首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Abstract— Cooling rate experiments were performed on P‐free Fe‐Ni alloys that are compositionally similar to ordinary chondrite metal to study the taenite ? taenite + kamacite reaction. The role of taenite grain boundaries and the effect of adding Co and S to Fe‐Ni alloys were investigated. In P‐free alloys, kamacite nucleates at taenite/taenite grain boundaries, taenite triple junctions, and taenite grain corners. Grain boundary diffusion enables growth of kamacite grain boundary precipitates into one of the parent taenite grains. Likely, grain boundary nucleation and grain boundary diffusion are the applicable mechanisms for the development of the microstructure of much of the metal in ordinary chondrites. No intragranular (matrix) kamacite precipitates are observed in P‐free Fe‐Ni alloys. The absence of intragranular kamacite indicates that P‐free, monocrystalline taenite particles will transform to martensite upon cooling. This transformation process could explain the metallography of zoneless plessite particles observed in H and L chondrites. In P‐bearing Fe‐Ni alloys and iron meteorites, kamacite precipitates can nucleate both on taenite grain boundaries and intragranularly as Widmanstätten kamacite plates. Therefore, P‐free chondritic metal and P‐bearing iron meteorite/pallasite metal are controlled by different chemical systems and different types of taenite transformation processes.  相似文献   

2.
Three‐dimensional X‐ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pu?tusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase‐rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal‐sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post‐impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal‐rich and sulfide‐rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen‐rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F‐apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.  相似文献   

3.
Cooling rates are one of the few fundamental constraints on models of chondrule formation. In this study, we used Cu and Ga diffusion profiles in metal grains to determine the cooling rates of type I chondrules in the Renazzo CR2 chondrite. To improve previous estimations of cooling rates obtained using this method, we used CT scanning and serial polishing of our sections to analyze equatorial sections of large metal grains. Through the cores of these metal grains situated at the surface of chondrules, the cooling rates calculated range from 21 to 86 K h−1 for a peak temperature Tp ~ 1623–1673 K. A metal grain embedded in the core of a chondrule exhibits a cooling rate of 1.2 K h−1 at a Tp ~ 1573 K. We also measured Cu-Ga diffusion profiles from nonequatorial sections of metal grains and calculated a lower range of cooling rates of 15–69 K h−1 for Tp ~ 1473–1603 K compared to our results from equatorial sections. The high cooling rates inferred from the lightning model (several thousand K h−1) are clearly at odds with the values obtained in this work. The X-wind model predicts cooling rates (~6–10 K h−1) lower than most of our results. The cooling rates calculated here are in close agreement with those inferred from shock wave models, in particular for temperatures at which olivine crystallizes (from ~10 to several hundreds K h−1 between 1900 and 1500 K). However, the chemical compositions of metal grains in Renazzo are consistent with the splashing model, in which a spray of metal droplets originated from a partially molten planetesimal. Volatile siderophile element depletion is explained by evaporation before metal was engulfed within silicate droplets. Liquid metal isolated from the liquid silicate crystallized during cooling, reacted with the ambient gas, and then re-accreted within partially molten chondrules.  相似文献   

4.
We describe an smooth particle hydrodynamics (SPH) model for chemical enrichment and radiative cooling in cosmological simulations of structure formation. This model includes: (i) the delayed gas restitution from stars by means of a probabilistic approach designed to reduce the statistical noise and, hence, to allow for the study of the inner chemical structure of objects with moderately high numbers of particles; (ii) the full dependence of metal production on the detailed chemical composition of stellar particles by using, for the first time in SPH codes, the   Q ij   matrix formalism that relates each nucleosynthetic product to its sources and (iii) the full dependence of radiative cooling on the detailed chemical composition of gas particles, achieved through a fast algorithm using a new metallicity parameter ζ( T ) that gives the weight of each element on the total cooling function. The resolution effects and the results obtained from this SPH chemical model have been tested by comparing its predictions in different problems with known theoretical solutions. We also present some preliminary results on the chemical properties of elliptical galaxies found in self-consistent cosmological simulations. Such simulations show that the above ζ-cooling method is important to prevent an overestimation of the metallicity-dependent cooling rate, whereas the   Q ij   formalism is important to prevent a significant underestimation of the [α/Fe] ratio in simulated galaxy-like objects.  相似文献   

