首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data concerning the effects of high CO2 concentrations on marine organisms are essential for both predicting future impacts of the increasing atmospheric CO2 concentration and assessing the effects of deep-sea CO2sequestration. Here we review our recent studies evaluating the effects of elevated CO2 concentrations in seawater on the mortality and egg production of the marine planktonic copepod, Acartia steueri, and on the fertilization rate and larval morphology of sea urchin embryos, Hemicentrotus pulcherrimus and Echinometra mathaei. Under conditions of +10,000 ppm CO2 in seawater (pH 6.8), the egg production rates of copepods decreased significantly. The survival rates of adult copepods were not affected when reared under increased CO2 for 8 days, however longer exposure times could have revealed toxic effects of elevated CO2 concentrations. The fertilization rate of sea urchin eggs of both species decreased with increasing CO2 concentration. Furthermore, the size of pluteus larvae decreased with increasing CO2 concentration and malformed skeletogenesis was observed in both larvae. This suggests that calcification is affected by elevated CO2 in the seawater. From these results, we conclude that increased CO2 concentration in seawater will chronically affect several marine organisms and we discuss the effects of increased CO2 on the marine carbon cycle and marine ecosystem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Effects of CO<Subscript>2</Subscript> Enrichment on Marine Phytoplankton   总被引:1,自引:0,他引:1  
Rising atmospheric CO2 and deliberate CO2 sequestration in the ocean change seawater carbonate chemistry in a similar way, lowering seawater pH, carbonate ion concentration and carbonate saturation state and increasing dissolved CO2 concentration. These changes affect marine plankton in various ways. On the organismal level, a moderate increase in CO2 facilitates photosynthetic carbon fixation of some phytoplankton groups. It also enhances the release of dissolved carbohydrates, most notably during the decline of nutrient-limited phytoplankton blooms. A decrease in the carbonate saturation state represses biogenic calcification of the predominant marine calcifying organisms, foraminifera and coccolithophorids. On the ecosystem level these responses influence phytoplankton species composition and succession, favouring algal species which predominantly rely on CO2 utilization. Increased phytoplankton exudation promotes particle aggregation and marine snow formation, enhancing the vertical flux of biogenic material. A decrease in calcification may affect the competitive advantage of calcifying organisms, with possible impacts on their distribution and abundance. On the biogeochemical level, biological responses to CO2 enrichment and the related changes in carbonate chemistry can strongly alter the cycling of carbon and other bio-active elements in the ocean. Both decreasing calcification and enhanced carbon overproduction due to release of extracellular carbohydrates have the potential to increase the CO2 storage capacity of the ocean. Although the significance of such biological responses to CO2 enrichment becomes increasingly evident, our ability to make reliable predictions of their future developments and to quantify their potential ecological and biogeochemical impacts is still in its infancy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30–42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached −0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. −0.3 pH units during 30–42 day-long experiments.  相似文献   

