首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Are there some relationships among species diversity and soil chemical properties of high altitude natural grasslands? Plant community composition and chemical properties of soil samples were compared to investigate the relationship between soil and species diversity, and the richness in Tibetan alpine grasslands. Results showed that species diversity was significantly positively related to soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK) in the high alpine grasslands. Margalefs species richness index was also significantly positively related to SOM, TN, AN, and TP. Most soil chemical properties showed significantly positive correlation with species diversity and Margalef's richness index. Our results suggested that higher plant species richness index and diversity occurred in more fertile soil habitats in high altitude natural grassland community. In practice, fertilization management for the restoration of degraded grassland should be conducted with reference to the nutrient levels ofnatural grassland without the additional artificial fertilizer and with higher species-diversity and richness index.  相似文献   

2.
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-30 cm) showed no significant differences, while AP content in top soil (0-15 cm) was significantly higher than that in sub-top soil (15-30 cm). SOC content was correlated positively with TN and TP content (r = 0.901 and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.  相似文献   

3.
The wetlands on the Zoige Plateau have experienced serious degradation, with most of the original marsh being converted to marsh meadow or meadow. Based on the 3 wetland degradation stages, we determined the effects of wetland degradation on the structure and relative abundance of nitrogen-cycling (nitrogen-fixing, ammonia-oxidizing, and denitrifying) microbial communities in 3 soil types (intact wetland: marsh soil; early degrading wetland: marsh meadow soil; and degraded wetland: meadow soil) using 454-pyrosequencing. The structure and relative abundance of nitrogen-cycling microbial communities differed in the 3 soil types. Proteobacteria was the predominant phylum in most soil samples but the most abundant soil nitrogen-fixing and denitrifying microbial bacteria differed at the class, order, family, and genus levels among the 3 soil types. At the genus level, the majority of nitrogen-fixing bacterium sequences related to Bradyrhizobium were from marsh and marsh meadow soils; whereas those related to Geobacter originated from meadow soil. The majority of ammonia-oxidizing bacterium sequences related to Nitrosospira were from marsh (except for the 40-60 cm layer), marsh meadow and meadow soils; whereas those related to Candidatus Solibacter originated from 40-60 cm layer of marsh soil. The majority of denitrifying bacterium sequences related to Candidatus Solibacter and Anaeromyxobacter were from marsh and meadow soils; whereas those related to Herbaspirillum originated from meadow soil. The distribution of operational taxonomic units (OTUs) and species were correlated with soil type based upon Venn and Principal Coordinates Analysis (PCoA). Changes in soil type, caused by different water regimes were the most important factors influencing compositional changes in the nitrogen-fixing, ammonia-oxidizing, and denitrifying microbial communities.  相似文献   

4.
Amplicon sequencing of functional genes is a powerful technique to explore the diversity and abundance of microbes involved in biogeochemical processes. One such key process, denitrification, is of particular importance because it can transform nitrate(NO3-) to N2 gas that is released to the atmosphere. In nitrogen limited alpine wetlands, assessing bacterial denitrification under the stress of wetland desertification is fundamental to understand nutrients, especially nitrogen cycling in alpine wetlands, and thus imperative for the maintenance of healthy alpine wetland ecosystems. We applied amplicon sequencing of the nirS gene to analyze the response of denitrifying bacterial community to alpine wetland desertification in Zoige, China. Raw reads were processed for quality, translated with frameshift correction, and a total of 95,316 nirS gene sequences were used for rarefaction analysis, and 1011 OTUs were detected and used in downstream analysis. Compared to the pristine swamp soil, edaphic parameters including water content, organic carbon, total nitrogen, total phosphorous, available nitrogen, available phosphorous and potential denitrification rate were significantly decreased in the moderately degraded meadow soil and in severely degraded sandy soil. Diversity of the soil nirS-type denitrifying bacteria communities increased along the Zoige wetland desertification, and Proteobacteria and Chloroflexi were the dominant denitrifying bacterial species. Genus Cupriavidus(formerly Wautersia), Azoarcus, Azospira, Thiothrix, and Rhizobiales were significantly(P0.05) depleted along the wetland desertification succession. Soil available phosphorous was the key determinant of the composition of the nirS gene containing denitrifying bacterial communities. The proportion of depleted taxa increased along the desertification of the Zoige wetland, suggesting that wetland desertification created specific physicochemical conditions that decreased the microhabitats for bacterial denitrifiers and the denitrification related genetic diversity.  相似文献   

5.
Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%-70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic, accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es.  相似文献   

