首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of ammonium (NH4 +), nitrate + nitrite (NO3 ?), total Kjeldahl nitrogen (TKN), soluble reactive phosphate (SRP), and total suspended solids (TSS) was measured in a freshwater tidal bayou located in a marsh system near the mouth of the Atchafalaya River in Louisiana. Sampling was conducted six times over one year and was timed to assess effects of seasonal variation in river flow and mean sea level of the Gulf of Mexico on material fluxes. Net fluxes of all materials were large and ebb directed in all seasons except fall, when net transport was 2 to 3 orders-of-magnitude smaller than in any other season. These results demonstrate that riverine forcing was the primary influence on materials transport in all seasons except fall when tidal forcing was most important. The range of net fluxes (g s?1) for each nutrient was as follows (a negative sign indicates a net export toward the Gulf): NO3 ?, ?0.006 to ?6.69; TKN, 0.09 to ?10.41; NH4 +, ?0.02 to ?1.36; SRP, ?0.001 to ?0.53; TSS, ?2 to ?81. Analysis of nutrient concentrations indicated the marsh/aquatic system removed NO3 ?, SRP, and TSS from the water column from late spring through early fall and released NH4 + and TKN in summer. The results of this study show that net materials export per unit cross section channel area increased as riverine influence increased.  相似文献   

2.
The lower reaches of the Coatzacoalcos River in southeast Mexico is an area of intense industrial development. The physico-chemical characteristics of the area have exhibited differences over the years. Apparently from the associated outcroppings of limestone in the Uxpanapa River Basin, the major elements that are dissolved show higher concentrations of Ca, Mg and HCO3 in the waters supplied by this river. The water in the Calzadas River contains high concentrations of Ca, SO4 and HCO3 that are associated with the saline domes crossed by this river. Due to industrial discharges, the sulfate concentration is very high in the water and air during April. Nitrate concentration diminishes with salinity. Higher nitrate as well as nitrite and ammonia levels are present during flood season. Phosphate concentration, associated with high oxygen levels, is higher in January. Zn, Cu and Cr are higher during the dry season (April) when dilution is minimal and low levels of TOC are present. The smaller concentrations of Zn and Cu observed in January are associated with high TOC values in water. The lower levels of Cr present in August are associated with high amounts of suspended matter. Pajaritos Lagoon and Teapa-L, with large industrial discharges, have the highest nutrient and dissolved metal concentrations in the area. Air particles smaller than 2.5 m contain Fe, V, Ti, Cu, Zn, and high amounts of S. These anomalous concentrations of sulfates and metals are attributed to anthropogenic sources.  相似文献   

3.
A study was carried out in Malawi to assess the extent of chemical pollution in a receiving river as affected by industrial effluents. Both the effluents and the water at selected points in the river were analysed for pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, suspended solids, nitrate, alkalinity, hardness, chloride and phosphate in the dry and rainy seasons. The results showed that the effluents were acidic in both the dry season (range: 4.2 ± 0.02–6.5 ± 0.02) and in the rainy season (range: 4.2 ± 0.05–5.6 ± 0.01). While the levels of dissolved oxygen, biological oxygen demand, electrical conductivity, suspended solids, alkalinity and chloride were relatively high in the dry and rainy seasons, the concentration of phosphate and nitrate were low in both seasons. The water upstream was neutral (average pH, 7.40 ± 0.04) with high dissolved oxygen but low in the levels of the other parameters in both seasons. The water after the effluent receiving points was acidic and the levels of the other parameters were high, especially downstream. The results suggested that the water in the river was polluted and not good for human consumption. It is therefore recommended that the careless disposal of the wastes should be discouraged and although the values in some cases were lower than the allowable limits, the continued discharge of the effluents in the river may result in severe accumulation of the contaminants and, unless the authorities implement the laws governing the disposal of wastes, this may affect the lives of the people.  相似文献   

4.
The island city of Bombay is surrounded by Thane creek in the east and Ulhas river on the north. These two aquatic regimes act as receptacles of industrial waste and sewage discharges from the city and also lithogenic fluxes from the adjacent basaltic terrain.

