首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   

2.
Considering the importance of black carbon(BC), this study began by comparing the 20 th century simulation of South Asian summer climate in IPCC CMIP3, based on the scenario of models with and without BC. Generally, the multi-model mean of the models that include BC reproduced the observed climate relatively better than those that did not. Then, the 21st century South Asian summer precipitation was projected based on the IPCC CMIP3 projection simulations. The projected precipitation in the present approach exhibited a considerable difference from the multimodel ensemble mean(MME) of IPCC AR4 projection simulations, and also from the MME of the models that ignore the effect of BC. In particular, the present projection exhibited a dry anomaly over the central Indian Peninsula,sandwiched between wet conditions on the southern and northern sides of Pakistan and India, rather than homogeneous wet conditions as seen in the MME of IPCC AR4. Thus, the spatial pattern of South Asian summer rainfall in the future may be more complicated than previously thought.  相似文献   

3.
Considering the importance of black carbon (BC), this study began by comparing the 20th century simulation of South Asian summer climate in IPCC CMIP3, based on the scenario of models with and without BC. Generally, the multi-model mean of the models that include BC reproduced the observed climate relatively better than those that did not. Then, the 21st century South Asian summer precipitation was projected based on the IPCC CMIP3 projection simulations. The projected precipitation in the present approach exhibited a considerable difference from the multimodel ensemble mean (MME) of IPCC AR4 projection simulations, and also from the MME of the models that ignore the effect of BC. In particular, the present projection exhibited a dry anomaly over the central Indian Peninsula, sandwiched between wet conditions on the southern and northern sides of Pakistan and India, rather than homogeneous wet conditions as seen in the MME of IPCC AR4. Thus, the spatial pattern of South Asian summer rainfall in the future may be more complicated than previously thought.  相似文献   

4.
This paper applies the newest emission scenarios of the sulfur and greenhouse gases, namely IPCC SRES A2 and B2 scenarios, to investigate the change of the North China climate with an atmosphere-ocean coupled general circulation model. In the last three decades of the 21st century, the global warming enlarges the land-sea thermal contrast, and hence, causes the East Asian summer (winter) monsoon circulation to be strengthened (weakened). The rainfall seasonality strengthens and the summer precipitation increases significantly in North China. It is suggested that the East Asian rainy area would expand northward to North China in the last three decades of the 21st century. In addition, the North China precipitation would increase significantly in September. In July, August, and September, the interannual variability of the precipitation enlarges evidentlv over North China. implying a risk of flooding in the future.  相似文献   

5.
This study investigates projected changes in rainfall and temperature over Malaysia by the end of the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2, A1B and B2 emission scenarios using the Providing Regional Climates for Impacts Studies (PRECIS). The PRECIS regional climate model (HadRM3P) is configured in 0.22° × 0.22° horizontal grid resolution and is forced at the lateral boundaries by the UKMO-HadAM3P and UKMOHadCM3Q0 global models. The model performance in simulating the present-day climate was assessed by comparing the modelsimulated results to the Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset. Generally, the HadAM3P/PRECIS and HadCM3Q0/PRECIS simulated the spatio-temporal variability structure of both temperature and rainfall reasonably well, albeit with the presence of cold biases. The cold biases appear to be associated with the systematic error in the HadRM3P. The future projection of temperature indicates widespread warming over the entire country by the end of the 21st century. The projected temperature increment ranges from 2.5 to 3.9°C, 2.7 to 4.2°C and 1.7 to 3.1°C for A2, A1B and B2 scenarios, respectively. However, the projection of rainfall at the end of the 21st century indicates substantial spatio-temporal variation with a tendency for drier condition in boreal winter and spring seasons while wetter condition in summer and fall seasons. During the months of December to May, ~20-40% decrease of rainfall is projected over Peninsular Malaysia and Borneo, particularly for the A2 and B2 emission scenarios. During the summer months, rainfall is projected to increase by ~20-40% across most regions in Malaysia, especially for A2 and A1B scenarios. The spatio-temporal variations in the projected rainfall can be related to the changes in the weakening monsoon circulations, which in turn alter the patterns of regional moisture convergences in the region.  相似文献   