6.
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change.Using phospholipid fatty acids(PLFA),we investigated soil microbial community composition along an elevational gradient(3094~4131 m above sea level) on Mount Yajiageng,and we explored the impact of plant functional groups and soil chemistry on the soil microbial community.Except for Arbuscular Mycorrhizal fungi(AM fungi) biomarker18:2ω6,9 increasing significantly,other biomarkers did not show a consistent trend with the elevational gradient.Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 μmol per g organic carbon(OC),which had the maximum value at the highest site.Bacterial PLFAs exhibited a similar trend with total PLFAs,and its mean values ranged from0.82 to 1.81 μmol(g OC)~(-1).The bacterial to fungal biomass ratios had the minimum value at the highest site,which might be related to temperature and soil total nitrogen(TN).The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site.Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model.Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN.Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community,and the interaction between them had no impact on the soil microbial community maybe because long-term grazing greatly reduces litter.In sum,although there were obvious differences in soil microbial communities along the elevation gradient,there were no clear elevational trends found in general.Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community.Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.  相似文献   

7.
Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3–4.1 times that in 0.058mm ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex meyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of influencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation. Foundation item: Under the auspices of State Key Development Program for Basic Research of China (No. 2009CB421103), Key Program of National Natural Science Foundation of China (No. 40830535/D0101), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-BR-16, KSCX2-YW-N-46-06)  相似文献   

8.
Gully erosion has caused soil degradation and even reduced soil productivity.However,only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region of Northeast China are available.Thus,this study explores the relationships between gully erosion,gully filling and soil parameters.Two sets of soil samples were collected in the field at:(1) 72 sample points in the gully erosion study area,60 sample points in the ephemeral and classical gully erosion area(3,518 m2),12 sample points in the deposition zone(443 m2),(2)10 reference points along a slope unaffected by gully erosion representing the original situation before the gully was formed.All soil samples were analyzed for gravel content(GC),soil organic matter(SOM),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),and available potassium(AK).The soil property values on unaffected slope were fitted by the polynomial curves as the reference values in no gully erosion area.The interpolated soil property values in gully eroded study area were compared with these polynomial curves,respectively,and then,changes of soil property values were analyzed.Gully erosion caused an increase in GC and a decrease in SOM,TN,AN,AP and AK.The change of GC,SOM,TN,AN,AP,AK was 8.8%,-9.04 g kg-1,-0.92 g kg-1,-62.28 mg kg-1,-29.61 mg kg-1,-79.68 mg kg-1.The soil property values in the study area were below optimal values.Thus,we concluded that gully erosion and gully filling caused both on-site and off-site soil degradation.Soil degradation area was 0.65 % of the cultivated land.In addition,it was proved that gully filling were an improper soil and water conservation measure,which seems to exacerbate the problem.Thus,it is suggested that soil where soil is deep is moved to fill the gully,and then the area around the filled gullies should be covered by grass for preventing the formation and development of the gully.  相似文献   

9.
Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones (zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid (PLFA) are more abundant in the site with short flooding period (zone 3) than in the site with long flooding period (zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis (PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis (RDA) showed that available nitrogen (AN), total nitrogen (TN) and soil organic matter (SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.  相似文献   

10.
We evaluated the seasonal variation in plankton community composition in an artificial lake. We conducted microscopic analysis and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNAand 18S rRNAgenes to characterize the plankton community. The clustering of unweighted pair group method with arithmetic mean (UPGMA) was then used to investigate the similarity of these plankton communities. DGGE fingerprinting revealed that samples collected at the different sites within a season shared high similarity and were generally grouped together. In contrast, we did not observe any seasonal variation based on microscopic analysis. Redundancy analysis (RDA) of the plankton operational taxonomic units (OTUs) in relation to environmental factors revealed that transparency was negatively correlated with the first axis (R=-0.931), and temperature and total phosphorus (TP) were positively correlated with the first axis (R=0.736 and R=0.660, respectively). In conclusion, plankton communities in the artificial lake exhibited significant seasonal variation. Transparency, phosphorus and temperature appear to be the major factors driving the differences in plankton composition.  相似文献   

11.
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.  相似文献   

12.
The Zoige wetland is the biggest alpine wetland in the world,and an important water resource of the Yellow River.Due to natural and human factors,the Zoige wetland has been seriously degraded.Existing studies on the Zoige wetland mainly focus on the macro features of the wetland,while the influence of the surrounding faults on the Zoige wetland degradation is rarely studied.This study uses terrain data to analyze the cover change and the water loss caused by the Wqie-Seji fault based on the distributed hydrological model.The simulated water loss demonstrates that the Normalized Difference Vegetation Index(NDVI) is the most important factor for inducing water loss.The fault is also a factor that cannot be neglected,which has caused 33% of the wetland water loss.Therefore,it is of importance to study the influence of the fault on the wetland degradation.  相似文献   

