首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.  相似文献   

2.
Primary productivity of ecosystem is important indicator about ecological assessment. Remote sensing technology has been used to monitor net primary productivity (NPP) of ecological system for several years. In this paper, the remotely sensed NPP simulation model of alpine vegetation in Qinghai Province of Tibet Plateau was set up based on the theory of light use efficiency. Firstly a new approach based on mixed pixels and Support Vector Machine (SVM) algorithm were used to correct simulated NPP values derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Finally, spatial distribution and monthly variation characteristics of NPP in Qinghai Province detail. The result showed in 2006 were analyzed in that NPP of vegetation in Qinghai Province in 2006 ranged from o to 422 gC/m2/a and the average NPP was 151 gC/m2/a. NPP gradually increased from northwest to southeast. NPP of different vegetation types were obviously different. The average NPP of broad-leaved forest was the largest (314 gC/m2/a), and sparse shrub was the smallest (101 gC/m2/a). NPP in Qinghai Province significantly changed with seasonal variation. The accumulation of NPP was primarily in the period (from April to September) with better moist and heat conditions. In July, the average NPP of vegetation reached the maximum value (43 gC/m2). In our model, the advantage of traditional LUE models was adopted, and our study fully considered typicalcharacteristics of alpine vegetation light use efficiency and environmental factors in the study area. Alpine vegetation is the most important ecological resource of Tibet Plateau, exactly monitoring its NPP value by remote sensing is an effective protection measure.  相似文献   

3.
Forest net primary productivity (NPP) is a key parameter for forest monitoring and management. In this study, monthly and annual forest NPP in the northeastern China from 1982 to 2010 were simulated by using Carnegie-Ames-Stanford Approach (CASA) model with normalized difference vegetation index (NDVI) sequences derived from Advanced Very High Resolution Radiometer (AVHRR) Global Invento y Modeling and Mapping Studies (GIMMS) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products. To address the problem of data inconsistency between AVHRR and MODIS data, a per-pixel unary linear regres- sion model based on least ~;quares method was developed to derive the monthly NDVI sequences. Results suggest that estimated forest NPP has mean relative error of 18.97% compared to observed NPP from forest inventory. Forest NPP in the northeastern China in- creased significantly during the twenty-nine years. The results of seasonal dynamic show that more clear increasing trend of forest NPP occurred in spring and awmnn. This study also examined the relationship between forest NPP and its driving forces including the climatic and anthropogenic factors. In spring and winter, temperature played the most pivotal role in forest NPR In autumn, precipitation acted as the most importanl factor affecting forest NPP, while solar radiation played the most important role in the summer. Evaportran- spiration had a close correlation with NPP for coniferous forest, mixed coniferous broadleaved forest, and broadleaved deciduous forest. Spatially, forest NPP in the Da Hinggan Mountains was more sensitive to climatic changes than in the other ecological functional re- gions. In addition to climalie change, the degradation and improvement of forests had important effects on forest NPP. Results in this study are helpful for understanding the regional carbon sequestration and can enrich the cases for the monitoring of vegetation during long time series.  相似文献   

4.
准确认识三江源植被生产力月度尺度的时空格局变化,对三江源畜牧业生产以及生态保护政策制定具有重要意义,可稳定获取的重访周期为4 d的16 m分辨率GF-1/WFV数据使中等空间分辨率的月度NPP产品生产成为可能。本文建立了一套以GF-1/WFV为基本数据源的中等空间分辨率草地月度NPP估算技术方法,并评估了其在三江源地区应用的可行性。在黄河源区玛多县的实验表明以GF-1/WFV为基础,以MODIS13Q1数据为补充,可以获得覆盖全区的中等空间分辨率月度NDVI数据,据其反演得到的草地NPP,地面验证精度在70%以上,优于MODIS NPP产品精度,且能更为详细地反映草地生产力变化的空间差异,在青海三江源地区利用GF-1/WFV数据生产中等空间分辨率的草地月度NPP产品是可行的。  相似文献   

5.
Northeast China has experienced frequent droughts over the past fifteen years. However, the effects of droughts on net primary productivity (NPP) in Northeast China remain unclear. In this paper, the droughts that occurred in Northeast China between 1999 and 2013 were identified using the Standardized Precipitation Evapotranspiration Index (SPEI). The NPP standardized anomaly index (NPP-SAI) was used to evaluate NPP anomalies. The years of 1999, 2000, 2001, and 2007 were further investigated in order to explore the influence of droughts on NPP at different time scales (3, 6, and 12 months). Based on the NPP-SAI of normal areas, we found droughts overall decreased NPP by 112.06 Tg C between 1999 and 2013. Lower temperatures at the beginning of the growing season could cause declines in NPP by shortening the length of the growing season. Mild drought or short-term drought with higher temperatures might increase NPP, and weak intensity droughts intensified the lag effects of droughts on NPP.  相似文献   