Two consecutive sets of pre-monsoon and post-monsoon samples of water, suspended solids and sediments were collected from the intertidal zone of Thane Creek and along the Ulhas River. These were analysed for toxic heavy metals such as Fe. Mn, Ni, Co, Pb, Zn, Cu, Cr, Hg and Cd and the degree of metal contamination was determined. Using this data the pattern and mechanism of distribution of heavy metals in water, suspended solids and sediments were investigated. These are closely related to discharges of industrial effluents and domestic sewage and largely controlled by basic geochemical processes.  相似文献   


5.
Water and sediment samples collected from the Gomti River, a tributary of the Ganges River system, during the postmonsoon season have been analyzed to estimate major elemental chemistry. Water chemistry of the River Gomti shows almost monotonous spatial distribution of various chemical species, especially because of uniform presence of alluvium Dun gravels throughout the basin. The river annually transports 0.34×106 tonnes of total suspended material (TSM) and 3.0×106 tonnes of total dissolved solids (TDS), 69 percent of which is accounted for by bicarbonate ions only. Samples collected downstream of the city of Lucknow show the influence of anthropogenic loadings for a considerable distance in the river water. Na+, Cl, and SO4 2– concentrations build up downstream. The bed sediment chemistry is dominated by Si (36 percent), reflecting a high percentage of detrital quartz, which makes up about 74 percent of the mineralogy of the bed sediments in the River Gomti. The average Kjeldahl nitrogen concentration (234 g/g) indicates indirectly the amount of organic matter in the sediments. The Hg concentration in sediments has been found to be higher (average 904 ppb) than the background value. The suspended sediments are well sorted, very finely skewed, and extremely leptokurtic, indicating a low energy condition of flow in the Gomti River. The influence of chemical loads in the Gomti has been found to be small or nonexistent on the Ganges River, perhaps because the water discharge of the Gomti (1.57 percent) to the Ganges is quite low.  相似文献   

6.
The functioning of the German Bight ecosystem is determined largely by nutrient fluxes in and out of the system, namely by the advection of nutrients from the central and southern North Sea, including the influence of the Rhine River; by nutrient inputs through direct continental river runoff into the German Bight (Elbe, Weser, and Ems rivers); and by atmospheric nutrient inputs originating from land. The nutrient situation in the German Bight and the entire North Sea is assessed by estimating these fluxes from available nutrient data. The advective inflowes are based also on simulated water transports. The circulation system in the North Sea is divided into a northern and a southern cell, with only little net water exchange. The nutrient inflow into the southern North Sea from the north is also small, with no effect on the continental coastal areas. For the entire North Sea, the total input of phosphorus increased by 7.7% an nitrogen by about 11.4% from 1950 to 1980. The percentage of Atlantic input of phosphorus into the entire North Sea decreased from 91% to 85%, while river input increased from 2% to 13%. In the continental coastal strip the total inputs increased by 80%. The share of river input increased to 52%, both for phosphorus (1950: 14%) and nitrogen (1950: 20%). Of the winter nutrient content of the upper 30 m of the entire North Sea 33.5% of phosphate and 16.1% of nitrate are taken up by algae until summer. About 50% of total new production is generated in the coastal areas, with 32.8% of the volume and 34.4% of the area of the North Sea. The ratio of new to regenerated production ranges from 2.8 to 12, depending on the method of derivation. In the German Bight, phosphate and nitrate concentrations increased during the last four decades. At Helgoland the five-year-medians of phosphate and nitrate increased by a factor of 1.7 and 2.5, respectively. As the nutrient inputs by river discharges are only slightly larger than advective contributions, the nutrient concentrations rose comparatively slowly. Diatoms stagnated, while flagellates increased 10-fold. Common winter values in the early 1980s resemble those during summer blooms in the early 1960’s. The German Bight ecosystem has changed drastically on all time scales under the anthropogenic nutrient inputs during the last 40 years; the plankton system is no longer in an annual quasiperiodic state.  相似文献   

7.
Water column nutrients (nitrate, ammonium, soluble reactive phosphate, total Kjeldahl nitrogen, and total phosphorus) and suspended sediments (SS) were measured during one 44-h and two 28-h periods in March 1982 at two stations in Fourleague Bay, Louisiana, which is located at the mouth of the Atchafalaya River, a distributary of the Mississippi River. River water (a source of nitrate, total Kjeldahl nitrogen, total phosphorus, and suspended sediments to Fourleague Bay) flows into the upper reaches of the bay during high tide and frontal overrunning conditions with northerly and westerly winds. During one sampling period, decreasing wind speed and the rising tide resulted in Atchafalaya River water inundating the bay and nitrate concentrations in the upper bay increasing from 30–70 μM to 90–118 μM. Significant variations in nutrients associated with the movement of water masses from the river, marshes, and Gulf of Mexico occurred over several different time scales. Tidal transport occurred over 25-h periods, while frontal passages occurred at 3-d to 5-d intervals. Variability in nutrient and suspended sediment concentrations over these relatively short time scales can be as great as seasonal variability in the bay.  相似文献   

