首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

2.
《Sedimentology》2018,65(6):1827-1858
Dedolomitization is a common diagenetic process in shallow burial environments and is often associated with sulphates in mixed carbonate‐evaporite successions. In these settings, elevated Ca2+/Mg2+ ratios necessary for dedolomitization result from the dissolution of sulphate phases by the incursion of undersaturated groundwater. Reported dedolomite textures from other studies are varied, but the most prevalent is a rhombic texture interpreted to result from the partial to complete pseudomorphic replacement of secondary dolomite rhombs formed in the burial diagenetic realm. In this study of primary cryptocrystalline to finely crystalline dolomicrites in the Prairie Evaporite Formation of north‐eastern Alberta, dedolomitization has resulted in sutured to loosely packed mosaics of dedolomite that range from subhedral to distinctly euhedral (rhombic) crystal fabrics; however, no prior aggrading neomorphism producing dolomite rhombs is evident in the precursor dolomicrites. Non‐pseudomorphic dedolomitization of the dolomicrites results in textures that include rhombic dedolomite crystals with cloudy cores comprising remnant dolomicrite and clear rims. These textures are similar to those observed in the pseudomorphic dedolomitization of secondary dolomite rhombs. The Prairie Evaporite Formation of north‐eastern Alberta has experienced extensive karstification near the erosional margin of the sedimentary succession. Dedolomitization of dolomicrites occurs in marker beds within the Prairie Evaporite succession associated with evaporite karstification. Along with stratigraphic and petrographic considerations, stable isotope results support the interpretation of a shallow dedolomitization event influenced by meteoric waters derived from the basin margin. Negative δ 18O and low δ 13C values (averages of −13·6‰VPDB and 0·5‰VPDB, respectively) of the dedolomite, compared with those of the primary dolomicrite (averages of −6·0‰VPDB and 1·2‰VPDB, respectively), point to isotopically light diagenetic fluids. These results show that rhombic dedolomite textures can form through shallow, non‐pseudomorphic dedolomitization of dolomicrites by meteoric fluids in the presence of sulphates, with resulting textures that are similar to the pseudomorphic dedolomitization of secondary dolomite rhombs.  相似文献   

3.
This paper addresses the diagenesis of carbonate conglomerates in that it assesses the potential of conglomerates in refining the paragenetic history in complex structural areas, such as the Albanian foreland fold‐and‐thrust belt. Of major interest are stylolites (burial and tectonic) which are restricted to conglomerate fragments or which crosscut the conglomerate matrix. Based on the inferred age of stylolite development in relation to burial, uplift and tectonic history, and the Lower to Middle Miocene age of the conglomerates, the succession of diagenetic events was subdivided into several stages. The Poçem polymict transgressive carbonate conglomerate (Kremenara anticline, central Albania) was deposited in a shallow marine environment. These conglomerates are covered by intertidal rhodolithic packstones–grainstones. The stable‐isotope signature of these packstones–grainstones (δ18OV‐PDB = −1·0 to +0·7‰; δ13C = +1·0 to +1·4‰) plots is within the range of marine Early and Middle Miocene values. Shortly after deposition of the conglomerates, micritization, geopetal infill and acicular calcite cementation took place. A first calcite vein generation is interpreted as having formed from a Messinian brine during shallow burial. Burial stylolites developed during further burial in the Pliocene. These stylolites serve as an important diagenetic time marker. The post‐burial stylolite meteoric calcite vein cement probably precipitated during the following telogenetic stage. Karstification and calcite concretion precipitiation pre‐date overturning of the western limb of the anticline. Reopening of subvertical fractures and tectonic stylolites in the western limb of the Kremenara anticline, followed by oil migration, represents one of the latest diagenetic events. These fractures and stylolites provide major pathways for hydrocarbon production.  相似文献   

