首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
运用Sentinel-1A卫星数据和D-InSAR技术,获取2021-05-21云南漾濞M_S6.4地震的同震形变场。结果显示,漾濞地震同震形变场长轴近NW展布升降轨形变场符号相反,视线向最大沉降量和抬升量为0.1 m。InSAR同震形变场反演的滑动分布主要集中在沿走向2~12 km,倾向1~9 km的范围内,最大滑动量0.35 m,发震断层长9.8 km、宽4 km,滑动量主要集中在地下3~6 km范围内,滑动角-146.7°。同震位移场及滑动分布模型反映本次地震为发震断层的右旋走滑事件,地震破裂未达到地表。断层模型反演结果显示,矩震级为M_W6.1,发震断层以北西走向右旋走滑运动为主,初步认为本次M_W6.1地震发震断裂可能是一条NW向的维西—乔后断裂西侧的隐伏次生断裂。  相似文献   

2.
2021年5月21日晚21时48分,云南省大理州漾濞县(震中:25.67°N,99.87°E)发生M_S6.4地震,震源深度8 km。为快速获得此次地震同震形变场及断层几何参数,研究该次地震的发震构造等,文章基于震前、震后的sentinel-1A卫星升降轨SAR数据进行二轨法差分雷达干涉测量(DInSAR),并基于Okada弹性半空间位错模型反演断层几何参数。研究结果如下:(1)此次地震造成的同震形变场长约19 km,宽约20 km;(2)升轨雷达视线向最大形变约为8.2 cm,降轨雷达视线向最大形变约为8.7 cm;(3)地震断层走向为313.7°,倾角为87°,滑动角为175°,为右旋走滑型断层,最大滑动量为0.79 m,反演得出的地震矩为1.48×10~(18) N·m,矩震级为M_W6.1。在川滇块体向南挤出的构造背景下,块体西边界的维西—乔后断裂、红河断裂发生右旋走滑,本次地震便是维西—乔后断裂南段分支断裂右旋走滑活动的体现。  相似文献   

3.
利用欧洲空间局新发射的Sentinel-1A卫星获取的第1对同震SAR影像,采用30m×30m分辨率的ASTER GDEM数据去除地形效应,应用枝切法解缠,得到了2014年8月24日美国加利福尼亚州纳帕地震的地表同震形变场。为了获取最优同震形变场,对比使用了90m×90m分辨率的SRTM数据去除地形相位,以及最小费用流方法进行相位解缠。结果显示此次地震造成形变场在LOS方向(Line Of Sight)的最大抬升量和最大沉降量分别达到了0.1m和0.09m。基于获取的同震形变场,采用限制性最小二乘算法进行敏感性迭代拟合,获取了此次地震的断层滑动分布及部分震源参数。反演结果表明发震断层的走向为341.3°,倾角为80°,破裂以右旋走滑为主,平均滑动角为-176.38°,最大滑动量达0.8m,位于地表下约4.43km处。此次地震累计释放地震矩1.6×1018N·m,约合矩震级M_W6.14。  相似文献   

4.
喜马拉雅东构造结是研究青藏高原构造演化的关键地区,地震活动频繁。文中基于地震矩平衡理论,利用GPS资料与历史地震目录分析东构造结地区的地震矩亏损,继而评估该区未来的地震活动。结果表明:研究区总体的地震矩累积率高于青藏高原的平均水平,近200a内的累积总量达(1. 15±0. 03)×10~(22)N·m,明显高于地震矩的释放总量(5. 50±2. 54)×10~(21)N·m。而地震矩亏损量最高的主前缘断裂不丹段具备发生M_W8. 1以上地震的可能,那加山断裂及嘉黎断裂通麦段则不排除未来发生震级大于M_W7. 5与M_W7. 3地震的可能,其余断层发生强震(M_W7. 1以上)的概率相对较低。而对于米什米断层与主前缘断层东段,虽然察隅MS8. 6地震发生于此,但这2条断层未来的地震危险性仍不容忽视,且无论察隅地震发生于哪条断层,其复发周期均为660~1 030a。  相似文献   