8.
何师意  梁彬  关碧珠 《中国岩溶》2008,27(4):293-302
用人工断面法和流量堰法测流,高密度采集水样,在室内用称重法测得水体含沙量,对大龙洞地下河出口及其邻近地表河、地下河上游地表河段进行同步输沙特征监测,以为拟建的大龙洞水库泥沙淤积评价提供依据。两个水文年的研究结果均显示,地下河与地表河输沙率呈同步变化特征,平均悬移质输沙模数分别为37. 26~ 58. 33 t /km2 · a 和56. 82~ 76. 80 t /km2· a ,最大日平均输沙率分别为540 mg /L和890 mg /L,说明地下河空间以大型岩溶管道为主,连通性好,系统水力坡度大,对泥沙输出和减轻地下空间淤积有利。最大日平均输沙率均与最大流量峰值对应,说明水土流失主要发生在暴雨期间。选择流域内三种典型生态环境类型,进行原位水土流失观测,获得场雨产流过程和坡面流输沙率变化情况。结果显示,三种类型的平均悬移质输沙模数为65. 35~ 884. 78 t /km2· a ,暴雨期间准森林类最大瞬时输沙率为2 926 mg / L。在此基础上,估算得到在建库条件下50年总淤积量不超过地下库容的10% ,说明水土流失造成的水库淤积程度并不严重。   相似文献   

9.
In comparison to their temperate counterparts, sediment processes in tropical estuaries are poorly known and especially in African ones. The hydrodynamics of such environments is controlled by a combination of multiple processes including morphology, salinity, mangrove vegetation, tidal processes, river discharge, settling and erosion of mud and by physico-chemical processes as well as sediment dynamics.The aim of this study is to understand the sediment processes in this transitional stage of the estuary when the balance between river discharges and marine processes is reversing. Studying the hydrodynamics and sediment dynamics of the Konkouré Estuary has recently been made possible thanks to new data on bathymetry, sedimentary cover, salinity, water elevations, and current velocities. The Lower Konkouré is a shallow, funnel shaped, mesotidal mangrove-fringed, tide-dominated estuary, well mixed during low river discharge and stratified during high river discharge. The Konkouré Estuary is turbid despite the small amount of terrestrial input and its residual velocity at the mouth during low river discharges, landwards for two of the three branches, suggests a landward migration by tidal pumping of the suspended particulate matter. A Turbidity Maximum Zone (TMZ) is identified for typical states of the estuary with regard to fluvial and tidal components. Suspended sediment transport during a transitional stage between the rainy and dry seasons is known thanks to current velocity and Suspended Sediment Concentration (SSC) measurements taken in November 2003. The Richardson layered number calculation assesses that turbulence is the major mixing process in the water column, at least during the flood and ebb stages, whereas stratification occurs during the slack water periods. Tidal currents generate bottom erosion, and turbulence mixes the suspended sediment throughout the water column. As a result, a net sediment input is calculated from the western Konkouré outlet for two consecutive tidal cycles. Despite the net water export, almost 300 tons per tide reach the estuary through this outlet, for a moderate river flow.  相似文献   

10.
The Selenga River contributes to 50% of the total inflow to Lake Baikal. Large tracts of the Selenga River Basin have been developed for industry, urbanization, mining, and agriculture, resulting in the release of suspended solids (SS) that affect downstream water quality and primary productivity. This study addressed SS as the main factor controlling pollutant transport and the primary indicator of land degradation in the Selenga River system. Tributaries with larger areas dedicated to agricultural use had higher SS concentrations, reaching 862 mg L?1, especially during the high runoff and intensive cultivation season. Although the large SS flux was detected in the main river, the small tributaries were distinguished by high SS concentrations. The high SS concentration corresponded to widespread development in the watershed. Watersheds with high potential of SS release are sensitive to intensive land uses. SS in the river system had a constant elemental composition consisting mainly of Fe and Al oxides, indicating that surface soils were major constituents of the tributary SS. Three minor heavy metals (Zn, Cu, and Cr) appeared in high concentrations downstream of urban and mining areas (two- to sixfold increases), indicating that these contaminants are carried by SS. At two tributary junctions, the concentration of contaminants on the SS decreased due to a large influx of SS with low heavy metal contents. Changes in electric conductivity and pH at downstream of tributary junctions enhanced the sedimentation of SS and the removal of contaminants from the water phase after aggregation of the SS. Land use changes in the tributary watersheds are major controlling factors for the fate of contaminants in the river system.  相似文献   