4.
Early marine diagenetic dolomite is a rather thermodynamically-stable carbonate phase and has potential to act as an archive of marine porewater properties. However, the variety of early to late diagenetic dolomite phases that can coexist within a single sample can result in extensive complexity. Here, the archive potential of early marine dolomites exposed to extreme post-depositional processes is tested using various types of analyses, including: petrography, fluid inclusion data, stable δ13C and δ18O isotopes, 87Sr/86Sr ratios, and U-Pb age dating of various dolomite phases. In this example, a Triassic carbonate platform was dissected and overprinted (diagenetic temperatures of 50 to 430°C) in a strike-slip zone in Southern Spain. Eight episodes of dolomitization, a dolostone cataclasite and late stage meteoric/vadose cementation were recognized. The following processes were found to be diagenetically relevant: (i) protolith deposition and fabric-preservation, and marine dolomitization of precursor aragonite and calcite during the Middle–Late Triassic; (ii) intermediate burial and formation of zebra saddle dolomite and precipitation of various dolomite cements in a Proto-Atlantic opening stress regime (T ca 250°C) during the Early–Middle Jurassic; (iii) dolomite cement precipitation during early Alpine tectonism, rapid burial to ca 15 km, and high-grade anchizone overprint during Alpine tectonic evolution in the Early Eocene to Early Miocene; (iv) brecciation of dolostones to cataclasite during the onset of the Carboneras Fault Zone activity during the Middle Miocene; and (v) late-stage regression and subsequent meteoric overprint. Data shown here document that, under favourable conditions, early diagenetic marine dolomites and their archive data may resist petrographic and geochemical resetting over time intervals of 108 or more years. Evidence for this preservation includes preserved Late Triassic seawater δ13CDIC values and primary fluid inclusion data. Data also indicate that oversimplified statements based on bulk data from other petrographically-complex dolomite archives must be considered with caution.  相似文献   

5.
Sedimentological, mineralogical, stable carbon and oxygen isotope determinations and biomarker analyses were performed on siderite concretions occurring in terrestrial silts to understand their formation and to characterize the sedimentary and diagenetic conditions favouring their growth. High δ13C values (6·4‰ on average) indicate that siderite precipitated in an anoxic environment where bacterial methanogenesis operated. The development of anoxic conditions during shallow burial was induced by a change in sedimentary environment from flood plain to swamp, related to a rise of the ground‐water table. Large amounts of decaying plant debris led to efficient oxygen consumption within the pore‐water in the peat. Oxygen depletion, in combination with a decrease in sedimentation rate, promoted anoxic diagenetic conditions under the swamp and favoured abundant siderite precipitation. This shows how a change in sedimentary conditions can have a profound impact on the early‐diagenetic environment and carbonate authigenesis. The concretions contain numerous rhizoliths; they are cemented with calcium‐rhodochrosite, a feature which has not been reported before. The rhodochrosite cement has negative δ13C values (?16·5‰ on average) and precipitated in suboxic conditions due to microbial degradation of roots coupled to manganese reduction. The exceptional preservation of the epidermis/exodermis and xylem vessels of former root tissues indicates that the rhodochrosite formed shortly after the death of a root in water‐logged sediments. Rhodochrosite precipitated during the initial stages of concretionary growth in suboxic microenvironments within roots, while siderite cementation occurred simultaneously around them in anoxic conditions. These suboxic microenvironments developed because oxygen was transported from the overlying oxygenated soil into sediments saturated with anoxic water via roots acting as permeable conduits. This model explains how separate generations of carbonate cements having different mineralogy and isotopic compositions, which would conventionally be regarded as cements precipitated sequentially in different diagenetic zones during gradual burial, can form simultaneously in shallow burial settings where strong redox gradients exist around vertically oriented permeable root structures.  相似文献   