6.
How the “Best” Models Project the Future Precipitation Change in China   总被引:8,自引:0,他引:8  
Projected changes in summer precipitation characteristics in China during the 21st century are assessed using the monthly precipitation outputs of the ensemble of three “best” models under the Special Report on Emissions Scenarios (SRES) A1B, A2, and B1 scenarios. The excellent reproducibility of the models both in spatial and temporal patterns for the precipitation in China makes the projected summer precipitation change more believable for the future 100 years. All the three scenarios experiments indicate a consistent enhancement of summer precipitation in China in the 21st century. However, the projected summer precipitation in China demonstrates large variability between sub-regions. The projected increase in precipitation in South China is significant and persistent, as well as in North China. Meanwhile, in the early period of the 21st century, the region of Northeast China is projected to be much drier than the present. But, this situation changes and the precipitation intensifies later, with a precipitation anomaly increase of 12.4%–20.4% at the end of the 21st century. The region of the Xinjiang Province probably undergoes a drying trend in the future 100 years, and is projected to decrease by 1.7%–3.6% at the end of the 21st century. There is no significant long-term change of the projected summer precipitation in the lower reaches of the Yangtze River valley. A high level of agreement of the ensemble of the regional precipitation change in some parts of China is found across scenarios but smaller changes are projected for the B1 scenario and slightly larger changes for the A2 scenario.  相似文献   

7.
杜振彩  黄荣辉  黄刚 《大气科学》2010,34(6):1168-1186
本文根据政府间气候变化委员会 (IPCC) 第四次评估报告 (AR4) (简称IPCC-AR4) 中22个耦合模式对20世纪气候模拟 (20C3M) 结果中20世纪晚期亚洲夏季风降水的模拟所显示出各模式模拟能力的较大空间差异, 提出了一种滑动窗区空间相关系数来量化表征这种空间差异特征, 结果表明, 该系数明显优于传统空间相关系数, 其空间分布能够较为细致地描述各模式对较小区域模拟性能的空间差异特征。在此基础上, 本文提出以这种滑动窗区空间相关系数作为各模式的权重系数进行加权集合平均, 并称之为滑动窗区空间相关系数加权集合方法。利用该方法对IPCC-AR4 22个耦合模式所模拟的20世纪晚期亚洲夏季风降水进行加权集合平均, 并将其结果与传统空间相关系数加权集合平均以及等权重多模式集合平均结果进行比较, 表明了利用本文所提出的加权集合方法对20世纪晚期亚洲夏季风降水的集合模拟结果明显优于简单的等权重多模式集合平均结果以及传统空间相关系数加权集合平均结果。鉴于此原因, 本文利用此方法对在A1B (各种能源均衡发展) 排放情景下IPCC-AR4中22个耦合模式所模拟的21世纪各时期亚洲夏季风降水演变趋势进行集合预测。其结果表明: 在A1B排放情景下, 从21世纪中期 (2045~2065年) 开始南亚夏季风降水将比20世纪晚期明显增强; 而东亚夏季风降水相对于20世纪晚期的变化呈现出从南到北经向三极子型异常分布特征, 即华南和华北地区夏季风降水增多, 而长江流域夏季风降水相对于20世纪晚期没有太大变化。并且, 结果还表明亚洲夏季风降水异常这种变化趋势可以延续到21世纪晚期。  相似文献   