11.
Oceanic upwelling results in the intermittent intrusion of cold ocean water enriched in nitrate, and to a lesser extent soluble reactive phosphorus (SRP), into the Kariega Estuary (South Africa). Laboratory measocosm experiments were conducted to determine the effects of such changes on fluxes of dissolved nutrients across the surface of a salt marsh within the estuary. When replicate mesocosms of the tidal creek and salt marsh were inundated with nonupwelled water (at 25°C and nitrate concentrations of 4.5 μmoll?1), nitrate fluxes in both regions were small, and the tidal creek exhibited net uptake (negative value) of nitrate from the water column (?85 μmol m?2 tide?1), and the marsh, net release (positive values; 113 μmol m?2 tide?1). When the mesocosms were inundated with upwelled water, at 16°C and with nitrate concentrations of 24.2 μmol l?1, both regions exhibited large net uptakes of nitrate (?514 μmol m?2 tide?1 and ?226 μmol m?2 tide?1 for the tidal creek and salt marsh, respectively). In contrast to nitrate, the fluxes of nitrite, ammonium, and SRP were not significantly different under upwelling and nonupwelling conditions, probably because initial concentrations in the two water types were similar. To determine the extent to which the nitrate uptakes were caused by decreased water temperatures or increased concentrations of nitrate, experiments were conducted in which mesocosms were inundated with water with a range of nitrate concentrations (1.8–25 μmol l?1), at two temperatures representative of summer upwelling (16°C) and nonupwelling conditions (25°C). In both regions, the net fluxes of nitrate were positively correlated with initial concentrations of nitrate in the water column. For any given concentration, the fluxes at 16°C fell within the range of values at 25°C, indicating that the shifts in fluxes caused by upwelling occurred in response to increased concentrations in the water column and not reduced temperatures.  相似文献   

12.
The goal of this work was to investigate the changes in copper behavior in Igua?u River, a body of water strongly affected by urban inputs. This work was carried out in a subtropical Brazilian watershed suffering with high loads of raw sewage discharges from the Metropolitan Region of Curitiba. A comparison between sampling sites located upstream and downstream from the urban region revealed that human inputs are able to modify the water chemistry of the river in a short distance basis, that is, approximately nine miles. Probably, the most important alterations were the creation of an anaerobic environment as well as the enhancement of humic-coated suspended solids. These two aspects were determinant to explain the high concentrations observed for particulate copper (57% of total recoverable copper) and dissolved copper sulfide species (13%) in the water column. Copper in the sediment was also higher in the downstream site, probably due to the sedimentation of the Cu-enriched particles. However, copper sulfides at the bottom sediment may also be a potential source for the metal in the water column due to the creation of anaerobic conditions in both compartments. Labile copper concentration was not affected by the changes in water chemistry. Despite the fact that sewage discharges motivate the enhancement of organic matter, but not the increase in potential complexing agents, additional ligands such as chloride, carbonates, and anthropogenic dissolved organic ligands can be now computed as a part of the labile fraction.  相似文献   

13.
Transport of hydrophobic organic pollutants in rivers is mainly coupled to transport of suspended particles. Turbidity measurements are often used to assess the amount of suspended solids in water. In this study, a monitoring campaign is presented where the total concentration of polycyclic aromatic hydrocarbons (PAHs), the amount of total suspended solids (TSS), and turbidity was measured in water samples from five neighboring catchments in southwest Germany. Linear correlations of turbidity and TSS were obtained which were in close agreement to the literature data. From linear regressions of turbidity versus total PAH concentrations in water, mean concentrations of PAH on suspended particles could be calculated and these varied by catchment. These values furthermore comprise a robust measure of the average sediment quality in a given catchment. Since in the catchments investigated in this study, PAH concentrations on suspended particles were stable over a large turbidity range (1–114 Nephelometric Turbidity Units), turbidity could be used as a proxy for total PAHs and likely other highly hydrophobic organic pollutants in river water if the associated correlations are established. Based on that, online monitoring of turbidity (e.g., by optical backscattering sensors) seems very promising to determine annual pollutant fluxes.  相似文献   