6.
福建省森林生态系统NPP的遥感模拟与分析   总被引:1,自引:0,他引:1  
利用MODIS遥感影像,结合气象资料等数据,采用BEPS过程模型对2004年福建省的森林生态系统植被净初级生产力(NPP)进行了模拟验证。研究结果表明,2004年福建省森林生态系统NPP平均值为578.97gC/m2·a,NPP总量累计达到46.18×106tC;不同林地NPP全年平均值大小依次为:竹林≈阔叶林>杉木>马尾松,其值分别为:788.6gC/m2·a,780.0gC/m2·a,519.8gC/m2·a,437.3gC/m2·a;时空分析结果表明,2004年6-8月NPP形成较为明显的"坑"形分布形态,主要的原因之一很可能是有效降水量偏少;在空间分布上,福建省森林生态系统NPP与海拔高程显著相关,体现了该地区森林生态系统NPP空间分布的地域特征,这在一定程度上表明随着海拔上升,山高坡陡,人类对森林生态系统的干扰活动减少,有助于森林生态系统生产力的提高和维持。最后,分析了应用BEPS过程模型模拟福建省森林生态系统净初级生产力的不确定性问题。  相似文献   

7.
本研究旨在探讨1983-2008 年间印度植被净初级生产力(NPP)的时空变化格局及其与温度降水的关系。基于遥感数据和GLOPEM-CEVSA模型估算区域植被NPP,利用分段线性回归,分析了过去26年印度植被NPP的时空格局与变化特征。结果表明:(1)过去26年间印度植被年均NPP为414.29 gC·m-2·a-1,森林、农田和草地的NPP平均值分别为1002.32、485.98和631.39 gC·m-2·a-1。(2)分段线性回归结果显示,1983-2008 年间,印度植被总平均NPP呈先上升后下降的趋势,趋势转折点在1996年。占印度面积比例最大的农田植被类型的平均NPP也呈先上升后下降的趋势,趋势转折点在1996年,与总平均NPP的趋势转折点一致。(3)在空间上,印度大部分地区,发生了趋势转折,趋势转折点集中在1991-2000年间,大部分地区NPP在趋势转折点前呈上升趋势,其后呈下降趋势,与区域平均NPP的变化趋势一致。(4)印度西北部干旱地区植被NPP与温度呈负相关,与降水呈正相关。喜马拉雅山南部森林NPP则与温度呈正相关。降雨量较大的印度南部地区NPP与降水呈负相关。  相似文献   

8.
准格尔旗植被覆盖度变化的时间序列遥感监测   总被引:3,自引:0,他引:3  
准格尔旗2000年开始实施退耕还林、沙漠治理政策已逾10年,了解准格尔旗植被恢复现状及存在的问题,对于制定更加合理的环境治理政策、实现环境和经济的可持续发展具有重要意义[1]。本研究基于准格尔旗地区1990、2000和2011年3个时间序列的Landsat TM/ETM+遥感影像,通过选取3个时期植被与裸地的NDVI值,代入像元二分法模型中,反演得到3个时期的植被覆盖度,并且通过研究准格尔旗3期植被覆盖度的时空变化特征、近21年的准格尔旗植被覆盖度转移矩阵、植被恢复/退化状况及驱动力,定量分析了该地区近21年植被覆盖度的时序变化和空间分布特征。研究结果表明:准格尔旗近21年植被覆盖度显著增加,平均覆盖度由1990年的15.53%上升到2000年的17.82%,以及2011年的29.30%;准格尔旗的大部分区域植被呈恢复状态,局部区域呈现退化现象;准格尔旗的植被覆盖度变化特征受降雨因素影响不显著,准格尔旗近21年植被覆盖度的显著提高主要得益于2000年之后的一系列植被恢复工程。  相似文献   