5.
陈树  董彦芳  洪顺英  刘泰 《地震》2018,38(3):81-91
本文针对2016年11月25日在新疆阿克陶发生的地震, 用差分干涉测量技术(D-InSAR)对3种不同观测模式的升、 降轨数据进行处理, 提取了多视线向的同震形变场; 根据不同模式的LOS向形变量, 构建形变分解模型, 将其分解为垂直向形变量和沿断层走向形变量; 结合同震形变场特征与震源机制解, 采用单断层模型, 利用梯度下降法(SDM), 以Multi-LOS向形变进行约束, 反演了阿克陶地震的同震滑动分布特征。 研究结果表明, 升、 降轨LOS向同震形变场在发震断层两侧具有不同的形变特征, 发震断层走向近EW向; LOS向形变量分解表明, 此次地震破裂以右旋走滑为主; 滑动分布反演的形变残差介于0~5 cm之间, 发震断层的滑动量主要位于2~16 km深部, 最大滑动量可达1.02 m, 位于断层面深部5.83 km处, 最大滑动量处的滑动角为185.24°; 平均滑动角为181.32°, 平均滑动量为0.12 m; 滑动分布反演也证明该地震为右旋走滑破裂事件, 与LOS向形变分解结果一致; 当剪切模量μ=3.2 GPa时, 反演得到的地震矩震级约MW6.6。  相似文献   

6.
为分析2021年5月21日云南省漾濞MS6.4地震后震区应力变化对周围断层的影响,本文通过InSAR技术获得了漾濞地震的同震形变场,并联合小震分布数据建立断层破裂滑动模型,继而通过计算断层面上的同震库仑应力来评估此次地震对周边断层的影响,以便有效地分析地震破裂的时空解析度.结果显示:(1)在升降轨InSAR数据获得的精细同震形变场中,升轨最大视线向形变量约为5.00 cm,降轨最大视线向形变量约为7.80 cm;(2)余震精定位的主震震中为(99.89°E,25.67°N),震源深度为13.29 km,除主震之外震源深度主要集中在5—15 km;通过小震位置拟合出的发震断层走向为NW-SE(316.69°),断层倾角为88.56°,滑动角为177.97°;(3)基于InSAR同震形变场结果及小震拟合断层参数联合反演得到此次地震的断层滑动以右旋走滑为主,升轨断层最大滑动量为0.80 m,对应的深度为8.85 km,平均滑动量为0.22 m,矩震级为MW6.41;降轨的断层最大滑动量为0.30m,对应的深度为6.88 km,平均滑动量为0.05 ...  相似文献   

7.
2009年4月6日意大利L’Aquila地区发生了Mw6.3级地震,该地震造成了300余人的人员死亡.本文联合不同波长、不同入射倾角的升降轨Envisat和ALOS卫星的差分干涉数据对该地震进行震源机制解的反演研究.研究首先对卫星雷达影像进行二通差分干涉处理,获取了覆盖L' Aquila地震震区的完整InSAR同震形变场,然后结合四叉树和均匀采样方法对原始观测数据进行降采样.在此基础上,联合GPS形变观测数据,利用弹性半空间矩形和三角位错模型,以及断层自动剖分技术对断层面进行最优离散剖分,反演获取了发震断层的精确几何参数和最优断层滑动分布,结果显示分布式三角位错滑动模型能够很好地解释观测到的地表形变场.反演结果表明发震断层是一个以正倾滑为主兼有少量右旋走滑的盲断层;基于观测数据最优确定的断层单元的最短边长为0.4 km,最长边长为6.3 km;此次地震的滑动分布主要发生在5~14 km深度的范围内,最大滑移量为1.07 m,释放的能量为3.43×1018N·m(Mw6.32),与地震学的研究结果非常一致.  相似文献   

8.
基于单一断层模型,运用敏感性迭代拟合算法反演了汶川地震InSAR同震形变场,获得了断层滑动分布及部分震源参数.结果表明,倾角线性变换的单断层模型模拟的同震形变场与InSAR形变场吻合较好,且残差较小,平均残差为0.11 m;反演的滑动分布主要集中于地下0~20km,其中,汶川地区在震源深度附近有较大的滑动量,10~15 km深度最高可达7 m,地表滑动量却相对较小,平均值仅为2.5 m,平均滑动角均值约为121°;北川地区最大滑动量可达到10 m,平均滑动角均值约为109°;而青川地区10~15 km深度滑动量最高也达8 m,平均滑动角均值约为135°;滑动矢量图显示,沿SW-NE走向断层面的滑动方向以强烈的逆冲为主,兼有一定右旋走滑分量.反演矩张量为1.0×1021 N·m,矩震级达Mw8.0.  相似文献   