13.
On the basis of the soil environment investigation in Da'an City, Jilin Province, China, 40 soil samples from main land use types were obtained and tested by standard method. Soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available P (AP) and available K (AK) were chosen as the evaluation factors. A regional soil nutrient evaluation model was developed based on the matter-element model. The results show that the soil samples with nutrient grade Ⅱ-Ⅴ respectively account for 10%, 30%, 32.5% and 27.5%, and those with grade Ⅳ and Ⅴ account for 60% in all samples. The relationship between soil nutrients and land types indicates that the nutrients of farmland are relatively good, with 41.7% of soil samples with the nutrient grade Ⅳ and Ⅴ. The nutrients of saline-alkali land and sandy land are the worst, with 100% of soil samples with the nutrient grade Ⅳ and Ⅴ. And the ratios of soil samples grade Ⅳ and Ⅴ in grassland and wasteland are respectively 62.5 % and 54.55%. Generally speaking, the soil nutrients status in Da'an City is poor, 60% of soil samples are in poor and extremely poor conditions, indicating that the soil has been severely eroded. Being a relatively superior evaluation method with more accurate resuits and spatial distribution consistency, matter-element analysis is more suitable for regional soil nutrient evaluation than previous models.  相似文献   

14.
Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) was used to assess the effect of seasonal shifts and vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer > autumn > spring > winter). The bacteria/fungi PLFAs and G (+) /G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.  相似文献   

15.
In this study, the sequencing of 16S ribosomal DNA was used to characterize the soil bacterial community composition and diversity in Liaohe estuarine wetland. Soil samples were taken from different locations in the wetland dominated by reed. Moreover, the soil quality parameters were evaluated (pH, moisture, organic matter, total nitrogen, available nitrogen, total phosphorus, available phosphorus). The results showed that the organic matter and nutrient contents were significantly higher in irrigated wetland than those in natural wetland. Major phylogenic groups of bacteria in soil samples including Proteobacteria, Acidobacteria, Gemmatimonadetes, Actinobacteria and Cyanobacteria were analyzed and we found that Proteobacteria was the most abundant in the community, and the phylum Acidobacteria was more abundant in irrigated wetland. Beta diversity analyses indicated that the soil bacterial community was mainly affected by sampling sites rather than seasons. In general, the bacterial community in natural wetland was not significantly different with that in artificial irrigated wetland. Artificial hydraulic engineering irrigated according to the water requirement rule of reed, increased the production of reeds, changed the way of wetland soil material input, but the diversity of bacterial community kept stable relatively.  相似文献   

16.
To investigate the spatio-temporal and compositional variation of selected water quality parameters and understand the purifying effects of wetland in Fujin National Wetland Park(FNWP), China, the trophic level index(TLI), paired samples t-test and correlation analysis were used for the statistical analysis of a set of 10 water quality parameters. The analyses were based on water samples collected from 22 stations in FNWP between 2014 and 2016. Results initially reveal that total nitrogen(TN) concentrations are above class V levels(2 mg/L), total phosphorus(TP) concentrations are below class Ⅲ levels(0.2 mg/L), and that all other parameters fall within standard ranges. Highest values for TN, pH, and Chlorophyll-a were recorded in 2016, while the levels of chemical oxygen demand(COD_(Mn)) and biochemical oxygen demand(BOD5) were lowest during this year. Similarly, TN values were highest between 2014 and 2016 while dissolved oxygen(DO) concentrations were lowest in the summer and TP concentrations were highest in the autumn. Significant variations were also found in Secchi depth(SD), TN, CODMn(P 0.01), TP, and DO levels(P 0.05) between the inlet and outlet of the park. High-to-low levels of TN, TP, and TDS were found in cattails, reeds, and open water(the opposite trend was seen in SD levels). Tested wetland water had a light eutrophication status in most cases and TN and TP removal rates were between 7.54%–84.36% and 37.50%–70.83%, respectively. Data also show no significant annual changes in water quality within this wetland, although obvious affects from surrounding agricultural drainage were nevertheless recorded. Results reveal a high major nutrient removal efficiency(N and P). The upper limits of these phenomena should be addressed in future research alongside a more efficient and scientific agricultural layout for the regions in and around the FNWP.  相似文献   