9.
黄河三角洲是我国重要的土地后备资源集中分布区,对黄河河口滩地的开垦成为了保持山东省乃至全国耕地动态平衡的关键。本文以东营市、垦利县、河口区和利津县作为研究区,利用6期(1984、1995、2000、2004、2008和2010年)TM影像,对黄河三角洲地区的耕地资源动态变化和耕地年龄进行了遥感监测和推定,并利用熵权法以植被指数(EVI和MSAVI)、植被覆盖度(Fv)和温度植被干燥指数(TVDI)为指标因子的耕地生产能力指数构建了评价模型。研究结果表明:在1984-2010年的26年时间里,研究区的耕地动态变化显著,新垦耕地面积达到77 362.33hm2,大部分来源于草地的开垦。其中,耕地年龄在8-12年期间的新垦耕地面积最多,占了新垦耕地面积的34.47%;研究区新垦耕地的生产能力指数呈现随着耕作时间的增加而增加的趋势,耕作时间在2-4年之内的新垦耕地平均生产能力指数,仅有传统耕地平均指数的67.66%;研究区传统耕地的生产能力指数大体上也在随着耕作时间的增加而提高,传统耕地在2010年的平均生产能力指数比1984年提高了76.51%。  相似文献   

10.
基于NDVI时空序列数据,利用GLOPEM-CEVSA模型,本文估算并分析了长江源区1997-2012年植被覆盖度及植被净初级生产力时空变化特征,并在此基础上评估了生态工程实施前、后长江源区宏观生态状况变化。结果表明:工程实施后,长江源区宏观生态状况显著好转,植被覆盖度及植被净初级生产力明显增加。从多年平均值来看,工程实施后,植被覆盖度好转区域面积占植被区总面积的72.10%,净初级生产力增加区域面积占植被区总面积的73.82%;从变化趋势来看,植被覆盖度好转区域面积净增加13.02%,植被净初级生产力好转区域面积净增加24.62%。工程实施前后相比,各流域宏观生态状况恢复程度具有差异,其中楚玛尔河源头植被覆盖度上升最明显,通天河流域植被净初级生产力上升最明显。长江源区宏观生态状况的好转受益于气候的湿润化及生态工程的共同影响,若要全面有效改善仍需持续努力。  相似文献   

11.
长江三角洲城市化地区植被初级生产力的时空变化研究   总被引:1,自引:0,他引:1  
城市化过程对植被初级生产具有重要影响。以往研究主要集中于城市用地扩张对植被初级生产力的直接影响分析,而较少关注其间接效果。本文以长江三角洲地区为例,分别从地区尺度和城市尺度分别分析了2000-2013年植被初级生产力的时空变化,探讨了其与气温、降水量及城市建成区绿化覆盖率的关系。研究表明:地区尺度上,2000-2013年长江三角洲植被初级生产力呈现不断增加,其中城市建成区植被初级生产力呈现显著增加的趋势(P<0.05);城市尺度上,城市建成区内植被初级生产力主要呈现增加的趋势,而其外围缓冲区内则与此相反。在当前气候变化背景下,这可能与城市建成区绿化覆盖率不断增加,及快速的城市扩张有关。  相似文献   

12.
The Revised Universal Soil Loss Equation(RUSLE) was applied to assess the spatial distribution and dynamic properties of soil loss with geographic information system(GIS) and remote sensing(RS) technologies.To improve the accuracy of soil-erosion estimates,a new C-factor estimation model was developed based on land cover and time series normalized difference vegetation index(NDVI) datasets.The new C-factor was then applied in the RUSLE to integrate rainfall,soil,vegetation,and topography data of different periods,and thus monitor the distribution of soil erosion patterns and their dynamics during a 30-year period of the upstream watershed of Miyun Reservoir(UWMR),China.The results showed that the new C-factor estimation method,which considers land cover status and dynamics,and explicitly incorporates within-land cover variability,was more rational,quantitative,and reliable.An average annual soil loss in UWMR of 25.68,21.04,and 16.80 t ha-1a-1was estimated for 1990,2000 and 2010,respectively,corroborated by comparing spatial and temporal variation in sediment yield.Between 2000 and 2010,a 1.38% average annual increase was observed in the area of lands that lost less than 5 t ha-1a-1,while during 1990-2000 such lands only increased on average by 0.46%.Areas that classified as severe,very severe and extremely severe accounted for 5.68% of the total UWMR in 2010,and primarily occurred in dry areas or grasslands of sloping fields.The reason for the change in rate of soil loss is explained by an increased appreciation of soil conservation by developers and planners.Moreover,we recommend that UWMR watershed adopt further conservation measures such as terraced plowing of dry land,afforestation,or grassland enclosures as part of a concerted effort to reduce on-going soil erosion.  相似文献   

13.
Thirteen-year satellite-derived data are used to investigate the temporal variability of net primary production (NPP) in the Oman upwelling zone and its potential forcing mechanisms. The NPP in the Oman upwelling zone is characterized by an abnormal decrease during El Ni o events. Such an NPP decrease may be related to El Ni o-driven anomalous summertime weak wind. During the summer following El Ni o, the anomalous northeasterly wind forced by southwest Indian Ocean warming weakens the southwest monsoon and warms the Arabian Sea. The abnormal wind weakens the coastal Ekman transport, offshore Ekman pumping and horizontal advection, resulting in reduced upward nutrient supply to the euphotic zone. A slightly declining trend in NPP after 2000 associated with a gradual decrease in surface monsoon winds is discussed.  相似文献   