4.
CO2-enriched seawater was far more toxic to eggs and larvae of a marine fish, silver seabream, Pagrus major, than HCl-acidified seawater when tested at the same seawater pH. Data on the effects of acidified seawater can therefore not be used to estimate the toxicity of CO2, as has been done in earlier studies. Ontogenetic changes in CO2 tolerance of two marine bony fishes (Pag. major and Japanese sillago, Sillago japonica) showed a similar, characteristic pattern: the cleavage and juvenile stages were most susceptible, whereas the preflexion and flexion stages were much more tolerant to CO2. Adult Japanese amberjack, Seriola quinqueradiata, and bastard halibut, Paralichthys olivaceus, died within 8 and 48 h, respectively, during exposure to seawater equilibrated with 5% CO2. Only 20% of a cartilaginous fish, starspotted smooth-hound, Mustelus manazo, died at 7% CO2 within 72 h. Arterial pH initially decreased but completely recovered within 1-24 h for Ser. quinqueradiata and Par. olivaceus at 1 and 3% CO2, but the recovery was slower and complete only at 1% for M. manazo. During exposure to 5% CO2, Par. olivaceus died after arterial pH had been completely restored. Exposure to 5% CO2 rapidly depressed the cardiac output of Ser. quinqueradiata, while 1% CO2 had no effect. Both levels of ambient CO2 had no effect on blood O2 levels. We tentatively conclude that cardiac failure is important in the mechanisms by which CO2 kills fish. High CO2 levels near injection points during CO2 ocean sequestration are likely to have acute deleterious effects on both larvae and adults of marine fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
To study the biological impacts of CO2 ocean sequestration on floating marine organisms, a full Eulerian-Eulerian scheme model has been developed in a large-eddy simulation (LES) version using one-way coupling of the equations of seawater flow to the transport equations of the bio-scalar variables. Special attention was paid to deriving the transport equation, involving non-conservative scalars to describe the degree of injury to floating organisms due to the change in the pH environment resulting from CO2 dissolution. The source terms of the transport equations of bio-scalar variables are based on experimental data on zooplankton activities affected by lower pH seawater, allowing construction of empirical sub-models of three kinds of floating marine organisms: Gaidius variabilis, Paraeuchaeta Birostrata, and Multi-organisms. An example is given to show the applicability of the model to the assessment of the biological impact of CO2 sequestration in the ocean. Given an initial CO2 droplet diameter of 8.0 mm and an injection rate of 1.0 kg/sec, the model simulation predicts that the zooplanktons lose approximately 90% of their activity when the lowest pH inside the plume decreases from 7.57 to 5.61. These injured zooplanktons then recovered gradually to their normal state within two hours due to dilution of the plume. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
An experiment was performed to determine the effect of injected CO2 on the deep-sea (3200 m) meiofaunal community in the Monterey Canyon. Approximately 20 L of liquid CO2 was added to each of three cylindrical corrals (PVC rings pushed into the seabed) that were arranged in a triangular array 10 m on a side. After a 30-day period, sediment cores were collected within an area exposed to the dissolution plume emanating from the CO2 pools and from a reference site approximately 40 m away; cores were also collected from within two of the CO2 corrals. Sediment cores were sectioned into 0–5, 5–10, and 10–20 mm layers. Abundances of major groups (harpacticoid copepods, nematodes, nauplii, kinorhynchs, polychaetes, and total meiofauna) were determined for each layer. CO2 exposure did not significantly influence the abundances or vertical distributions of any of the major taxa. However, other evidence suggests that abundance alone did not accurately reflect the effect of CO2 on meiofauna. We argue that slow decomposition rates of meiofaunal carcasses can mask adverse effects of CO2 and that longer experiments and/or careful examination of meiofaunal condition are needed to accurately evaluate CO2 effects on deep-sea meiofaunal communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Feasibility studies recently suggest that sequestration of anthropogenic CO2 in the deep ocean could help reduce the atmospheric CO2 concentration. However, implementation of this strategy could have a significant environmental impact on marine organisms. This has highlighted the urgent need of further studies concerning the biological impact of CO2 ocean sequestration. In this paper we summarize the recent literature reporting on the biological impact of CO2 and discuss the research work required for the future. Although fundamental research of the effect of CO2 on marine organisms before the practical consideration of CO2 ocean sequestration was limited, laboratory and field studies concerning biological impacts have been increasing after the first international workshop in 1991 discussing CO2 ocean sequestration. Acute impacts of CO2 ocean sequestration could be determined by laboratory and field experiments and assessed by simulation models as described by the following papers in this section. On the other hand, chronic effects of CO2 ocean sequestration, those directly related to the marine ecosystem, would be difficult to verify by means of experiments and to assess using ecosystem models. One of the practical solutions for this issue implies field experiments starting with controlled small scale and eventually to a large scale of CO2 injection intended to determine ecosystem alteration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We have carried out a series of in situ experiments to investigate the formation of a CO2 hydrate (CO2:5.75 H2O) for the purpose of evaluating scenarios for ocean fossil fuel CO2 disposal with a solid hydrate as the sequestered form. The experiments were carried out with a remotely operated vehicle in Monterey Bay at a depth of 619 m. pH measurements made in close proximity to the hydrate–seawater interface showed a wide range of values, depending upon the method of injection and the surface area of the hydrate formed. Rapid injection of liquid CO2 into an inverted beaker to form a flocculant mass of hydrate resulted in pH initially as low as 4.5 within a few centimeters of the interface, decaying slowly over 1–2 h towards normal seawater values as dense CO2 rich brine drained from the hydrate mass. In a second experiment, slower injection of the liquid CO2 to produce a simple two-layer system with a near planar interface of liquid CO2 with a thin hydrate film yielded pH values indistinguishable from the in situ ocean background level of 7.6. Both field and laboratory results now show that the dissolution rate of a mass of CO2 hydrate in seawater is slow but finite.  相似文献   