6.
Results of a detailed petrographic and stable isotope study illustrate that sedimentological differences and eogenetic dissolution/precipitation processes controlled porosity distribution within carbonate turbidites of the Ionian basin (central Albania). Based on lithology characteristics and porosity distribution observed in outcrop, individual turbidite beds can be subdivided into four distinct intervals, i.e. from base to top: (A) a non‐porous wackestone/floatstone or packstone followed by (B) porous packstone–grainstone that grades into (C) wackestone and (D) non‐porous mudstone with pelagic foraminifera. Wackestone interval C is characterized by an alternation of porous and non‐porous laminae. Changes in turbidity current flow regime controlled the initial presence of matrix micrite giving rise to both matrix‐ and grain‐supported lithologies within turbidite sequences. These are non‐porous and porous, respectively. Four eogenetic diagenetic processes (dissolution, cementation, neomorphism and compaction) acted shortly after deposition and modified primary porosity characteristics and distribution. Alteration by meteoric water is excluded based on the continuous burial until the Oligocene of the studied deep marine carbonates. Moreover, the stable isotope data with values between −2·1‰ and +0·7‰ for δ18OV‐PDB and between +1‰ and +3‰ for δ13CV‐PDB, favour alteration by marine‐derived pore‐waters. Compaction and aggrading neomorphism occurred dominantly in intervals characterized by higher matrix micrite content, i.e. the floatstone base and the wackestone–mudstone upper turbidite part. Framework‐stabilizing cementation occurred dominantly in the packstone–grainstone middle part of the turbidite beds. In the latter porous lithologies, matrix micrite was not compacted because of the grain fabric and the framework‐stabilizing cements. Here, neomorphism of micrite into microrhombic euhedral calcite occurred and microporosity was preserved.  相似文献   

7.
A systematic petrographic and geochemical studies of 92 representative sandstone samples from exploration wells E-AH1, E-AJ1, E-BA1, E-BB1 and E-D3 in the southern part of the Bredasdorp Basin was undertaken to classify the sandstones as well as unravel the main diagenetic processes and their time relations. Petrographic study shows that the sandstones are largely subarkosic arenite and arkosic litharenite, which have underwent series of diagenetic processes as a result burial, rifting and subsequent uplift. The main diagenetic processes that have affected the reservoir properties of the sandstones are cementation by authigenic clay, carbonate and silica, growth of authigenic glauconite, dissolution of minerals and load compaction. The major diagenetic processes reducing the porosity are calcite cementation in the subarkosic arenite, and compaction and quartz cementation in arkosic litharenite. On the other hand, the formation of secondary porosity due to the partial to complete dissolution of early calcite cement, feldspars and minor grain fracturing has improved the reservoir property of the sandstone to some extent. The clay minerals in the sandstones commonly acts as pore choking cement, which reduces porosity. In general, there is no particular diagenetic process that exclusively controls the type or form of porosity evolution in the sandstones.  相似文献   

8.
The upper Palaeocene–lower Eocene Umm er Radhuma Formation in the subsurface of Qatar is dominated by subtidal carbonate depositional packages overlain by bedded evaporites. In Saudi Arabia and Kuwait, peritidal carbonate depositional sequences with intercalated evaporites and carbonates in Umm er Radhuma have been previously interpreted to have been dolomitized via downward reflux of hypersaline brines. Here, textural, mineralogical and geochemical data from three research cores in Qatar are presented which, in contrast, are more consistent with dolomitization by near-normal marine fluids. Petrographic relationships support a paragenetic sequence whereby dolomitization occurred prior to the formation of all other diagenetic mineral phases, including chert, pyrite, palygorskite, gypsum, calcite and chalcedony, which suggests that dolomitization occurred very early. The dolomites occur as finely crystalline mimetic dolomites, relatively coarse planar-e dolomites, and coarser nonplanar dolomites, all of which are near-stoichiometric (50.3 mol% MgCO3) and well-ordered (0.73). The dolomite stable isotope values (range −2.5‰ to +1‰; mean δ18O = −0.52‰) and trace element concentrations (Sr = 40 to 150 ppm and Na = 100 to 600 ppm) are compatible with dolomitization by near-normal seawater or mesohaline fluids. Comparisons between δ18O values from Umm er Radhuma dolomite and the overlying Rus Formation gypsum further suggest that dolomitization did not occur in fluids related to Rus evaporites. This study provides an example of early dolomitization of evaporite-related carbonates by near-normal seawater rather than by refluxing hypersaline brines from overlying bedded evaporites. Further, it adds to recent work suggesting that dolomitization by near-normal marine fluids in evaporite-associated settings may be more widespread than previously recognized.  相似文献   