8.
Coupled Model Inter-comparison Project Phase 5 (CMIP5) model outputs of the South and East Asian summer monsoon variability and their tele-connections are investigated using historical simulations (1861-2005) and future projections under the RCP4.5 scenario (2006-2100). Detailed analyses are performed using nine models having better representation of the recent monsoon teleconnections for the interactive Asian monsoon sub-systems. However, these models underestimate rainfall mainly over South Asia and Korea-Japan sector, the regions of heavy rainfall, along with a bias in location of rainfall maxima. Indeed, the simulation biases, underestimations of monsoon variability and teleconnections suggest further improvements for better representation of Asian monsoon in the climate models. Interestingly, the performance of Australian Community Climate and Earth System Simulator version 1.0 (ACCESS1.0) in simulating the annual cycle, spatial pattern of rainfall and multi-decadal variations of summer monsoon rainfall over South and East Asia appears to more realistic. In spite of large spread among the CMIP5 models, historical simulations as well as future projections of summer monsoon rainfall indicate multi-decadal variability. These rainfall variations, displaying certain epochs of more rainfall over South Asia than over East Asia and vice versa, suggest an oscillatory behaviour. Teleconnections between South and East Asian monsoon rainfall also exhibit a multi-decadal variation with alternate epochs of strengthening and weakening relationship. Furthermore, large-scale circulation features such as South Asian monsoon trough and north Pacific subtropical high depict zonal oscillatory behaviour with east-west-east shifts. Periods with eastward or westward extension of the Mascarene High, intensification and expansion of the upper tropospheric South Asian High are also projected by the CMIP5 models.  相似文献   

9.
利用政府间气候变化专门委员会第四次评估报告(IPCCAR4)的15个耦合气候模式在不同排放情景下的模拟结果,对我国夏季降水及相关大气环流场的未来时空变化特征与模式之间的不确定性作了研究。结果表明,在全球变暖背景下,我国夏季降水表现出较强的局地特征。其中,我国东部和高原地区的降水在21世纪表现出明显的增加趋势,而且这种趋势随着变暖的加剧而增强,同时模式模拟结果之间的一致性也更好,表明这一结果的可信度较高。在全球变暖背景下,我国新疆南部地区表现为持续的降水减少趋势,而我国西南地区夏季降水的变化则呈现出先减少(21世纪初)后增加的特征,不同模式对降水这些局地特征的模拟也都表现出较好的一致性。其他地区夏季降水在21世纪的变化不大,同时模式模拟的一致性也较差。多模式模拟的我国未来百年夏季降水的这些变化特征在温室气体高、中、低不同排放情景下基本一致,A2情景预估结果变化最大,A1B次之,B1相对最小。东亚夏季大气环流场的预估结果显示,在全球变暖的背景下,大部分模式的模拟结果都表明,东亚夏季风环流有所增强,从而使得由低纬度大洋和南海地区向我国大陆的水汽输送增加,造成该地区大气含水量的增多,从而为我国东部地区夏季降水的增加提供有利条件。此外,随着全球变暖的加剧,西太平洋副热带高压持续增强,其变化对我国东部地区夏季降水的影响程度和范围也明显增大。这些环流场及其不确定性的分析结果进一步加强了我国夏季降水未来变化预估结果的可信度。  相似文献   

10.
We investigate the future changes of Asian-Australian monsoon (AAM) system projected by 20 climate models that participated in the phase five of the Coupled Model Intercomparison Project (CMIP5). A metrics for evaluation of the model’s performance on AAM precipitation climatology and variability is used to select a subset of seven best models. The CMIP5 models are more skillful than the CMIP3 models in terms of the AAM metrics. The future projections made by the selected multi-model mean suggest the following changes by the end of the 21st century. (1) The total AAM precipitation (as well as the land and oceanic components) will increase significantly (by 4.5 %/°C) mainly due to the increases in Indian summer monsoon (5.0 %/°C) and East Asian summer monsoon (6.4 %/°C) rainfall; the Australian summer monsoon rainfall will increase moderately by 2.6 %/°C. The “warm land-cool ocean” favors the entire AAM precipitation increase by generation of an east-west asymmetry in the sea level pressure field. On the other hand, the warm Northern Hemisphere-cool Southern Hemisphere induced hemispheric SLP difference favors the ASM but reduces the Australian summer monsoon rainfall. The combined effects explain the differences between the Asian and Australian monsoon changes. (2) The low-level tropical AAM circulation will weaken significantly (by 2.3 %/°C) due to atmospheric stabilization that overrides the effect of increasing moisture convergence. Different from the CMIP3 analysis, the EA subtropical summer monsoon circulation will increase by 4.4 %/°C. (3) The Asian monsoon domain over the land area will expand by about 10 %. (4) The spatial structures of the leading mode of interannual variation of AAM precipitation will not change appreciably but the ENSO-AAM relationship will be significantly enhanced.  相似文献   