9.
北京时间2013年7月22日上午7:45分,甘肃省定西市岷县、漳县交界地区(34.5°N,104.2°E)发生了里氏6.6级地震,引发山体滑坡等地质灾害,造成了严重的人员伤亡和经济损失.本研究基于有限断层模型反演方法,利用远震P波数据(2 Hz)和SH波数据(1 Hz)反演得到了此次地震的震源破裂过程.其中,为了对数据的高频信息进行分析,我们改进了传统的震源时间函数,采用混合震源时间函数(包含高频和低频信息)对地震震源进行描述.研究发现,通过改进的震源时间函数,反演过程中数据的高频信息得到了很好的解释,反演结果与观测波形的拟合效果更好.从反演结果来看,此次地震的破裂分量主要以逆冲方式为主,起震深度在6 km左右;在起始破裂处有最大的滑移量,最大滑移量在0.65 m左右,此次地震释放的标量地震矩为1.3×10~(18)N·m,相当于矩震级为Mw6.1.根据滑动分布推断此次地震的主要应力降发生在震源附近,平均应力降约为1.5 MPa,应力释放相对较小.  相似文献   

10.
2016年1月21日青海省门源县发生M_S 6.4级地震,距离震中位置最近的已知断裂为位于其北侧7 km的冷龙岭断裂,该断裂晚第四纪以来主要表现为左旋走滑运动,局部兼具倾滑分量.但本次地震的震源机制解显示为逆冲型地震,与人们认知的冷龙岭断裂走滑运动性质有所差异.本研究利用Sentinel-1A数据获取了升降轨方向的形变场,形变场特征显示本次地震以逆冲为主,最大形变量在6 cm左右.以此数据为约束,采用两步法反演了发震断层参数,结果显示仅以InSAR数据为约束并不能唯一确定断层的倾向,因此本文对比了NE倾向和SW倾向等不同断层模型的反演结果,综合分析该地区的地质构造背景,认为SW倾向的断层模型更加合理,本次地震由冷龙岭北侧的弧形次生断层引起,发震断层面走向141°,倾向SW,倾角43°,平均滑动角为72.7°,最大滑动量为0.44 m,反演矩震级为M_W 6.0,震源深度10 km.该次生断层与冷龙岭断裂一起构成正花状构造,冷龙岭主干断层近直立插入基底,夹持部分形成隆起断块,推测本次地震是青藏高原向NW推挤生长,在压扭性作用下隆起断块的一种表现.  相似文献   

11.
综合利用强震数据、GPS数据和InSAR数据基于双断层模型反演熊本地震滑动分布,通过选择合理的介质模型和平滑因子,分别对数据进行单独反演和联合反演。从结果分析可以看出:三种数据联合反演的结果最优,最终滑动模型为:断层1走向为236°,倾角65°,滑动角-150.6°,最大滑动量为6m;断层2走向为206°,倾角72°,滑动角-155°,最大滑动量为4m。基于K-net和Kik-net获取永久位移快速反演得到的滑动分布结果与基于GPS数据,Sentinel-1A InSAR数据反演甚至联合反演得到滑动分布结果比较一致,表明大震后利用高密度强震动台网后快速获取滑动分布用于震后应急响应和灾害评估是切实可行的,同时认为此次地震发震断层为右旋走滑的断层系统。  相似文献   

12.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki&Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方,其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki&Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

13.
2015年9月17日6时54分32秒(北京时间)智利中部伊拉佩尔附近(震中31.57°S,71.67°W)发生了一次M_w8.3大地震,在此次地震震中以南约500 km处的马乌莱地区曾于2010年2月27日14时34分11秒发生过一次M_w8.8强震(震中36.12°S,72.90°W),两次地震余震分布区之间有约75 km的地震空区.本文利用远场体波与面波波形,基于有限断层模型,反演了这两次地震的震源破裂过程.结果显示这两次地震均为逆冲型大地震,2015年伊拉佩尔M_w8.3地震的平均滑动角度为107°,平均滑动量为2.43 m,平均破裂速度为1.82 km·s~(-1),标量地震矩为3.28×10~(21)Nm,95%的标量地震矩在104 s内得到了释放.最大滑动量约8 m,位于沿走向75 km,深度8 km处.2010年马乌莱M_w8.8地震的平均滑动角度为109°,平均滑动量为4.95 m,平均破裂速度1.90 km·s~(-1),标量地震矩为1.86×10~(22)Nm,95%的标量地震矩在121 s内得到了释放.最大滑动量约12.5 m,位于沿走向100 km,深度21 km处.2015年伊拉佩尔M_w8.3地震浅部更大的滑动量应该是其引起了较大海啸的一个原因.基于破裂滑动分布,我们计算了这两次地震引起的周边俯冲带上静态库仑应力变化,结果显示两次地震均显著增加了周边俯冲带上的库仑应力,2010年马乌莱地震使得2015.年伊拉佩尔地震震源区附近的库仑应力增加了(0.01~0.15)×10~5Pa,从应力积累的角度看,2010年马乌莱地震有利于2015年伊拉佩尔地震的发生,对后者的发生起到了促进作用.  相似文献   