9.
This paper describes the occurrence of dolomite and the mechanism of dolomitization of the Upper Triassic-Lower Jurassic K?z?loren Formation in the autochthonous Bolkardag? unit of the middle Taurus Mountains in south western Turkey. Dolomites were analyzed for geochemical, isotopic and crystallographic variation. Dolomites occur as a replacement of precursor carbonate and cement. The dolomite crystals range from <10 to ~1000 μm existing as both replacements and cements. Sr concentrations range between 84 and 156 ppm, and the molar Sr/Ca ratios of dolomitizing fluids are estimated to range between 0.0066 to 0.013 ratios. Dolomites are Ca-rich (with average CaCO3 and MgCO3 equal to 56.43 and 43.57 mol%, respectively) and they are non-stoichiometric, with an average Sr=116 ppm, Na=286 ppm, Mn=81 ppm, Fe=1329 ppm, and δ18O and δ13C ranges from –0.6‰ to –6.1‰ Pee Dee Belemnite [PDB], and +1.2 to +3.9‰ PDB. The North American Shale Composition [NASC]-normalized rare earth element (REE) values of the both limestone and dolomite sample groups show very similar REE patterns characterized by small positive Eu (mean=1.32 and mean=1.42, respectively) and slightly or considerably negative Ce (mean=0.61 and mean=0.72, respectively) anomalies and a clear depletion in all REE species. The K?z?loren Formation dolomites have been formed as early diagenetic from mixing zone fluids at the tidal-subtidal environment and at the late diagenetic from basinal brines at the shallow-deep burial depths.  相似文献   

10.
An integrated approach consisting of fracture analysis, petrography, carbon, oxygen and strontium‐isotope analyses, as well as fluid‐inclusion micro‐thermometry, led to a better understanding of the evolution of fluid–rock interactions and diagenesis of the Upper Permian to Upper Triassic carbonates of the United Arab Emirates. The deposited carbonates were first marked by extensive early dolomitization. During progressive burial, the carbonates were affected by dolomite recrystallization as well as precipitation of vug and fracture‐filling dolomite, quartz and calcite cements. After considerable burial during the Middle Cretaceous, sub‐vertical north–south oriented fractures (F1) were cemented by dolomite derived from mesosaline to hypersaline fluids. Upon the Late Cretaceous maximum burial and ophiolite obduction, sub‐vertical east–west fractures (F2) were cemented by dolomite (Dc2) and saddle dolomite (Ds) derived from hot, highly saline fluids. Then, minor quartz cement has precipitated in fractures from hydrothermal brines. Fluid‐inclusion analyses of the various diagenetic phases imply the involvement of increasingly hot (200°C) saline brines (20 to 23% NaCl eq.). Through one‐dimensional burial history numerical modelling, the maximum temperatures reached by the studied rocks are estimated to be in the range of 160 to 200°C. Tectonically‐driven flux of hot fluids and associated diagenetic products are interpreted to have initiated during the Late Cretaceous maximum burial and lasted until the Oligocene–Miocene compressional tectonics and related uplift. The circulation of such hydrothermal brines led to partial dissolution of dolomites (Dc2 and Ds) and to precipitation of hydrothermal calcite C1 in new (mainly oriented north–south; F3) and pre‐existing, reactivated fractures. The integration of the obtained data confirms that the diagenetic evolution was controlled primarily by the interplay of the burial thermal evolution of the basin and the regional tectonic history. Hence, this contribution highlights the impacts of regional tectonics and basin history on diagenetic processes, which may subsequently affect reservoir properties.  相似文献   