11.
FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化   总被引:4,自引:2,他引:2  
利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。  相似文献   

12.
利用耦合模式比较计划(CMIP3)提供的20世纪气候模拟试验(20C3M)及A1B情景预估试验,讨论了全球增暖情景下21世纪中期中国气候的可能变化。结果表明,A1B情景下,中国夏季降水变化在-0.1~1.1mm/d,冬季降水变化在-0.2~0.2mm/d。模式对降水变化的预估存在较大不确定性。无论冬夏,预估的全国表面气温都将升高,升温幅度在1.2~2.8℃;随纬度升高,增暖幅度相应增大。模式对表面气温变化的预估能力强于对降水变化的预估能力。在A1B情景下,东亚夏季风增强,而冬季风则略为减弱,东亚夏季风雨带到达最北后南撤的时间较之20C3M滞后约一个月。  相似文献   

13.
德国马普研究所海气耦合摸式ECHAM4/OPYC3对东亚地区2 m温度年循环的模拟尽管有一些偏差,但还是相当成功的.其模拟的东亚夏季风偏弱,而冬季风偏强,此偏差可能与2 m温度以及西太平洋副热带高压模拟偏差有关.该模式模拟的东亚季风区夏季降水量偏弱,这与上述夏季风环流的模拟结果是一致的.该模式较好地抓住了华北地区经向环流和降水量的年循环特征.利用最新的温室气体和SO2排放方案,即政府间气候变化委员会(IPCC)排放方案特别报告(SRES)的A2和B2方案,通过该模式111年的积分结果讨论了东亚季风气候在21世纪后30年中的变化,其主要结果为:全球变暖导致夏季海陆温差增大和冬季海陆温差减弱,进而使东亚季风环流在夏季加强,冬季减弱.长江流域和华北地区的夏季降水量显著增强,而后者的增强更为显著,使得东亚季风区的夏季多雨区向北延伸;东亚季风区9月份的降水量在两个方案中都显著增加,说明在全球变暖条件下东亚季风区的多雨季节将延迟一个月.  相似文献   

14.
The South Asian High(SAH) is one of the most important components of the Asian summer monsoon system. To understand the ability of state-of-the-art general circulation models(GCMs) to capture the major characteristics of the SAH, the authors evaluate 18 atmospheric models that participated in the Coupled Model Intercomparison Project Phase 5/Atmospheric Model Intercomparison Project(CMIP5/AMIP). Results show that the multi-model ensemble(MME) mean is able to capture the climatological pattern of the SAH, although its intensity is slightly underestimated. For the interannual variability of the SAH, the MME exhibits good correlation with the reanalysis for the area and intensity index, but poor skill in capturing the east-west oscillation of the SAH. For the interdecadal trend, the MME shows pronounced increasing trends from 1985 to 2008 for the area and intensity indexes, which is consistent with the reanalysis, but fails to capture the westward shift of the SAH center. The individual models show different capacities for capturing climatological patterns, interannual variability, and interdecadal trends of the SAH. Several models fail to capture the climatological pattern, while one model overestimates the intensity of the SAH. Most of the models show good correlations for interannual variability, but nearly half exhibit high root-mean-square difference(RMSD) values. Six models successfully capture the westward shift of the SAH center in the interdecadal trends, while other models fail. The possible causes of the systematic biases involved in several models are also discussed.  相似文献   