5.
In this paper we report on pd-sph , the new tree-sph code developed in Padua. The main features of the code are described and the results of a new and independent series of 1D and 3D tests are shown. The paper is mainly dedicated to the presentation of the code and to the critical discussion of its performance. In particular, great attention is devoted to the convergency analysis. The code is highly adaptive in space and time by means of individual smoothing lengths and individual time-steps. At present it contains both dark and baryonic matter, this latter in the form of gas and stars, cooling, thermal conduction, star formation, feedback from Type I and II supernovae, stellar winds, and ultraviolet flux from massive stars, and finally chemical enrichment. New cooling rates that depend on the metal abundance of the interstellar medium are employed, and the differences with respect to the standard ones are outlined. Finally, we show the simulation of the dynamical and chemical evolution of a disc-like galaxy with and without feedback. The code is suitably designed to study in a global fashion the problem of formation and evolution of elliptical galaxies, and in particular to feed a spectrophotometric code from which the integrated spectra, magnitudes and colours (together with their spatial gradients) can be derived.  相似文献   

6.
为了研制亚毫米波射电天文用超导SIS(超导 -绝缘体 -超导 )接收机 ,我们重点开展了如下研究 ,1 )Nb超导SIS结在其能隙频率附近的量子混频特性 ,及其结合高能隙超导薄膜 (NbTiN)和高电导率金属薄膜 (Al)分布结阵在 780 - 950GHz频率区间的量子混频特性 ;2 )亚毫米波超导混频器嵌入阻抗的数值和实验表征 ;3)高电流密度小面积Nb超导SIS结的制备和特性表征 ;4)一个 60 0 - 72 0GHz超导SIS混频器的研制和特性表征。本文详细介绍了相关的数值分析和实验测量结果。  相似文献   

7.
The internal intensity calibration of the Coronal Diagnostic Spectrometer (CDS) – Normal Incidence Spectrometer (NIS) is studied using the Arcetri diagnostic method. A large number of spectral lines observed by the CDS–NIS 1 and NIS 2 windows in a solar active region is analysed in order to determine the intensity calibration curve for both channels. The plasma diagnostic method developed in Arcetri allows the measurement of the correction factors to the preliminary CDS–NIS internal intensity calibration curves and the determination of the relative calibration between NIS 1 and NIS 2. A further correction factor of approximately three is found to be necessary for a correct intercalibration of the two wavelength windows. Also the NIS 2 second-order sensitivity is measured. The Arcetri diagnostic method proves to be a powerful tool for intensity calibration studies.  相似文献   

8.
Tiny refractory metal nuggets are mainly observed inside Ca, Al‐rich inclusions (CAIs) from chondritic meteorites and are commonly assumed to be condensates from a solar composition gas. However, recent detailed studies of metal nugget compositions and their comparison with predictions from condensation show that the observed abundance patterns are extremely difficult to achieve in this way. As a test for the proposed alternative, precipitation from a silicate liquid, we conducted melting experiments, in which nine different refractory metals (nugget components) were equilibrated with each other along with a CAI‐like liquid at reducing conditions. When quenched, minerals similar to those in CAIs formed from such liquids including refractory metal nuggets exhibiting compositions and appearances similar to those of the meteoritic nuggets. The run products and their comparison with a meteoritic nugget‐bearing CAI is evidence for formation of refractory metal nuggets during cooling of Ca, Al‐rich liquids at rates about 1000°/40 s (in the interval from 1900 to 900 °C). To achieve the formation of refractory metal nuggets and the textures observed in the host inclusions, during cooling the rate probably changed. Refractory metal nuggets apparently formed during quenching before spinel crystallized.  相似文献   

