climate modelling results for the Holocene of SE Spain. This study supports the growing evidence that well‐chosen tufa sites could yield valuable palaeoclimatic information.  相似文献   

16.
《Sedimentology》2018,65(5):1611-1630
This study focuses on recent debate over the value of stable isotope‐based environmental proxies recorded in riverine tufa stromatolites. A twelve‐year record (1999 to 2012) of river‐bed tufa stromatolites in the River Piedra (north‐east Spain) was recovered in this study, along with a partly overlapping fifteen‐year record (1994 to 2009) of accumulations in a drainage pipe: both deposits formed in water with near identical physico/chemical parameters. Measured water temperature data and near‐constant δ 18Owater composition allowed selection of an ‘equilibrium’ palaeotemperature equation that best replicated actual temperatures. This study, as in some previous studies, found that just two published formulas for water temperature calculation from equilibrium calcite δ 18O compositions were appropriate for the River Piedra, where tufa deposition rates are high, with means between 5·6 mm and 10·8 mm in six months. The δ 18Ocalcite in both the river and the pipe deposits essentially records the full actual seasonal water temperature range. Only the coldest times (water temperature <10°C), when calcite precipitation mass decreased to minimum, are likely to be unrepresented, an effect most noticeable in the pipe where depositional masses are smaller and below sample resolution. While kinetic effects on δ 18Ocalcite‐based calculated water temperature cannot be ruled out, the good fit between measured water temperature and δ 18Ocalcite‐calculated water temperature indicates that temperature is the principal control. Textural and deposition rate variability between the river and pipe settings are caused by differences in flow velocity and illumination. In the river, calcification of growing cyanobacterial mat occurred throughout the year, producing composite dense and porous laminae, whereas in the pipe, discontinuous cyanobacterial growth in winter promoted more abiogenic calcification. High‐resolution δ 18Ocalcite data from synchronous pipe and river laminae show that reversals in water temperature occur within laminae, not at lamina boundaries, a pattern consistent with progressive increase in calcite precipitation rate as cyanobacterial growth re‐established in spring.  相似文献   

17.
Microbial deposits at Shark Bay constitute a diverse living microbial carbonate system, developed in a semi‐arid, highly evaporative marine setting. Three tidal flats located in different embayments within the World Heritage area were investigated in order to compare microbial deposits and their Holocene evolution. The stressing conditions in the intertidal–subtidal environment have produced a microbial ecosystem that is trapping, binding and biologically inducing CaCO3 precipitation, producing laminated stromatolites (tufted, smooth and colloform), non‐laminated thrombolitic forms (pustular) and cryptomicrobial non‐laminated forms (microbial pavement). A general shallowing‐upwards sedimentary cycle was recognized and correlated with Holocene sea‐level variations, where microbial deposits constitute the younger (2360 years bp ) and shallower sedimentary veneer. In addition, sediments have been documented with evidence of exposure during the Holocene, from 1040 to 940 14C years bp , when sea‐level was apparently lower than present. Filamentous bacteria constitute the dominant group in the blister, tufted and smooth mat types, and coccus bacteria dominate the pustular, colloform and microbial pavement deposit types. In the subtidal environment within colloform and pavement structures, microbial communities coexist with organisms such as bivalves, serpulids, diatoms, green algae (Acetabularia), crustaceans, foraminifera and micro‐gastropods, which are responsible for exoskeleton supply and extensive bioturbation. The internal fabric of the microbial deposits is laminated, sub‐laminar, scalloped, irregular or clotted, depending on the amount of fine‐grained carbonate and the natural ability of microbial communities to trap and bind particles or induce carbonate precipitation. Nilemah tidal flat contains the thickest (1·3 m) and best‐developed microbial sedimentary system; its deposition pre‐dated the Rocky Point and Garden Point tidal flats, with the most positive isotope values for δ13C and δ18O, reflecting strong microbial activity in a highly evaporative environment. There is an evolutionary series preserved within the tidal flats reflecting relative ages and degree of salinity elevation.  相似文献   