15.
Summary South Asian summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models assessed as part of the Intergovernmental Panel on Climate Change Fourth Assessment. Out of the 22 models examined, 19 are able to capture the maximum rainfall during the summer monsoon period (June through September) with varying amplitude. While two models are unable to reproduce the annual cycle well, one model is unable to simulate the summer monsoon season. The simulated inter-annual variability from the 19 models is examined with respect to the mean precipitation, coefficient of variation, long-term trends and the biennial tendency. The model simulated mean precipitation varies from 500 mm to 900 mm and coefficient of variation from 3 to 13%. While seven models exhibit long-term trends, eight are able to simulate the biennial nature of the monsoon rainfall. Six models, which generate the most realistic 20th century monsoon climate over south Asia, are selected to examine future projections under the doubling CO2 scenario. Projections reveal a significant increase in mean monsoon precipitation of 8% and a possible extension of the monsoon period based on the multi-model ensemble technique. Extreme excess and deficient monsoons are projected to intensify. The projected increase in precipitation could be attributed to the projected intensification of the heat low over northwest India, the trough of low pressure over the Indo-Gangetic plains, and the land–ocean pressure gradient during the establishment phase of the monsoon. The intensification of these pressure systems could be attributed to the decline in winter/spring snowfall. Furthermore, a decrease of winter snowfall over western Eurasia is also projected along with an increase of winter snowfall over Siberia/eastern Eurasia. This projected dipole snow configuration during winter could imply changes in mid-latitude circulation conducive to subsequent summer monsoon precipitation activity. An increase in precipitable water of 12–16% is projected over major parts of India. A maximum increase of about 20–24% is found over the Arabian Peninsula, adjoining regions of Pakistan, northwest India and Nepal. Although the projected summer monsoon circulation appears to weaken, the projected anomalous flow over the Bay of Bengal (Arabian Sea) will support oceanic moisture convergence towards the southern parts of India and Sri Lanka (northwest India and adjoining regions). The ENSO-Monsoon relationship is also projected to weaken.  相似文献   

16.
Based on the simulations of 31 global models in CMIP5, the performance of the models in simulating the Hadley and Walker circulations is evaluated. In addition, their change in intensity by the end of the 21 st century(2080–2099) under the RCP4.5 and RCP8.5 scenarios, relative to 1986–2005, is analyzed from the perspective of 200 h Pa velocity potential.Validation shows good performance of the individual CMIP5 models and the multi-model ensemble mean(MME) in reproducing the meridional(zonal) structure and magnitude of Hadley(Walker) circulation. The MME can also capture the observed strengthening tendency of the winter Hadley circulation and weakening tendency of the Walker circulation. Such secular trends can be simulated by 39% and 74% of the models, respectively. The MME projection indicates that the winter Hadley circulation and the Walker circulation will weaken under both scenarios by the end of the 21 st century. The weakening amplitude is larger under RCP8.5 than RCP4.5, due to stronger external forcing. The majority of the CMIP5 models show the same projection as the MME. However, for the summer Hadley circulation, the MME shows little change under RCP4.5 and large intermodel spread is apparent. Around half of the models project an increase, and the other half project a decrease. Under the RCP8.5 scenario, the MME and 65% of the models project a weakening of the summer southern Hadley circulation.  相似文献   

17.
The mean evolution of the Asian summer monsoon and its interannual variability have been studied using three simulations (from 1961 to 1994) with the ECHAM4 General Circulation Model (GCM). The results have been compared with observational data and with two reanalyses data sets: the ECMWF Reanalysis (ERA) and the NCEP-NCAR Reanalysis. The South Asian summer monsoon (SASM) has been studied in terms of mean precipitation and circulation patterns. The model is successful in simulating the mean circulation of the SASM, though precipitation is generally weaker than observed in India, but closer to the observed values over the Indian Ocean and the Philippines. The ECHAM4 model also shows a capability to capture the interannual variability of the monsoon as it is measured by two different indices, the EIMR (Extended Indian Monsoon Rainfall) index and the DMI (Dynamical Monsoon Index). An analysis of NINO3 SSTA anomalies and of the Asian summer monsoon indices showed that the model is able to capture rather well the interdecadal variation of the correlation between them. A large ensemble of 25 members, forced with interannually varying SST from 1979 to 1993, has been used to test the potential predictability of the Indian summer monsoon and the dependence of the skill on the ensemble size. Results indicate that a minimum ensemble size of 16 members is needed to capture the variability of the monsoon indices.  相似文献   