11.
The Trigonodus Dolomit is the dolomitized portion of the homoclinal ramp sediments of the Middle Triassic Upper Muschelkalk in the south‐east Central European Basin. Various dolomitizing mechanisms, followed by recrystallization, have been previously invoked to explain the low δ18O, high 87Sr/86Sr, extensive spatial distribution and early nature of the replacive matrix dolomites. This study re‐evaluates the origin, timing and characteristics of the dolomitizing fluids by examining petrographic and isotopic trends in the Trigonodus Dolomit at 11 boreholes in northern Switzerland. In each borehole the ca 30 m thick unit displays the same vertical trends with increasing depth: crystal size increase, change from anhedral to euhedral textures, ultraviolet‐fluorescence decrease, δ18OVPDB decrease from ?1·0‰ at the top to ?6·7‰ at the base and an 87Sr/86Sr increase from 0·7080 at the top to 0·7117 at the base. Thus, dolomites at the top of the unit record isotopic values similar to Middle Triassic seawater (δ18OVSMOW = 0‰; 87Sr/86Sr = 0·70775) while dolomites at the base record values similar to meteoric groundwaters from the nearby Vindelician High (δ18OVSMOW = ?4·0‰; 87Sr/86Sr = >0·712). According to water–rock interaction modelling, a single dolomitizing or recrystallizing fluid cannot have produced the observed isotopic trends. Instead, the combined isotopic, geochemical and petrographic data can be explained by dolomitization via seepage‐reflux of hypersaline brines into dense, horizontally‐advecting groundwaters that already had negative δ18O and high 87Sr/86Sr values. Evidence for the early groundwaters is found in meteoric calcite cements that preceded dolomitization and in fully recrystallized dolomites with isotopic characteristics identical to the groundwaters following matrix dolomitization. This study demonstrates that early groundwaters can play a decisive role in the formation and recrystallization of massive dolomites and that the isotopic and textural signatures of pre‐existing groundwaters can be preserved during seepage‐reflux dolomitization in low‐angle carbonate ramps.  相似文献   

12.
Septarian concretions in the Staffin Shales Formation (Kimmeridgian, Isle of Skye) allow controls on concretion rheology and septarian cracking to be investigated. Stratabound concretions consist of anhedral ferroan calcite microspar enclosing clay and minor pyrite. Intergranular volumes range from 77% to 88%, and calcite δ13C and δ18O values in most concretion bodies range from ?10·0‰ to ?17·3‰ and +0·3‰ to ?0·6‰ respectively, consistent with rapid and pervasive cementation in marine pore fluids. Septarian rupture occurred during incipient cementation, with a sediment volume reduction of up to 43%. Crack‐lining brown fibrous calcite records pore fluid re‐oxygenation during a depositional hiatus, followed by increasing Fe content and δ13C related to bacterial methanogenesis. Brown colouration results from an included gel‐like polar organic fraction that probably represents bacterially degraded biomass. A new hypothesis for concretion growth and septarian cracking argues that quasi‐rigid ‘proto‐concretions’ formed via binding of flocculated clays by bacterial extracellular polysaccharide substances (EPS). This provided rheological and chemical conditions for tensional failure, subcritical crack growth, volume contraction, calcite nucleation, and incorporation of degraded products into crack‐lining cements. Bacterial decay of EPS and syneresis of host muds provided internal stresses to initiate rupture at shallow burial. Development of septarian (shrinkage) cracks in muds is envisaged to require pervasive in situ bacterial colonization, and to depend on rates of carbonate precipitation versus EPS degradation and syneresis. Subsequent modification of septarian concretions included envelopment by siderite and calcite microspar, hydraulic fracturing associated with Cretaceous shallow burial or Palaeogene uplift; and cementation by strongly ferroan, yellow sparry calcite that records meteoric water invasion of the host mudrocks. An abundance of fatty acids in these spars indicates aqueous transport of organic breakdown products, and δ13C data suggest a predominantly methanogenic bicarbonate source. However, the wide δ18O range for petrographically identical cement (?1·3‰ to ?15·6‰) is difficult to explain.  相似文献   

13.
The high‐precision δ60/58Ni values of twenty‐six geological reference materials, including igneous rocks, sedimentary rocks, stream sediments, soils and plants are reported. The δ60/58Ni values of all samples were determined by double‐spike MC‐ICP‐MS (Nu Plasma III). Isotope standard solution (NIST SRM 986) and geological reference materials (BHVO‐2, BCR‐2, JP‐1, PCC‐1, etc.) were used to evaluate the measurement bias and intermediate precision over a period of six months. Our results show that the intermediate precision of Ni isotope determination was 0.05‰ (2s, n = 69) for spiked NIST SRM 986 and typically 0.06‰ for actual samples, and the δ60/58Ni NIST SRM 986 values were in excellent agreement with previous studies. Eighteen high‐precision Ni isotope ratios of geological reference materials are first reported here, and their δ60/58Ni values varied from ?0.27‰ to 0.52‰, with a mean of 0.13 ± 0.34‰ (2s, n = 18). Additionally, SGR‐1b (0.56 ± 0.04‰, 2s), GSS‐1 (?0.27 ± 0.06‰, 2s), GSS‐7 (?0.11 ± 0.01‰, 2s), GSD‐10 (0.46 ± 0.06‰, 2s) and GSB‐12 (0.52 ± 0.06‰, 2s) could potentially serve as candidate reference materials for Ni isotope fractionation and comparison of Ni isotopic compositions among different laboratories.  相似文献   