14.
Water and suspended sediment samples were collected along a longitudinal transect of the Bhagirathi – a headwater stream of the river Ganga, during the premonsoon and postmonsoon seasons, in order to assess the solute acquisition processes and sediment transfer in a high elevation river basin. Study results show that surface waters were dominated by HCO3 and SO4 in anionic abundance and Ca in cationic concentrations. A high concentration of sulphate in the source region indicates oxidative weathering of sulphide bearing minerals in the drainage basin. The combination of high concentrations of calcium, bicarbonate and sulphate in river water suggests that coupled reaction involving sulphide oxidation and carbonate dissolution are mainly controlling the solute acquisition processes in the drainage basin. The sediment transfer reveals that glacial weathering and erosion is the major influence on sediment production and transfer. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The sediment mineralogy and water mineral equilibrium indicate that water composition is in equilibrium with kaolinite. The river Bhagirathi annually delivers 0.74 M.tons of dissolved and 7.88 M.tons of suspended load to the river Ganga at Devprayag. The chemical and physical denudation rate of the Bhagirathi is 95 and 1010 tons/km2/yr, higher than the Indian and global average.  相似文献   

15.
Trace element distributions, partitioning, and speciation were examined at 15 sites in the Patuxent River watershed from May 1995 through October 1997 to determine possible sources of trace elements to the river and estuary, to examine the relationship of the trace element discharges to freshwater discharges as well as to land use and geographic region, to validate previous estimates of loadings to the river, and to provide baseline data for trace elements in the Patuxent River watershed and estuary. Six freshwater sites were examined, representing different basins and geographic provinces, and nine sites along the estuarine salinity gradient. Subregions within the watershed varied considerably in concentrations and areal yields for some elements. Concentrations of As, Cd, Ni, Pb, and Zn were elevated in the Coastal Plain sites compared to the Piedmont sites, while Cu and Hg were more evenly distributed. Cadmium, Cu, Hg, Ni, Pb, and Zn showed overall positive correlations with river flow while As and methylHg (meHg) showed negative correlations with river flow. Concentrations of trace elements in the estuarine portion of the river were generally low, and consistent with mixing between Patuxent River water with elevated concentrations and the lower concentrations of the Chesapeake Bay. Interesting features included a local Cd maximum in the low salinity region of the estuary, probably caused by desorption from suspended sediments, and a significant input of water containing high As concentrations from the Chesapeake Bay and from As being released from bottom sediments in summer. Comparisons between the estimated annual flux of trace elements and the estimates of suspected source terms (atmospheric deposition, urban runoff, and known point sources) suggest that, except for Hg, direct atmospheric deposition is small compared to fluvial loads. Current estimates of trace element inputs from point sources or from urban runoff are inadequate for comparison with other sources, because of inappropriate techniques and/or unacceptably high detection limits. A complete examination of trace element dynamics in the Patuxent River (and in other coastal systems) will require better data for these potential sources.  相似文献   

16.
The present study was carried out in Haraz basin (Iran) that is located in south of the Caspian Sea. The goal of this study was to establish correlations amongst total suspended solids concentration (TSS) and turbidity with total pollutant concentrations to evaluate the dissolved and particle-bound concentrations of major toxic metals. It also aimed to validate TSS and/or turbidity measurements as proxies to monitor pollutant fluxes. Eight metals, namely nickel, lead, cadmium, copper, zinc, cobalt, arsenic and strontium were analyzed for dissolved and total concentrations in water at ten locations within the catchment. TSS and turbidity were also measured. Sampling campaigns were designed to cover both the rainy (December) and the dry (May) season within the basin. The robust relationship between TSS (202–1212 mg/l) and turbidity (63–501 NTUs) in both seasons warranted their interchangeable potential as proxies within the observed ranges. Total element concentrations were plotted in separate attempts versus TSS and turbidity for all locations and both events. Very good linear correlations were attained where the slopes represent the metals concentration on suspended solids and the intercept the dissolved concentration in water. The results achieved by these linear regressions were in very good agreement with independently measured values for dissolved concentration and concentrations on river bed sediments taken at the same locations. This demonstrates that turbidity and/or TSS measurements may be used for monitoring of metal loads if once calibrated against total concentration of metals. The results also revealed that in the lower Haraz catchment metal concentrations on suspended and river bed sediment were homogeneously distributed along the investigated river stretch. This is assumed to be due to intensive gravel and sand mining activities in the upper and middle part of the catchment.  相似文献   