9.
Abstract— From April 24 to May 14, 2000, the Near Earth Asteroid Rendezvous (NEAR) Shoemaker mission's near infrared spectrometer (NIS) obtained its highest resolution data of 433 Eros. High signal‐to‐noise ratio NIS reflectance spectra cover a wavelength range of 800–2400 nm, with footprint sizes from 213 times 427 m to 394 times 788 m. This paper describes improvement in instrument calibration by remediation of internally scattered light; derivation of a “pseudo channel” for NIS at 754 nm using Multispectral Imager (MSI) Eros approach maps at 951 and 754 nm; synthesis of a 3127‐spectrum high‐resolution data set with the improved calibration and expanded wavelength coverage; and investigation of global and localized spectral variation with respect to mineralogy, composition, and space weathering of Eros, comparing the findings with previous analyses. Scattered light removal reduces the “red” slope of Eros spectra, though not to the level seen by telescopic observations. The pseudo channel completes sampling of Eros' 1 micron (Band I) absorption feature, enabling direct comparison of NIS data with other asteroid and meteorite spectra without additional scaling or correction. Following scattered light removal and wavelength range extension, the spectral parameters of average Eros plot well inside the S(IV) field of Gaffey et al. (1993) and are consistent with the L6 chondrite meteorite fields of Gaffey and Gilbert (1998). Although Eros shows no evidence of mineralogical heterogeneity, modest spectral variations correlate with morphologically and geographically distinct areas of the asteroid. Eros bright‐to‐dark spectral ratios are largely consistent with laboratory “space weathering” experiment results and modeling of space weathering effects. Eros brightness variation unaccompanied by significant spectral variation departs from “lunar‐type”—where band depths, slopes, and albedoes all correlate—and “Ida‐type”—where significant spectral variation is unaccompanied by corresponding brightness variation. The brightest areas on Eros—steep crater walls—have lesser spectral slope and deeper Band I, consistent with exposure of “fresher,” less space weathered materials. Bright crater slope materials have opx/(opx + olv) of 0.24–0.29 and may be more representative of the subsurface mineralogy than “average” Eros, which is probably affected by space weathering. The floors of the large craters Psyche and Himeros have lower albedo and contain the most degraded or altered looking materials. NIS spectra retain a “red” spectral slope at greater than 2 microns. The recalibrated and expanded NIS spectra show better agreements with mixing models based on space weathering of chondritic mixtures.  相似文献   

10.
Magnetic properties are sensitive proxies to characterize FeNi metal phases in meteorites. We present a data set of magnetic hysteresis properties of 91 ordinary chondrite falls. We show that hysteresis properties are distinctive of individual meteorites while homogeneous among meteorite subsamples. Except for the most primitive chondrites, these properties can be explained by a mixture of multidomain kamacite that dominates the induced magnetism and tetrataenite (both in the cloudy zone as single‐domain grains, and as larger multidomain grains in plessite and in the rim of zoned taenite) dominates the remanent magnetism, in agreement with previous microscopic magnetic observations. The bulk metal contents derived from magnetic measurements are in agreement with those estimated previously from chemical analyses. We evidence a decreasing metal content with increasing petrologic type in ordinary chondrites, compatible with oxidation of metal during thermal metamorphism. Types 5 and 6 ordinary chondrites have higher tetrataenite content than type 4 chondrites. This is compatible with lower cooling rates in the 650–450 °C interval for higher petrographic types (consistent with an onion‐shell model), but is more likely the result of the oxidation of ordinary chondrites with increasing metamorphism. In equilibrated chondrites, shock‐related transient heating events above approximately 500 °C result in the disordering of tetrataenite and associated drastic change in magnetic properties. As a good indicator of the amount of tetrataenite, hysteresis properties are a very sensitive proxy of the thermal history of ordinary chondrites, revealing low cooling rates during thermal metamorphism and high cooling rates (e.g., following shock reheating or excavation after thermal metamorphism). Our data strengthen the view that the poor magnetic recording properties of multidomain kamacite and the secondary origin of tetrataenite make equilibrated ordinary chondrites challenging targets for paleomagnetic study.  相似文献   