14.
Using the clumped isotope method, the temperature of dolomite and calcite formation and the oxygen isotopic composition (δ18Ow) of the diagenetic fluids have been determined in a core taken from the Arab‐D of the Ghawar field, the largest oil reservoir in the world. These analyses show that while the dolomites and limestones throughout the major zones of the reservoir recrystallized at temperatures between ca 80°C and 100°C, the carbonates near the top of the reservoir formed at significantly lower temperatures (20 to 30°C). Although the δ18O values of the diagenetic fluids show large variations ranging from ca <0‰ to ca +8‰, the variations exhibit consistent downhole changes, with the highest values being associated with the portion of the reservoir with the highest permeability and porosity. Within the limestones, dolomites and dolomites associated with the zone of high permeability, there are statistically significant different trends between the δ18Ow values and recrystallization temperature. These relationships have different intercepts suggesting that fluids with varying δ18Ow values were involved in the formation of dolomite and limestone compared to the formation of dolomite associated with the zone of high permeability. These new data obtained using the clumped isotope technique show how dolomitization and recrystallization by deep‐seated brines with elevated δ18Ow values influence the δ18O values of carbonates, possibly leading to erroneous interpretations unless temperatures can be adequately constrained.  相似文献   

15.
Clay‐rich basins have undergone varying degrees of magnetic transformation during burial, affecting their ability to retain accurate records of Earth's dynamic magnetic field. We propose to bracket the magnetite‐out and pyrrhotite‐in temperatures in shales and slates from Taiwan and the Pyrenees by using a combination of low‐temperature magnetic transitions and geothermometers. For Tburial < 340°C, the magnetic assemblage is dominated by magnetite. Gradually with increasing burial temperature, the concentration of magnetite decreases to a few ppmv. We observe the magnetite‐out isograd at Tburial ~350°C. At Tburial >60°C and Tburial >340°C respectively, fine‐grained and coarse‐grained pyrrhotite develop. In the course of burial, a clay‐rich basin gradually loses its capability to retain a record of Earth's magnetic field. It is only during basin uplift, that coarse pyrrhotite might acquire a thermo remanent magnetization. Our results point out therefore highly contrasted magnetic properties and palaeomagnetic records between deeply buried basins and exhumed ones.  相似文献   

16.
The diagenetic environment, diagenetic responses, diagenetic transformation model and formation mechanisms of high-quality reservoirs (beach-bar sandstones of the Paleogene fourth member) in the Dongying depression were studied through the analysis of fluid inclusions, thin section and burial evolution history. The diagenetic fluids of the beach-bar sandstone reservoirs evolved from early high salinity and weak alkalinity to low salinity and strong acidity, late high salinity and strong alkalinity and late low salinity and acidity, which were accompanied by two stages of oil and gas filling. The fluids at the margins of the sandbodies were continuously highly saline and strongly alkaline. The western (eastern) reservoirs experienced early open (closed), middle open, and late closed diagenetic environments during their burial history. The flow pattern was characterized by upwelling during the majority of the diagenesis (in the east, a non-circulating pattern transitioned into an upwelling current). Due to the evolution of the diagenetic fluids, the diagenetic sequence of the beach-bar reservoirs was as follows: early weak carbonate cementation; feldspar and carbonate cement dissolution and authigenic quartz cementation; late carbonate and anhydrite cementation, authigenic feldspar cementation, and late quartz dissolution; and late carbonate cementation, feldspar dissolution, and authigenic quartz cementation. The diagenetic strength during these stages varied or was absent altogether in different parts of the reservoirs. Due to the closeness of the diagenetic environment and the flow pattern of the diagenetic fluids, the diagenetic products are variably distributed in the sandstones interbedded with mudstones and in the fault blocks. The evolution of multiple alternating alkaline and acidic diagenetic environments controlled the distribution patterns of the reservoir diagenesis and reservoir space, and the reservoir quality index, RQI, increased gradually from the margins to the centers of the sandstones. The closeness of the diagenetic environment and the flow patterns of the diagenetic fluids controlled the differences in the reservoir properties among the fault blocks. With increasing distance from the oil-source faults, the RQI values in the west gradually decreased and in the east initially increased and then decreased.  相似文献   