14.
2009年4月6日意大利L'Aquila地区发生了Mw6.3级地震,该地震造成了300余人的人员死亡. 本文联合不同波长、不同入射倾角的升降轨Envisat和ALOS卫星的差分干涉数据对该地震进行震源机制解的反演研究. 研究首先对卫星雷达影像进行二通差分干涉处理,获取了覆盖L'Aquila地震震区的完整InSAR同震形变场,然后结合四叉树和均匀采样方法对原始观测数据进行降采样. 在此基础上,联合GPS形变观测数据,利用弹性半空间矩形和三角位错模型,以及断层自动剖分技术对断层面进行最优离散剖分,反演获取了发震断层的精确几何参数和最优断层滑动分布,结果显示分布式三角位错滑动模型能够很好地解释观测到的地表形变场. 反演结果表明发震断层是一个以正倾滑为主兼有少量右旋走滑的盲断层;基于观测数据最优确定的断层单元的最短边长为0.4 km,最长边长为6.3 km;此次地震的滑动分布主要发生在5~14 km深度的范围内,最大滑移量为1.07 m,释放的能量为3.43×1018 N·m(Mw6.32),与地震学的研究结果非常一致.  相似文献   

15.
2013年4月20四川省芦山县发生MS7.0级地震,目前的研究资料表明地震发生在龙门山断裂南段,但地表未发现明显破裂.本研究利用InSAR技术与Radarsat-2雷达数据,获取了芦山地震同震的部分形变场,结果表明,近场区域的LOS位移发生视线向隆升,量值在7 cm左右.随后利用弹性半空间的位错模型反演了断层面参数,综合反演结果及震源机制解最终确定了发震断层的初始模型,以形变场观测数据为约束,基于梯度下降法反演获得了断层面上的滑动分布,反演得到的矩震级为Mw6.45级,断层走向213°,倾角39°~43°,最大滑动位于地表以下约13 km深度位置,最大滑动量0.91 m,平均滑动角71°,整体上仍以逆冲滑动为主,兼具左旋走滑.推测在双石-大川断裂以东12 km处展布一条隐伏断裂,为本次的发震断裂.  相似文献   

16.
王阅兵  金红林  付广裕 《地震》2012,32(2):121-128
2008年5月12日,青藏高原东缘龙门山断裂带发生汶川MW7.9地震,该地震使得北川—映秀断裂、灌县—江油断裂发生了同震破裂。本文主要利用震后通过复测获得的GPS同震形变场,采用Yabuki&Matsu’ura反演计算方法和分段平面断层模型,反演了地震同震滑动分布。结果表明:映秀—北川主破裂带的断层错动,在映秀附近以逆冲滑动为主,而在北川以北,其走滑运动明显大于逆冲,这一结果与震后地质调查结果与通过地震波研究获得的断层破裂特征相一致;反演得到的最大滑动量达到9.3m和9.6m,分别对应于这次地震中地表破坏最为严重的北川和映秀地区;由所获得的滑动分布计算的地震矩为8.07×1020 N.m,对应的震级为MW7.9。研究结果初步显示,Yabuki&Matsu’ura反演方法可适用在内陆地震断层反演计算中。  相似文献   