11.
Abstract— Shock defects in the most common silicate minerals of chondrites (olivine, pyroxenes and feldspars) have been investigated in detail, but there have been almost no studies of the shock defects in other components, like metal and sulfide. This probably stems from the fact that these latter phases are opaque in the optical microscope. The same reason explains why veins and melt pockets, which are constituted of microcrystalline or glassy phases (i.e., isotropic) are also poorly documented. We have investigated such phases by analytical transmission electron microscopy (ATEM) in two shocked chondrites, Tenham (L6) and Gaines County (H5). We have characterized shock defects in troilite very similar to those occurring in silicates (i.e., a mosaic texture and sets of straight and very narrow, ?10 nm, lamellae of amorphized FeS). There are many small regions in shocked chondrites that are composed of very fine grained (?1 μm) mixtures of metal and sulfide or of various silicates. They must result from local melting followed by a rapid cooling that prevented grain growth. We have determined the chemical compositions and the volume proportions of the tiny grains in these veins and melt pockets, which has allowed their temperature and pressure (T, P) history to be partially deciphered. Finally, we have observed a dense network of very narrow fractures (down to 10 nm) in the olivine and enstatite grains. These fractures are systematically filled with an amorphous (or cryptocrystalline) material that stems from the melt pockets and was injected when the fractures were opened by the rarefaction wave. This material was then quenched at the contact with the colder crystalline rims.  相似文献   

12.
Direct and indirect observational evidence leads to the conclusion that high-redshift QSOs did shine in the core of early-type protogalaxies during their main episode of star formation. Exploiting this fact, we derive the rate of formation of this kind of stellar system at high redshift by using the QSO luminosity function. The elemental proportions in elliptical galaxies, the descendants of the QSO hosts, suggest that the star formation was more rapid in more massive objects. We show that this is expected to occur in dark matter haloes, when the processes of cooling and heating are considered. This is also confirmed by comparing the observed submm counts with those derived by coupling the formation rate and the star formation rate of the spheroidal galaxies with a detailed model for their SED evolution. In this scenario SCUBA galaxies and Lyman-break galaxies are early-type protogalaxies forming the bulk of their stars before the onset of QSO activity.  相似文献   

13.
The Qingzhen (EH3) chondrite contains a population of spheroidal metal-sulfide nodules, which display textural evidence of reheating and melting. Evidence of metal sulfuration is also present, suggesting replacement of metal by sulfide during melting. This process has led to the nucleation of perryite along metal-sulfide interfaces. Gallium-bearing sphalerite and a Cu-sulfide of composition intermediate between chalcopyrite and cubanite occur as inclusions within the metal of some nodules. Other phases present are: kamacite, troilite, Ga-free sphalerite, niningerite, perryite, schreibersite, oldhamite, Cr-sulfide (minerals A and B), djerfisherite, SiO2, albite and enstatite. The Ga-bearing sphalerite may have formed by injection of molten sulfide droplets into the metal followed by subsolidus diffusion of Ga from the metal into the sulfide. The latter may occur because of Ga supersaturation in the metal during progressive sulfuration and its decreased affinity for the metal phase during cooling below the taenite-kamacite transition point.  相似文献   

14.
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe‐Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite‐taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr?1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe‐Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.  相似文献   

15.
We describe the cooling theory for isolated neutron stars that are several tens of years old. Their cooling differs greatly from the cooling of older stars that has been well studied in the literature. It is sensitive to the physics of the inner stellar crust and even to the thermal conductivity of the stellar core, which is never important at later cooling stages. The absence of observational evidence for the formation of a neutron star during the explosion of Supernova 1987A is consistent with the fact that the star was actually born there. It may still be hidden in the dense center of the supernova remnant. If, however, the star is not hidden, then it should have a low thermal luminosity (below ~1034 erg s?1) and a short internal thermal relaxation time (shorter than 13 yr). This requires that the star undergo intense neutrino cooling (e.g., via the direct Urca process) and have a thin crust with strong superfluidity of free neutrons and/or an anomalously high thermal conductivity.  相似文献   