17.
Well-developed dissolution pores occur in the dolomites of the Sinian Dengying Formation, which is an important oil and gas reservoir layer in the Sichuan Basin and adjacent areas in southern China. The pores are often filled with quartz, and some dolomites have been metasomatically altered to siliceous chert. Few studies have documented the characteristics, source or origin of silica-rich fluids and their effects on the dolomite reservoir. The peak homogenisation temperatures(T_h) of fluid inclusions in pore-filling quartz are between 150℃ and 190℃, with an average of 173.7℃. Gases in the inclusions are mainly composed of CO_2, CH_4 and N_2. Compared with host dolomite, pore-filling quartz and metasomatic chert contain higher amounts of Cr, Co, Mo, W and Fe, with average concentrations of 461.58, 3.99, 5.05, 31.43 and 6666.83 ppm in quartz and 308.98, 0.99, 1.04, 13.81 and 4703.50 ppm in chert, respectively. Strontium levels are lower than that in the host dolomite, with average concentrations in quartz and chert of 4.81 and 11.06 ppm, respectively. Rare earth element compositions in quartz and chert display positive Eu anomalies with a maximum δEu of 5.72. The δD_(SMOW) values of hydrogen isotopes in water from quartz inclusions vary from-85.1‰ to-53.1‰ with an average of-64.3‰, whereas the δ~(18)O_(SMOW) values range from 7.2‰ to 8.5‰ with an average of 8.2‰. The average ~(87)Sr/~(86)Sr ratios in quartz and chert are 0.711586 and 0.709917, respectively, which are higher than that in the host dolomite. The fluid inclusions, elemental and isotopic compositions demonstrate that the formation of quartz and chert was related to silica-rich hydrothermal fluid and that the fluid was the deep circulation of meteoric water along basement faults. Interactions with silica-rich hydrothermal fluids resulted in densification of dolomite reservoirs in the Dengying Formation through quartz precipitation and siliceous metasomatism. However, it increased the resistance of the host dolomite to compaction, improving the ability to maintain reservoir spaces during deep burial. Evidence for silica-rich hydrothermal activity is common in the Yangtze Platform and Tarim Basin and its influence on deep dolomite reservoirs should be thoroughly considered.  相似文献   

18.
HILARY IRWIN 《Sedimentology》1980,27(5):577-591
In the argillaceous sequence of Kimmeridge Clay a carbonate rich bed is composed of ferroan dolomite cement with varying amounts of excess CaCO3, and Fe2+ substitution in the Mg2+ sites. The isotopic and chemical compositions change symmetrically about the centre of the band proving that it grew by vertical accretion during diagenesis. Textural and isotopic evidence shows that growth centred on a horizon rich in primary carbonate which became dolomitized and assimilated during production of diagenetic carbonate. This accounts for the lateral extent of the concretion. Early central diagenetic carbonate was produced from organic matter by bacterial fermentation (δ13C =+0.59‰) and later marginal carbonate by abiotic breakdown, (δ13C tending towards — 2.73‰). δ18O values range from — 1.56 to — 4.46‰ because the dolomite precipitated during progressive burial. As burial increased, magnesium, whose dominant source was trapped seawater, became depleted while the relative availability of Fe2+, whose source was dominantly reduced detrital oxides, increased. Dolomitization and the source of diagenetic components for dolomite formation are discussed. Diffusion and pore fluid migration transported ions to the site of precipitation. Early cementation of the band served to influence pore fluid migration, but thereafter pore fluid migration controlled carbonate precipitation.  相似文献   