17.
Biotic indicators have been widely used to monitor wetland health. However, few studies have explicitly evaluated if plant diversity could serve as a useful community-level indicator of wetland stability, especially when wetlands are confronted with anthropogenic perturbations. Based on three-year record of wetland plant species abundance in Napahai plateau wetland, Shangri-la under the influence of varying anthropogenic perturbation types, our study tests the impact of such perturbations on plant richness and the relationship between ecosystem temporal stability and plant richness, and further assesses the effectiveness of using plant diversity indicator to probe ecosystem temporal stability of Napahai plateau wetland and the potential mechanisms. The results showed that anthropogenic perturbations could have contributed significantly to realistic variation in plant diversity, and further demonstrated that ecosystem temporal stability was positively related to realistic variation in plant diversity. In particular, communities with high levels of diversity might have better capacity to dampen perturbation impacts than communities with low levels of diversity, and statistical averaging could have played an important role in causing greater stability in more diverse communities. Also, asynchrony might have a stabilizing effect on community stability, and diversity could have stabilized communities through both species asynchrony and population stability propagation. Therefore, our results suggest that plant diversity could be used as a useful indicator of the stability conditions of plateau wetland ecosystems confronted with anthropogenic perturbations, and the preservation of plant communities at sufficient abundance and diversity is necessary for maintaining healthy plateau wetlands and for sustaining their essential ecosystem functions and services.  相似文献   

18.
《山地科学学报》2020,17(6):1398-1409
Soil microbial communities and enzyme activities play key roles in soil ecosystems. Both are sensitive to changes in environmental factors,including seasonal temperature, precipitation variations and soil properties. To understand the interactive mechanisms of seasonal changes that affect soil microbial communities and enzyme activities in a subtropical masson pine(Pinus massoniana) forest, we investigated the soil microbial community structure and enzyme activities to identify the effect of seasonal changes on the soil microbial community for two years in Jinyun Mountain National Nature Reserve, Chongqing, China. The soil microbial community structure was investigated using phospholipid fatty acids(PLFAs). The results indicated that a total of 36 different PLFAs were identified, and 16:0 was found in the highest proportions in the four seasons, moreover, the total PLFAs abundance were highest in spring and lowest in winter. Bacteria and actinomycetes were the dominant types in the study area. Seasonal changes also had a significant(P 0.05) influence on the soil enzyme activity. The maximum and minimum values of the invertase and catalase activities were observed in autumn and winter, respectively. However, the maximum and minimum values of the urease and phosphatase acid enzymatic activities were found in spring and winter, respectively. Canonical correspondence analysis(CCA) analysis revealed that the seasonal shifts in soil community composition and enzyme activities were relatively more sensitive to soil moisture and temperature, but the microbial community structure and enzyme activity were not correlated with soil pH in the study region. This study highlights how the seasonal variations affect the microbial community and function(enzyme activity)to better understand and predict microbial responses to future climate regimes in subtropical area.  相似文献   

19.
The alpine wetlands in QTP(Qinghai-Tibetan Plateau) have been profoundly impacted along with global climate changes. We employ satellite datasets and climate data to explore the relationships between alpine wetlands and climate changes based on remote sensing data. Results show that: 1) the wetland NDVI(Normalized Difference Vegetation Index) and GPP(Gross Primary Production) were more sensitive to air temperature than to precipitation rate. The wetland ET(evapotranspiration) across alpine wetlands was greatly correlated with precipitation rate. 2) Alpine wetlands responses to climate changes varied spatially and temporally due to different geographic environments, variety of wetland formation and human disturbances. 3) The vegetation responses of the Zoige wetland was the most noticeable and related to the temperature, while the GPP and NDVI of the Qiangtang Plateau and Gyaring-Ngoring Lake were significantly correlated with both temperature and precipitation. 4) ET in the Zoige wetland showed a significantly positive trend, while ET in Maidika wetland and the Qiangtang plateau showed a negative trend, implying wetland degradation in those two wetland regions. The complexities of the impacts of climate changes on alpine wetlands indicate the necessity of further study to understand and conserve alpine wetland ecosystems.  相似文献   

20.
An artificial oyster shell reef was deployed in Rongcheng Bay, East China. However, the effects of this reef on the surrounding macrobenthic communities were unknown. We compared sedimentary factors, macrobenthic biomass, abundance, and community composition and ecological indicators between the reef and non-reef areas over a one year period. The mean values for chlorophyll a (Chl a), total organic matter (TOM), total organic carbon (TOC), and total nitrogen (TN) content in surface sediments in the reef area were slightly higher than those in the non-reef area. The Chl a levels differed significantly between the two areas, but the TOM, TOC, and TN were not significantly different. The abundance of crustaceans was significantly different between the two areas, but the abundance and biomass ofpolychaetes, echinoderms, mollusk did not differ significantly. The permutational multivariate analysis of variance (PERMANOVA) revealed that the macrobenthic community differed significantly through time and analysis of similarity multivariate analyses (ANOSIM) revealed that the macrobenthic community differed significantly in some months. The ecological indicators revealed that the environmental quality of the reef area was slightly better than that of the non-reef area. Overall, our results suggest that the artificial oyster shell reef may change the macrobenthic community and the quality of the environment. Despite the lack of an effect in the short term, long-term monitoring is still needed to evaluate the effects of artificial oyster shell reefs on macrobenthic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号