17.
采用DInSAR技术和欧空局2014年新发射的Sentinel-1A/IW数据,获取了2015年4月25日尼泊尔M_W7.8地震的InSAR同震形变场.所用InSAR数据扫描范围东西长约500 km,南北宽约250 km,覆盖了整个变形区域,揭示了形变场的全貌及其空间连续变化形态.此次地震造成的地表形变场总体呈现为中部宽两端窄的纺锤形,从震中向东偏南约20°方向延伸,主要形变区东西长约160 km,南北宽约110 km,由规模较大的南部隆升区和规模较小的北部沉降区组成,南部最大LOS向隆升量达1.1 m,北部最大LOS向沉降量约在0.55 m.在隆升和沉降区之间干涉纹图连续变化,没有出现由于形变梯度过大或地表破裂而导致的失相干现象,表明地震断层未破裂到地表.基于InSAR形变场和部分GPS观测数据,利用弹性半空间低倾角单一断层面模型进行了滑动分布单独反演和联合反演,三种反演结果均显示出一个明显的位于主震震中以东的滑动分布集中区,向外围衰减很快,主要滑动发生于地下7~23 km的深度范围内.InSAR单独反演的破裂范围,特别是东西向破裂长度大于GPS单独反演的破裂长度,而InSAR单独反演的最大滑动量则低于GPS单独反演的滑动量.因此认为联合反演结果更为可靠.联合反演的破裂面长约150 km,沿断层倾向宽约70 km,最大滑移量达到4.39 m,矩震级为M_W7.84,与之前用地震波数据和GPS数据反演的结果一致.  相似文献   

18.
1997年11月8日西藏Mw7.5级玛尼地震是干涉雷达技术应用于地震观测以来的一次重要事件.在第一部分中,我们应用广泛使用的Okada线弹性位错模型,假设断层的各个分段滑动量均匀,反演得到断层各个分段的几何参数和均匀滑动量.本部分的反演进一步去除滑动均匀假设,并利用更能反映断层真实状态的角形元位错模型(线弹性),在第一部分反演得到断层几何的基础上,反演断层面的静态位错分布.反演结果表明,线弹性滑动分布模型能够更好地解释观测数据,进一步提高反演的数据拟合程度.最终得到了断层面上的走滑和倾滑位错分布.首次得到的断层面滑动分布显示断层面滑动在浅部(0~12 km)比较集中,地震破裂长度约170 km,最大左旋走滑位移达4.8 m;反演结果还表明局部段落存在较大倾滑位移,量值达到1.9 m,这在断层模型中是不能忽略的,它可能是断层两侧形变不对称的原因之一;反演得到的标量地震矩为2.18×1020 N·m,相当于矩震级Mw7.5,与Velasco等利用地震波形反演得到的结果一致.  相似文献   

19.
利用Sentinel-1A升轨和降轨数据,基于D-InSAR技术,获取2020年1月19日伽师MS6.4地震同震形变场,并结合其他研究机构给出的震源机制解参数和已有研究成果,反演得到伽师地震的发震断层几何特征和滑动分布。研究结果表明,伽师地震同震形变在地表有明显差异;升轨同震形变在卫星视线方向北侧抬升55 mm,南侧下降42 mm;降轨同震形变在卫星视线方面北侧抬升63 mm,南侧下降23 mm。通过反演得到发震断层走向为275°,倾角为20°,地震滑动主要分布在地下5 km处,最大滑动量约为0.32 m,平均滑动角为89.3°,累积地震矩为1.46×1018 N·m,合矩震级MW6.1,发震构造为具有少量走滑性质的逆冲断裂。从发震构造特征、同震滑动分布推测,伽师地震发震构造是柯坪塔格褶皱带滑脱面以上沉积盖层内的逆冲断裂,支持了柯坪推覆体的薄皮构造模型观点。  相似文献   

20.
2022年9月5日,在四川省甘孜州泸定县发生MS6.8地震.本研究收集区域台网震相数据、全球地震台网(GSN)、国际数字地震台网联盟(FDSN)与德国地学中心GEOFON台网的宽频带P波数据,利用双差定位、矩心矩张量解反演、有限断层波形反演和视震源时间函数分析等方法,分析了此次地震震源的基本特征.重定位结果显示,余震分布具有丛集性,3个地震丛分别集中在震中附近以及相距30 km左右的东南端和西北端,总体上西北端地震较浅,东南端地震较深.矩心矩张量反演表明,矩心位于29.55°N,102.14°E,深度16 km,释放地震矩1.0068×1019 N·m,相当于矩震级MW6.60,双力偶成分占88%,是一次近纯走滑的地震事件.结合余震分布可以断定,地震发生在走向163°、倾角77°(倾向西南),滑动角为-5°的断层面.有限断层反演显示,破裂区主要由两部分构成,破裂起始点及其周围是主要破裂区;另一破裂区位于其东南,总体表现为从西北向东南的单侧破裂,最大滑动量约1.4 m,位于起始破裂点附近.从矩心矩张量反演和有限断层反演得到...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号