18.
5个IPCC AR4全球气候模式对东北三省降水模拟与预估   总被引:3,自引:0,他引:3  
利用IPCC AR4中5个全球气候模式数据集和中国东北三省162个站降水实测资料,评估5个全球气候模式和多模式集合平均对中国东北三省降水的模拟能力,并对SRES B1、A1B和A2三种排放情景东北三省未来降水变化进行预估。结果表明:全球气候模式能较好再现东北三省降水的月变化,但存在系统性湿偏差;多模式集合平均能较好模拟东北三省年降水量的空间分布,但模拟中心偏北,强度略强,模式对东北三省夏季降水的模拟效果优于冬季降水;预估结果表明,三种排放情景下21世纪中前期和末期东北三省降水均将增多,21世纪末期增幅高于21世纪中前期,冬季增幅高于其他季节;就排放情景而言,SRES A1B和A2排放情景增幅相当,高于B1排放情景增幅;不同排放情景东北三省降水量增率分布呈较一致变化,A2排放情景下,增幅最显著的辽宁环渤海地区年降水量在21世纪中前期将增加7%以上,21世纪末期将增加16%。  相似文献   

19.
Climate change in the twenty-first century, projected by a large ensemble average of global coupled models forced by a mid-range (A1B) radiative forcing scenario, is downscaled to Climate Divisions across the western United States. A simple empirical downscaling technique is employed, involving model-projected linear trends in temperature or precipitation superimposed onto a repetition of observed twentieth century interannual variability. This procedure allows the projected trends to be assessed in terms of historical climate variability. The linear trend assumption provides a very close approximation to the time evolution of the ensemble-average climate change, while the imposition of repeated interannual variability is probably conservative. These assumptions are very transparent, so the scenario is simple to understand and can provide a useful baseline assumption for other scenarios that may incorporate more sophisticated empirical or dynamical downscaling techniques. Projected temperature trends in some areas of the western US extend beyond the twentieth century historical range of variability (HRV) of seasonal averages, especially in summer, whereas precipitation trends are relatively much smaller, remaining within the HRV. Temperature and precipitation scenarios are used to generate Division-scale projections of the monthly palmer drought severity index (PDSI) across the western US through the twenty-first century, using the twentieth century as a baseline. The PDSI is a commonly used metric designed to describe drought in terms of the local surface water balance. Consistent with previous studies, the PDSI trends imply that the higher evaporation rates associated with positive temperature trends exacerbate the severity and extent of drought in the semi-arid West. Comparison of twentieth century historical droughts with projected twenty-first century droughts (based on the prescribed repetition of twentieth century interannual variability) shows that the projected trend toward warmer temperatures inhibits recovery from droughts caused by decade-scale precipitation deficits.  相似文献   

20.
Projected Changes in Asian Summer Monsoon in RCP Scenarios of CMIP5   总被引:2,自引:0,他引:2       下载免费PDF全文
Responses of the Asian Summer Monsoon(ASM) in future projections have been studied based on two core future projections of phase five of the Coupled Model Intercomparison Project(CMIP5) coordinated experiments with the IAP-coupled model FGOALS_s2(the Flexible Global Ocean-Atmosphere-Land System Model).The projected changes of the ASM in climatological mean and interannual variability were respectively reported.Both the South Asian Summer Monsoon(SASM) and the East Asian Summer Monsoon(EASM) were intensified in their climatology,featuring increased monsoon precipitation and an enhanced monsoon lower-level westerly jet flow.Accordingly,the amplitude of the annual cycle of rainfall over East Asia(EA) is enhanced,thereby indicating a more abrupt monsoon onset.After the EA monsoon onset,the EASM marched farther northward in the future scenarios than in the historical runs.In the interannual variability,the leading pattern of the EASM,defined by the first multi-variable EOF analysis over EA,explains more of the total variances in the warmest future scenario,specifically,Representative Concentration Pathway(RCP8.5).Also,the correlation coefficients analysis suggests that the relationship between the EASM interannual variations and ENSO was significantly strengthened in the future projections,which may indicate improved predictability of the EASM interannual variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号