18.
Pedogenic needle-fiber calcite was studied regarding its morphology, texture and stable isotope composition from the paleosol of the Quaternary Várhegy travertine (Budapest, Hungary). The needle-fiber calcite is composed of 40–200 μm long monocrystals. Smooth rods as well as serrated-edged crystals with calcite overgrowths were identified by SEM. Needles have several textural varieties: randomly distributed crystals in vugs and pores with calcite hypocoatings, bundles of subparallel crystals forming coatings around grains and alveolar structure with bridging needles in vugs.The morphological study of needle-fiber calcite suggests that needles are calcified fungal sheaths and produced by fungal biomineralization, a common process in recent and fossil soils and calcretes. The stable isotope composition of needle-fiber calcite (average: δ18O=-7.1‰ and δ13C=-7.3‰ vs. V-PDB) indicates significant incorporation of organically derived CO2 and probably biological influence on needle genesis. Dissolved host rock travertine and/or atmospheric CO2 could also contribute some carbon to the acicular calcite.  相似文献   

19.
Carbonate‐replacement polymetallic mineralization at the Huanzala deposits (9°51′S, 77°00′W) was conducted in two contrasting stages that occurred in almost the same location. Early‐stage mineralization has a relation with a granodiorite porphyry stock, whereas the late‐stage mineralization is genetically associated with quartz porphyry sills. The early stage involved low to intermediate sulfidation Cu–Zn–(Pb) mineralization associated with metasomatic skarn, and the late stage involved high to intermediate sulfidation Cu–Zn–Pb–(Mn) mineralization associated with hydrothermal alteration characterized by paragonitic sericitization. The orebodies are hosted by steeply dipping (approximately 60°NE) Lower Cretaceous carbonate rocks in a relatively narrow range of approximately 4 km in horizontal extent and less than 1 km in depth. The pathway of the early‐stage brine‐derived fluids (300–>400°C, >33 wt% NaCl equivalent) along a plot of log against 1000/T is best explained by the progressive dual decline of the value and the temperature under rock‐buffering conditions; this decline saw the pathway progress through the stability field of pyrrhotite to reach that of pyrite and promoted a decrease in FeS from 14.5 to 1.6 mol% in the sphalerite. In contrast, an explanation for the pathway of the late‐stage fluids (140–290°C, 3–13 wt% NaCl equivalent) is given by an almost isothermal decline at approximately 270°C, with passing through the stability field of pyrite–bornite to reach that of chalcopyrite, promoting an increase in FeS from 0.1 to 1.6 mol% in the sphalerite, suggesting gas‐buffering conditions. The ore formation pressure records in the fluid inclusions illustrate an approximately 2‐km erosion during the roughly 2‐Myr total lifetime of the hydrothermal system.  相似文献   

20.
A peculiar facies of the Norian–Rhaetian Dachstein‐type platform carbonates, which contains large amounts of blackened bioclasts and dissolutional cavities filled by cements and internal sediments, occurs in the Zlatibor Mountains, Serbia. Microfacies investigations revealed that the blackened bioclasts are predominantly Solenoporaceae, with a finely crystalline, originally aragonite skeleton of fine cellular structure. Blackening of other bioclasts also occurs subordinately. Solenoporacean‐dominated reefs, developed behind the platform margin patch‐reef tract, were the main source of sand‐sized detritus. The blackened and other non‐blackened bioclasts are incorporated in automicrite cement. Radiaxial fibrous calcite cements in the dissolutional cavities are also black, dark grey or white. Reworked black pebbles were reported from many occurrences of peritidal deposits; in those cases, the blackening took place under pedogenic, meteoric diagenetic conditions. In contrast, in the inner platform deposits of the Ilid?a Limestone, the blackening of bioclasts occurred in a marine–meteoric mixing‐zone, as indicated by petrographic features and geochemical data of the skeleton‐replacing calcite crystals. Attributes of mixing‐zone pore waters were controlled by mixing corrosion, different solubility of carbonate minerals and microbial decomposition of organic matter. In the moderate‐energy inner platform environment, large amounts of microbial organic tissue were accumulated and subsequently decomposed, triggering selective blackening in the course of early, shallow burial diagenesis. The δ18O and δ13C values of the mixing‐zone precipitates and replacive calcite do not produce a linear mixing trend. Variation mainly resulted from microbial decomposition of organic matter that occurred under mixing‐zone conditions. The paragenetic sequence implies cyclic diagenetic conditions that were determined by marine, meteoric and mixing‐zone pore fluids. The diagenetic cycles were controlled by sea‐level fluctuations of moderate amplitude under a semi‐arid to semi‐humid climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号