9.
We investigated the effects of seawater acidification induced by ocean CO2 sequestration on bathypelagic prokaryotes. We simulated acidification conditions by bubbling high-CO2 air or adding chemical buffer solutions to seawater samples in order to examine changes in total cell counts, heterotrophic production rate, direct viable cell count, and relative abundance of Bacteria and Archaea. Considerable suppression of prokaryotic activities was observed at pH 7.0 or lower, especially in samples enriched with organic matter. The relative abundance of Archaea increased with increasing CO2 concentration. We found that seawater acidification can potentially alter heterotrophic activities and community structure of bathypelagic prokaryotes.  相似文献   

10.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Due to the elevated atmospheric carbon dioxide, ocean acidification(OA) has recently emerged as a research theme in marine biology due to an expected deleterious effect of altered seawater chemistry on calcification. A system simulating future OA scenario is crucial for OA-related studies. Here, we designed an OA-simulated system(OASys) with three solenoid-controlled CO2 gas channels. The OASys can adjust the pH of the seawater by bubbling CO2 gas into seawaters via feedback systems. The OASys is very simple in structure with an integrated design and is new-user friendly with the instruction. Moreover, the OASys can monitor and record real-time pH values and can maintain pH levels within 0.02 pH unit. In a 15-d experiment, the OASys was applied to simulate OA in which the expected target pH values were 8.00, 7.80 and 7.60 to study the calcifying response of Galaxea fascicularis. The results showed daily mean seawater pH values held at pH 8.00±0.01, 7.80±0.01 and 7.61±0.01 over15 d. Correspondingly, the coral calcification of G. fascicularis gradually decreased with reduced pH.  相似文献   

12.
彭峰  唐梅  刘昱恒 《海洋科学》2013,37(9):77-81
基于室内物理模拟实验, 对长江沉积物进行淡水和海水环境下沉积物搬运过程碳释放通量实验模拟。结果表明, 模拟实验初期, 淡水和海水均为大气CO2的源, 但淡水CO2释放通量略高于海水;淡水、海水两种环境下, CH4释放通量均较小, 为弱释放-弱吸收过程。对两种环境下碳通量对比研究发现,Eh 值可能是造成淡水和海水环境下CO2通量差别的主要原因, 而pH 值可能对CO2通量差别的影响较小。两种环境下温室气体通量差别的具体原因仍需进一步研究。通过模拟对比试验, 旨在为系统地认识长江流域水库的温室效应与减排提供科学依据, 为我国清洁水电能源发展提供理论参考。  相似文献   

13.
An improved model is presented for the calculation of the solubility of carbon dioxide in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl, and SO42− in a wide temperature–pressure–ionic strength range (from 273 to 533 K, from 0 to 2000 bar, and from 0 to 4.5 molality of salts) with experimental accuracy. The improvements over the previous model [Duan, Z. and Sun, R., 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533K and from 0 to 2000 bar. Chemical Geology, 193: 257–271] include: (1) By developing a non-iterative equation to replace the original equation of state in the calculation of CO2 fugacity coefficients, the new model is at least twenty times computationally faster and can be easily adapted to numerical reaction-flow simulator for such applications as CO2 sequestration and (2) By fitting to the new solubility data, the new model improved the accuracy below 288 K from 6% to about 3% of uncertainty but still retains the high accuracy of the original model above 288 K. We comprehensively evaluate all experimental CO2 solubility data. Compared with these data, this model not only reproduces all the reliable data used for the parameterization but also predicts the data that were not used in the parameterization. In order to facilitate the application to CO2 sequestration, we also predicted CO2 solubility in seawater at two-phase coexistence (vapor–liquid or liquid–liquid) and at three-phase coexistence (CO2 hydrate–liquid water–vapor CO2 [or liquid CO2]). The improved model is programmed and can be downloaded from the website http://www.geochem-model.org/programs.htm.  相似文献   

14.
We observed unusually high levels (> 440 μatm) of carbon dioxide fugacity (fCO2) in surface seawater in the western subtropical North Pacific, the area where Subtropical Mode Water is formed, during summer 2015. The NOAA Kuroshio Extension Observatory moored buoy located in this region also measured high CO2 values, up to 500 μatm during this period. These high sea surface fCO2 (fCO2SW) values are explained by much higher normalized total dissolved inorganic carbon and slightly higher normalized total alkalinity concentrations in this region compared to the equatorial Pacific. Moreover, these values are much higher than the climatological CO2 values, even considering increasing atmospheric CO2, indicating a recent large increase in sea surface CO2 concentrations. A large seasonal change in sea surface temperature contributed to higher surface fCO2SW in the summer of 2015.  相似文献   