14.
An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems will be m0re sensitive t0 future climate change c0mpared t0 0thers, 0ur 0bjectives were t0 investigate the impacts 0f climate change 0n variati0n in vegetati0n c0ver in the Qilian M0untains (QLM), China, between 2000 and 2011. T0 acc0mplish this, we used linear regressi0n techniques 0n 250-m MODIS N0rmalized Difference Vegetati0n Index (NDVI) datasets and mete0r0l0gical rec0rds t0 determine spati0temp0ral variability in vegetati0n c0ver and climatic fact0rs (i.e. temperature and precipitati0n). Our results sh0wed that temperatures and precipitati0n have increased in this regi0n during 0ur study peri0d. In additi0n, we f0und that gr0wing seas0n mean NDVI was mainly distributed in the vertical z0ne fr0m 2,700 m t0 3,600 m in elevati0n. In the study regi0n, we 0bserved significant p0sitive and negative trends in vegetati0n c0ver in 26.71% and 2.27% 0f the vegetated areas. C0rrelati0n analyses indicated that rising precipitati0n fr0m May t0 August was resp0nsible f0r increased vegetati0n c0ver in areas with p0sitive trends in gr0wing seas0n mean NDVI. H0wever, there was n0 similar significant c0rrelati0n between gr0wing seas0n mean NDVI and precipitati0n in regi0ns where vegetati0n c0ver declined thr0ugh0ut 0ur study peri0d. Using spatial statistics, we f0und that veeetati0n c0ver freauentlvdeclined in areas within the 2,500-3,100 m vertical z0ne, where it has steep sl0pe, and is 0n the sunny side 0f m0untains. Here, the p0sitive influences 0f increasing precipitati0n c0uld n0t 0ffset the drier c0nditi0ns that 0ccurred thr0ugh warming trends. In c0ntrast, in higher elevati0n z0nes (3,900-4,500 m) 0n the shaded side 0f the m0untains, rising temperatures and increasing precipitati0n impr0ved c0nditi0ns f0r vegetati0n gr0wth. Increased precipitati0n als0 facilitated vegetati0n gr0wth in areas experiencing warming trends at l0wer elevati0ns (2,000-2,400 m) and 0n l0wer sl0pes where water was m0re easily c0nserved. We suggest that spatial differences in variati0n in vegetati0n as the result 0f climate change depend 0n l0cal m0isture and thermal c0nditi0ns, which are mainly c0ntr0lled by t0p0graphy (e.g. elevati0n, aspect, and sl0pe), and 0ther fact0rs, such as l0cal hydr0l0gy.  相似文献   

15.
Forest cover change in the mountainous region is driven by a variety of anthropogenic and natural factors.The Hindu Kush-Himalayan Mountains has experienced a considerable vegetation cover change due to intensive human activities,such as population growth,proximate causes,accessibility,unstable political situations,government policy failure and poverty.The present study seeks to find out the impact of population growth and road network expansion on forest cover of Palas valley based on remotely sensed data and employing geospatial techniques.Changes in forest cover were determined by classifying time-series satellite images of Landsat and Sentinel 2 A.The images of October 1980,2000,2010 and 2017 were classified into six land cover classes and then the impact of population growth and accessibility on forest cover was analyzed.Furthermore,forest cover and land-use change detection map was prepared using classified images of 1980 and 2017.The data were collected mainly from field visits(ground verification),census reports,Communication and Works Department,Kohistan.Satellite imageries were obtained from the United States Geological Survey’s websites and classified in ERDAS imagine 2014 and ESRI ArcGIS 10.2.1 using supervised classification-maximum likelihood algorithm.Result of this study revealed that a substantial reduction in forest cover has taken place mainly in the proximity of human settlements.On the average,during the study period,annually more than 460 hectares of forest area has been converted into other uses.  相似文献   