19.
Abstract

The Upper Triassic Chang 8 Member, the eighth member of the Yanchang Formation, is a key reservoir interval in the Jiyuan area of the Ordos Basin. The reservoir quality of the Chang 8 Member tight sandstones is extremely heterogeneous owing to the widespread distribution of carbonate cements. The carbonate cements commonly develop near sandstone–mudstone interfaces and gradually decrease away from the interfaces to the centres of the sand bodies. However, the content of carbonate cements (≤6%) has a positive correlation with the visual porosity in the Chang 8 Member sandstone, revealing that the carbonate cements contribute to the compaction resistance and the residual primary pores of reservoirs during the diagenetic process. Three main types of carbonate cement are identified: type I (calcite), type II (calcite and ferrocalcite), and type III (dolomite and ankerite). The type I calcite is characterised by enriched δ13C (mean –3.41‰) and δ18O (mean –15.17‰) values compared with the type II (mean δ13C?=?–7.33‰, δ18O?=?–18.90‰) and type III (mean δ13C?=?–10.0‰, δ18O?=?–20.2‰) cements. Furthermore, the mean δ18O value (–4.7‰) of the type I pore fluids is 1.5‰ and 0.9‰ lower than the type II (mean –3.2‰) and type III (mean –3.8‰) pore fluids, respectively. This indicates that the evolving pore fluids experienced some relative strong water–rock interactions that provided the original materials (e.g. Ca2+, Fe3+, and Mg2+) for the carbonate cements during the diagenetic process. The highly saline lake water directly provided the primary material for the type I calcite precipitation, which also provided the material necessary for the precipitation of the type II and type III carbonate cements, causing enriched δ18O values of the pore fluids during the precipitation of the type II and type III carbonate cements. Although the earlier dissolved pores were filled with ferrocalcite, dolomite and ankerite in the middle–late diagenetic stages, some residual pores and fractures remained to become the potential reservoir storage spaces for the oil and gas exploration in the Jiyuan area.  相似文献   

20.
《Sedimentology》2018,65(1):235-262
Chemostratigraphic studies on lacustrine sedimentary sequences provide essential insights on past cyclic climatic events, on their repetition and prediction through time. Diagenetic overprint of primary features often hinders the use of such studies for palaeoenvironmental reconstruction. Here the potential of integrated geochemical and petrographic methods is evaluated to record freshwater to saline oscillations within the ancient marginal lacustrine carbonates of the Miocene Ries Crater Lake (Germany). This area is critical because it represents the transition from shoreline to proximal domains of a hydrologically closed system, affected by recurrent emergent events, representing the boundaries of successive sedimentary cycles. Chemostratigraphy targets shifts related to subaerial exposure and/or climatic fluctuations. Methods combine facies changes with δ 13C–δ 18O chemostratigraphy from matrix carbonates across five closely spaced, temporally equivalent stratigraphic sections. Isotope composition of ostracod shells, gastropods and cements is provided for comparison. Cathodoluminescence and back‐scatter electron microscopy were performed to discriminate primary (syn‐)depositional, from secondary diagenetic features. Meteoric diagenesis is expressed by substantial early dissolution and dark blue luminescent sparry cements carrying negative δ 13C and δ 18O. Sedimentary cycles are not correlated by isotope chemostratigraphy. Both matrix δ 13C and δ 18O range from ca −7·5 to +4·0‰ and show clear positive covariance (R  = 0·97) whose nature differs from that of previous basin‐oriented studies on the lake: negative values are here unconnected to original freshwater lacustrine conditions but reflect extensive meteoric diagenesis, while positive values probably represent primary saline lake water chemistry. Noisy geochemical curves relate to heterogeneities in (primary) porosity, resulting in selective carbonate diagenesis. This study exemplifies that ancient lacustrine carbonates, despite extensive meteoric weathering, are able to retain key information for both palaeoenvironmental reconstruction and the understanding of diagenetic processes in relation to those primary conditions. Also, it emphasizes the limitation of chemostratigraphy in fossil carbonates, and specifically in settings that are sensitive for the preservation of primary environmental signals, such as lake margins prone to meteoric diagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号