15.
彭鹏飞  马媛  史荣君  王迪  许欣  颜彬 《海洋科学》2022,46(10):140-149
根据2018年7月、11月和2019年1月、4月对广东考洲洋牡蛎养殖海域进行4个季节调查获得的pH、溶解无机碳(DIC)、水温、盐度、溶解氧(DO)及叶绿素a(Chla)等数据,估算该区域表层海水溶解无机碳体系各分量的浓度、初级生产力(PP)、表层海水CO2分压[p(CO2)]和海-气界面CO2交换通量(FCO2),分析牡蛎养殖活动对养殖区碳循环的影响。结果表明:牡蛎养殖区表层海水中Chla、DIC、HCO3PP显著低于非养殖区;养殖淡季表层海水中pH、DO、DIC、HCO3、和CO32–显著大于养殖旺季,养殖旺季的p(CO2)和FCO2显著大于养殖淡季。牡蛎养殖区表层海水夏季、秋季、冬季和春季的海-气界面CO2交换通量FCO2平均值分别是(42.04±9.56)、(276.14±52.55)、(–11.59±18.15)和(–13.02±6.71)mmol/(m2·d),冬季各站位FCO2值离散度较大,其中位数是–10.73mmol/(m2·d)。在全年尺度,表层海水p(CO2)及FCO2与水温呈显著正相关,与盐度呈显著负相关。在非养殖区,浮游植物光合作用可能对影响表层海水p(CO2)及FCO2起主导作用。养殖牡蛎钙化、呼吸作用等生理因素释放的CO2对表层海水p(CO2)及FCO2未产生显著影响。考洲洋养殖海域养殖旺季为CO2的源,养殖淡季整体为CO2的弱汇。  相似文献   

16.
The direct disposal of CO2 into the ocean interior represents a possible means to help mitigate rising levels of atmospheric CO2. Here, we use three different versions of an ocean general circulation model (OGCM) to simulate the direct injection of liquid CO2 near Tokyo. Our results confirm that direct injection can sequester large amounts of CO2 from the atmosphere when disposal is made at sufficient depth (80–100% of the carbon injected at 3000 m remains in the ocean after 500 years) but show that the calculated efficiency is rather sensitive to the choice of physical model. Moreover, we show, for the first time in an OGCM and under a reasonable set of economic assumptions, that sequestration effectiveness is quite high for even shallow injections. However, the severe acidification that accompanies injection and the impossibility of effectively monitoring injected plumes argue against the large-scale viability of this technology. Our coarse-grid models show that injection at the rate of 0.1 Pg-C/yr lowers pH near the site of injection by as much as 0.7–1.0 pH-unit. Such pH anomalies would be much larger in more finely gridded models (and in reality) and have potential to severely harm deep-sea organisms. We also show that, after several hundred years, one would effectively need to survey the entire ocean in order to accurately verify the inventory of injected carbon. These results suggest that while retention may be sufficient to justify disposal costs, other practical problems will limit or at best delay widespread deployment of this technology.  相似文献   

17.
CO2 currently accumulating in the atmosphere permeates into ocean surface layers, where it may impact on marine animals in addition to effects caused by global warming. At the same time, several countries are developing scenarios for the disposal of anthropogenic CO2 in the worlds' oceans, especially the deep sea. Elevated CO2 partial pressures (hypercapnia) will affect the physiology of water breathing animals, a phenomenon also considered in recent discussions of a role for CO2 in mass extinction events in earth history. Our current knowledge of CO2 effects ranges from effects of hypercapnia on acid-base regulation, calcification and growth to influences on respiration, energy turnover and mode of metabolism. The present paper attempts to evaluate critical processes and the thresholds beyond which these effects may become detrimental. CO2 elicits acidosis not only in the water, but also in tissues and body fluids. Despite compensatory accumulation of bicarbonate, acid-base parameters (pH, bicarbonate and CO2 levels) and ion levels reach new steady-state values, with specific, long-term effects on metabolic functions. Even though such processes may not be detrimental, they are expected to affect long-term growth and reproduction and may thus be harmful at population and species levels. Sensitivity is maximal in ommastrephid squid, which are characterized by a high metabolic rate and extremely pH-sensitive blood oxygen transport. Acute sensitivity is interpreted to be less in fish with intracellular blood pigments and higher capacities to compensate for CO2 induced acid-base disturbances than invertebrates. Virtually nothing is known about the degree to which deep-sea fishes are affected by short or long term hypercapnia. Sensitivity to CO2 is hypothesized to be related to the organizational level of an animal, its energy requirements and mode of life. Long-term effects expected at population and species levels are in line with recent considerations of a detrimental role of CO2 during mass extinctions in the earth's history. Future research is needed in this area to evaluate critical effects of the various CO2 disposal scenarios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In order to evaluate the environmental impact associated with sequestration of carbon dioxide in the deep sea, a free fall type field experimental device, the benthic chamber, was developed. In situ experiments to expose deep-sea communities to elevated concentrations of carbon dioxide (average of 20,000 ppm, 5,000 ppm and control) were carried out using this device 3 times, viz., in the winter of 2002 and in the spring and the summer of 2003, in the Kumano Trough at a depth of 2,000 m. In the long-term experiments (about two weeks in winter of 2002 and summer of 2003), the abundance of meiobenthos declined whereas that of bacteria increased under the condition of 20,000 ppm carbon dioxide compared with the control. Among meiofauna, the abundance of foraminifers at the same concentration of carbon dioxide became less than the control even in the short-term (3 days in spring of 2003) experiment, suggesting that organisms with a calcium carbonate exoskeleton are more sensitive to the raised concentration of carbon dioxide. The respiration rate of the benthic community exposed to 20,000 ppm was lower in the early stage of the experiment than in the latter half, whereas it was opposite under the condition of 5,000 ppm. The increase of biological activity in the 20,000 ppm exposure group is probably due to an increase of bacteria adapted to high carbon dioxide concentrations. The present results suggest that the influence of carbon dioxide on the deep-sea benthic ecosystem does not follow a simple, linear relationship with concentration.  相似文献   