16.
近20年黄土高原土地利用/覆被变化特征分析   总被引:5,自引:0,他引:5  
本文根据黄土高原地区20世纪80年代末、2000年、2008年3期土地利用/覆被空间数据集,计算2个时段(20世纪80年代末-2000年,2000-2008年)土地利用/覆被转类方向及其幅度、土地利用/覆被转类指数、土地利用/覆被状况指数及其变化率,分析黄土高原地区自20世纪80年代末以来土地利用/覆被时空变化特征以及宏观生态状况的变化趋势。结果显示:黄土高原地区近20年来平均土地利用/覆被状况指数为24.07,其中土石山区生态系统综合功能最好,其次为河谷平原区,最差的为农灌区。20世纪80年代末-2000年,黄土高原地区主要土地利用/覆被转类是森林和草地转为耕地,生态级别由高级向低级转移,2000-2008年主要土地利用/覆被转类是耕地转为林地和草地,低覆盖草地转为中高覆盖草地,生态级别由低级向高级转移。近20年来黄土高原地区地覆被状况指数变化以及土地利用/覆被转类指数表明,该区域的宏观生态状况总体上经历了转差(20世纪80年代末-2000年土地利用/覆被转类指数为-1.08),后转好(2000-2008年土地利用/覆被转类指数为2.66)2个过程。这一变化过程前期受区域气候变化以及人口增长共同驱动,后期则叠加了生态工程的影响。  相似文献   

17.
为揭示生态环境脆弱性的时空分异和驱动因子,本研究在山江海视角下,以桂西南喀斯特-北部湾海岸带为典型研究区,运用空间主成分分析法,地理探测器模型,结合生态环境脆弱性综合指数,系统分析桂西南喀斯特-北部湾海岸带生态环境脆弱性的时空分异特征及驱动机制。结果表明:① 研究区2008、2013、2018年脆弱性指数分别为0.54、0.61、0.69,多年平均值为0.61,整体处于中度脆弱,在空间上,由城市中心向四周逐渐降低的趋势;在时间上,生态环境脆弱等级呈微恶化趋势; ② 在单因子作用中6个驱动因子对生态环境脆弱性的解释力强度为汛期降雨量(0.457)>植被覆盖度(0.384)>高温季节温度(0.311)>废水入海量(0.248)>NPP(0.184)>人口密度(0.036)。在多因子交互中,只有汛期降水量和NPP, NPP和高温季节温度、废水入海量和NPP呈非线性增强,其余的交互作用均为双线性增强,而且汛期降水量和植被覆盖度的单因子影响较强,交互作用后影响也是最强(0.679),说明了汛期降水量和植被覆盖度为该区域的主要驱动因子。  相似文献   

18.
1 Introduction Vegetation is an important component of terrestrial eco- system, it plays an important role in global matter and energy cycle, carbon balance and climate change. CO2 has effects on global warming, photosynthesis function, Net Primary Productivity (NPP) and earth environmental condition. NPP is one of the important biophysical variables of vegetation activity, and is a beginning link of biogeochemical carbon cycle. Vegetation absorbs CO2 from atmosphere through photosynthesi…  相似文献   

19.
Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate the NPP of plant communities in Hengduan Mountains area of China, and to explore the relationship between NPP and altitude in this region. We examined the mechanisms underlying vegetation growth responses to climate change and quantitatively assessed the effects of ecological protection measures by partitioning the contributions of climate change and human activities to NPP changes. The results demonstrated that: 1) the average total and annual NPP values over the years were 209.15 Tg C and 468.06 g C/(m2·yr), respectively. Their trend increasingly fluctuated, with spatial distribution strongly linked to altitude(i.e., lower and higher NPP in high altitude and low altitude areas, respectively) and 2400 m represented the marginal altitude for vegetation differentiation; 2) areas where climate was the main factor affecting NPP accounted for 18.2% of the total research area, whereas human activities were the primary factor influencing NPP in 81.8% of the total research area, which indicated that human activity was the main force driving changes in NPP. Areas where climatic factors(i.e., temperature and precipitation) were the main driving factors occupied 13.6%(temperature) and 6.0%(precipitation) of the total research area, respectively. Therefore, the effect of temperature on NPP changes was stronger than that of precipitation; and 3) the majority of NPP residuals from 2001 to 2014 were positive, with human activities playing an active role in determining regional vegetation growth, possibly due to the return of farmland back to forest and natural forest protection. However, this positive trend is decreasing. This clearly shows the periodical nature of ecological projects and a lack of long-term effectiveness.  相似文献   

20.
1INTRODUCTIONIrrigated ricefieldsarecharacterizedbylargespatialandtemporalvariationsin CH4 emissiontotheatmo-sphere.Accordingly,thereisagreatuncertaintyintheestimate ofCH4 emissionsfromricefields.GreateffortshavebeenmadetoestimatetheCH4 emissionsfromricefieldsandseveralapproacheshavebeendeveloped.TherepresentativemethodsincludetheIPCC(Inter-governmentPanelofClimateChange)region-specificemissionfactormethodandthemodelcalculationmethod.Toimprovethecalculationaccuracy,theIPCCmethodreq…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号