17.
The hydrogeochemistry of the Lake Waco drainage basin,Texas   总被引:1,自引:0,他引:1  
The origin of surface water chemistry in highly impacted drainage basins must be investigated on a drainage-basin scale if the causes of the pollution are to be elucidated. This study characterizes and deciphers the surface water chemistry of a nutrient polluted river system in central Texas. Four tributaries of the Lake Waco reservoir were chemically characterized temporally and spatially in order to gain a complete understanding of the nature and origin of dissolved solids being transported into the lake. Temporal chemical variations measured at the base of each of the drainage basins are repetitive and seasonal. The most periodic and well-defined variation is exhibited by nitrate concentrations although many of the other solutes show seasonal changes as well. These temporal chemical changes are controlled by seasonal precipitation. During rainy seasons, the shallow aquifer is recharged resulting in stream discharge that is high in nitrate, calcium, and bicarbonate. When the shallow flow system is depleted in the summer, stream waters are dominated by deeper groundwater and become rich in sodium. Spatial variations in the chemistry of South Bosque surface waters were characterized using the snapshot technique. The spatial distribution of nitrate in surface waters is controlled by fertilizer application to row crops and the location of a munitions factory. The concentrations of naturally derived solutes such as Ca+, Na+, Cl, and SO4–2are controlled by underlying lithologies.  相似文献   

18.
Isotopes have often been used to discern riverine subsidies to coastal food chains, but there are few direct measurements of nutritional quality of riverine particulates. We tested for nutritionally enriched organic matter in the Mississippi River suspended sediment and evidence for its delivery to Louisiana coastal sediments by measuring enzymatically hydrolysable amino acids (EHAA). Riverine suspended sediments contained EHAA concentrations of up to 5 mg g?1, higher than reported in any coastal sediment. Pigment concentrations indicated that EHAA in some river samples were dominated by phytoplankton, but many samples contained significant non-algal EHAA. Coastal sediments showed EHAA concentrations lower than riverine sediments but still higher than most reported shelf values. Incubation of riverine sediment showed losses of 28–34% of their EHAA over 6 days, similar to differences found between riverine and coastal sediments. EHAA concentrations decreased more rapidly than total nitrogen, indicating the relative lability of this pool of material in the studied region. These EHAA-enriched materials provide fuel for various coastal biota whose composition likely depends on factors such as disturbance regimes.  相似文献   

19.
Solid materials such as suspended particulate matter (SPM), deposited sediment (DS) and natural surface coatings (NSC, composed of biofilms and associated minerals) are important sinks and potential sources of pollutants in natural aquatic environments. Although these materials can exist in the same water body, few studies have been conducted to compare their ability to adsorb trace metals. In this study, the adsorption of Pb, Cu and Cd by these solids, collected from an urban lake, was investigated. In addition, the metal adsorption properties of the main components of these solids, namely Mn and Fe oxides and organics, were also investigated using the method of selective extraction followed by metal adsorption. The solids that co-existed in water showed similarities and differences in their compositions. For each metal, adsorption to the solids occurred in the same order: NSC > SPM > DS. For Pb and Cd, Fe and Mn oxides and organics contributed to the adsorption by NSC and SPM, and the adsorption by DS was dominated by Fe oxides. For Cu, the organics were the main adsorptive phase. The specific adsorption capability of these components decreases in the following order: Mn oxides > Fe oxides > organics. Overall, the results presented herein indicate that different solids and their components played important roles in the adsorption of trace metals.  相似文献   

20.
In the tidal Potomac River, high river discharges during the spring are associated with high chlorophylla concentrations in the following in the following summer, assuming that summertime light and temperature conditions are favorable. Spring floods deliver large loads of particulate N and P to the tidal river. This particulate N and P could be mineralized by bacteria to inorganic N and P and released to the water column where it is available for phytoplankton use during summertime. However, during the study period relatively low concentrations of chlorophylla (less than 50 μg l?1 occurred in the tidal river if average monthly discharge during July or August exceeded 200 m3s?1. Discharge and other conditions combined to produce conditions favorable for nuisance levels of chlorophylla (greater than 100 μg l?1 approximately one year out of four. Chlorophylla maxima occurred in the Potomac River transition zone and estuary during late winter (dinoflagellates) and spring (diatoms). Typical seasonal peak concentrations were achieved at discharges as high as 970 m3 s?1, but sustained discharges greater than 1,100 m3 s?1 retarded development. Optimum growth conditions occurred following runoff events of 10 to 15 d duration which produced transit times to the transition zone of 7 to 10 d. Wet years with numerous moderate-sized runoff events, such as 1980, tend to produce greater biomass in the transition zone and estuary than do dry years such as 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号