16.
The radiation produced by the gas cooling behind a fast supernova remnant shock in the interstellar medium is capable of ionizing the undisturbed medium ahead of the shock wave. In this work I investigate the nonequilibrium evolution of these photoionized precursor regions by means of radiation-hydrodynamic simulations of supernova remnant evolution. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
Abstract— A new empirical cooling rate indicator for metal particles is proposed. The cooling rate indicator is based on the relationship between the size of the island phase in the cloudy zone, which abuts the outer taenite rim (clear taenite I), and the cooling rate of the host meteorite as obtained by conventional metallographic techniques. The size of the island phase was measured by high-resolution scanning electron microscopy (SEM) in 26 meteorites and decreases from 470 nm to 17 nm, while the cooling rate of the host meteorite increases from 0.5 K/Ma to 325 K/Ma. This island phase size vs. cooling rate relationship is independent of whether the host is an iron, stony-iron, or stony meteorite and can be used to estimate the low-temperature cooling rate of the host meteorite. The measurement of the size of the island phase in the cloudy zone can also be applied to a large number of meteorites.  相似文献   

18.
Abstract– We report Si concentrations in the metal phases of iron meteorites. Analyses were performed by secondary ion mass spectrometry using a CAMECA 1270 ion probe. The Si concentrations are low (0.09–0.46 μg g?1), with no apparent difference in concentration between magmatic and nonmagmatic iron meteorites. Coexisting kamacite and Ni‐rich metal phases have similar Si contents. Thermodynamic calculations show that Fe,Ni‐metal in equilibrium with silicate melts at temperatures where metal crystallizes should contain approximately 100 times more Si than found in iron meteorites in this work. The missing Si may either occur as tiny silicate inclusions in metal or it may have diffused as Si‐metal into surrounding silicates at low temperatures. In both cases, extensive low‐temperature diffusion of Si in metal is required. It is therefore concluded that low Si in iron meteorites is a result of subsolidus reactions during slow cooling.  相似文献   

19.
A high velocity radiative shock, or one moving into high-metallicity gas, provides an efficient means to generate a strong local UV photon field. The optical emission from the shock and precursor region is dominated by the photoionised gas, rather than by the cooling region, and the total optical + UV emission scales as the mechanical energy flux through the shock. In this paper, such models are applied to oxygen-rich supernova remnants and AGN. For AGN, the degree of magnetic support in the post-shock gas is an important parameter. LINER and cooling flow spectra can be understood as resulting from high velocity shocks without precursors, while Seyfert 1.5–2 galaxy emission line ratios result from high velocity shocks with their photoionised precursor HII regions. This model explains the problem of the high electron temperatures observed in both classes of object.  相似文献   

20.
Abstract— The purpose of this study is to examine, using light optical and electron optical techniques, the microstructure and composition of metal particles in ordinary chondritic meteorites. This examination will lead to the understanding of the low temperature thermal history of metal particles in their host chondrites. Two type 6 falls were chosen for study: Kernouvé (H6) and Saint Severin (LL6). In both meteorites, the taenite particles consisted of a narrow rim of high Ni taenite and a central region of cloudy zone similar to the phases observed in iron meteorites. The cloudy zone microstructure was coarser in Saint Severin than in Kernouvé due to the higher bulk Ni content of the taenite and the slower cooling rate, 3 K Ma?1 vs. 17 K Ma?1. Three microstructural zones were observed within the high Ni taenite region in both meteorites. The origin of the multiple zones is unknown but is most likely due to the high Ni taenite cooling into the two phase γ″ (FeNi) + γ′ (FeNi3) region of the low temperature Fe-Ni phase diagram. Another explanation may be the presence of uniform size antiphase boundaries within the high Ni taenite. Finally, abnormally wide high Ni taenite regions are observed bordering troilite. The wide zones are probably caused by the diffusion of Ni from troilite into the high Ni taenite borders at low cooling temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号