19.
CO2是引起全球气候变暖的最重要温室气体。大气中过量CO2被海水吸收后将改变海水中碳酸盐体系的组成,造成海水酸化,危害海洋生态环境。本文采用局部近似回归法对2013年12月—2014年11月期间西沙海洋大气CO2浓度连续监测数据进行筛分,得到西沙大气CO2区域本底浓度。结果表明,西沙大气CO2区域浓度具有明显的日变化和季节变化特征。4个季节西沙大气CO2区域本底浓度日变化均表现为白天低、夜晚高,最高值405.39×10-6(体积比),最低值399.12×10-6(体积比)。西沙大气CO2区域本底浓度季节变化特征表现为春季和冬季高,夏季和秋季低。CO2月平均浓度最高值出现在2013年12月,为406.22×10-6(体积比),最低值出现在2014年9月,为398.68×10-6(体积比)。西沙大气CO2区域本底浓度日变化主要受本区域日照和温度控制。季节变化主要控制因素是南海季风和大气环流,南海尤其是北部海域初级生产力变化和海洋对大气CO2的源/汇调节作用。  相似文献   

20.
One proposal for ameliorating global warming is to sequester large amounts of carbon dioxide in the deep ocean, but the environmental consequences of sequestration for sediment-dwelling animals are poorly known. In a previous publication, we reported that ∼80% of benthic copepods were killed in an experimental release of CO2 off northern California at 3262 m. The effects of this release on nematodes are reported here. We examined samples of nematodes taken inside two ‘corrals’ into which CO2 was directly injected (providing an extreme endpoint for CO2 exposure) and taken near to and far from this CO2 source. After 30 days, pore-water pH was unchanged (∼7.8) at the sediment–water interface far (∼40 m) from corrals, but pH profiles were reduced by ∼0.75 near (∼2 m) corrals. Corral pH was highly acidic (5.4 in a measurement from a subsequent experiment). Fifty randomly selected nematodes from each of four vertical layers from the 14 cores were photographed. They were assigned to a tail group (based on morphology), and individual biovolume was estimated from measurements of body length and width. Although nematode abundance (expressed as total nematodes and by tail group) was not affected, length, width, and individual biovolume significantly differed between near and far samples. Median nematode biovolume examined across tail group and core layer increased by ∼48% inside and near corrals. Differences between near and corral samples were always less than differences between near and far samples. However, nematode length:width ratio did not differ between near and far, and the shapes of length, width, and biovolume frequency distributions were similar in all samples. We postulate that the nematode community throughout the upper 3 cm suffered a high rate of mortality after exposure to CO2, and that nematodes were larger because postmortem expansions in body length and width occurred. Decomposition rates were probably low and corpses did not disintegrate in 30 days. The observable effects of a reduction in pH to about 7.0 after 30 days were as great as an extreme pH reduction (5.4), suggesting that ‘moderate’ CO2 exposure, compared to the range of exposures possible following CO2 release, causes high mortality rates in the two most abundant sediment-dwelling metazoans (nematodes and copepods).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号