首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
梁-柱-叠合板节点是装配整体式混凝土框架结构的研究重点。文中对装配式混凝土框架梁-柱-叠合板边节点和中节点进行了精细化的有限元建模和分析。数值模型中使用了弹簧失效准则的方法模拟预制构件与后浇混凝土之间的界面,考虑了预制梁上下部钢筋的滑移、预制柱内纵筋的受力状态、预制梁端面键槽的设置。为了验证数值模型的准确性,将与试验进行对比分析,结果表明:数值模拟得到的试件破坏形态、滞回曲线、骨架曲线和性能参数与试验结果吻合较好。在验证模型有效的基础上,研究了不同楼板宽度、轴压比、梁板混凝土强度对边节点和中节点抗震性能的影响,为此类装配整体式混凝土结构和工程应用提供参考。  相似文献   

2.
通过钢-混凝土组合结构形式及在雀替位置处设置黏滞阻尼器,可提升仿古建筑枋-柱节点的力学性能。为研究其力学性能,共设计3个试件,包括2个附设黏滞阻尼器的试件及1个未附设黏滞阻尼器的对比试件,进行快速往复加载试验,分析加载全过程中试件的破坏特性及破坏机制,对其力学特性关键指标进行对比分析,包括恢复力特征曲线、骨架曲线、延性及刚度变化等。试验结果显示:采用钢-混凝土组合结构形式的仿古建筑双枋-柱节点力学性能得到一定幅度的提高;结构破坏时形成梁铰机制,符合抗震设计要求;在阑额与柱连接处设置黏滞阻尼器能有效提升节点的变形性能及承载能力,并在一定程度上抑制试件的刚度退化速率。总体上,结构整体抗震性能有大幅提高。  相似文献   

3.
建立竖板-栓钉连接钢管混凝土(CFST)柱-钢筋混凝土(RC)梁节点试件(SSJD)拟静力加载试验有限元模型,并在节点损伤情况、梁端荷载-位移曲线等数值模拟结果与试验结果吻合较好的基础上,进一步开展了RC梁混凝土强度、配筋率ρs和连接竖板长度Lb及界面连接情况等对CFST柱-RC梁节点梁端塑性铰区域力学性能的影响。研究结果表明,RC梁混凝土强度对试件SSJD塑性铰区域受力性能的影响较小;适筋范围内RC梁配筋率增加可适当提高试件SSJD承载力和延性;随着连接竖板长度的增加,梁端塑性铰区域外移,梁破坏荷载增大;本研究给出的RC梁与CFST柱之间的界面抗剪承载力模拟值与计算值吻合较好,可用于界面抗剪设计。  相似文献   

4.
板柱-剪力墙结构的动力特性分析   总被引:1,自引:0,他引:1  
董欣  吴强 《世界地震工程》2007,23(1):130-133
采用有限元方法,改变结构的跨度和层数,对无边梁的板柱-剪力墙结构、带边梁的板柱-剪力墙结构和框架-剪力墙结构的动力特性进行对比分析。指出水平荷载作用下无边梁的板柱-剪力墙结构的侧移曲线是弯曲型的,而带边梁的板柱-剪力墙结构的侧移曲线是弯剪型,并且边梁可以有效提高板柱-剪力墙结构侧向刚度。  相似文献   

5.
钢-混凝土组合连续刚构桥的关键在于墩梁连接节点,设计了双层钢箱混凝土、钢筋混凝土和钢管混凝土等3种不同类型墩柱的连接节点构造形式。基于OpenSees平台建立了墩柱截面纤维有限元模型,并利用双层钢箱混凝土墩柱拟静力试验结果验证了数值模型的有效性,进而基于纤维有限元模型对3种不同类型墩柱节点进行了非线性滞回性能计算分析。结果表明:纤维模型能够模拟拟静力作用下组合连续刚构桥墩梁连接的滞回性能,双层钢箱混凝土墩柱与钢箱-混凝土组合梁连接节点的整体抗震性能要优于钢筋混凝土墩柱和实心钢管混凝土墩柱与钢箱-混凝土组合梁的连接节点,建议的刚性节点构造合理和传力路径明确,可为钢-混凝土组合连续刚构桥设计提供参考。  相似文献   

6.
基于转动摩擦铰阻尼器(RFHD),提出了转动摩擦耗能干式装配梁-柱节点(DRFDBJ)。为了验证DRFDBJ结构对于实现预期力学性能的可行性和合理性,以施加在摩擦片表面的螺栓预紧力(Pc)为变量,开展了2个工况下的DRFDBJ试件低周往复拟静力试验研究。结果表明:DRFDBJ结构的力学性能主要由RFHD提供并控制,试验中节点呈现了稳定的承载力和理想的变形、耗能能力,并实现了预期的损伤集中;2个不同Pc水准下节点承载力的试验值与理论值误差不超过5%,通过调整Pc可实现节点承载力的调控,为DRFDBJ结构承载力的可调控提供了支撑。  相似文献   

7.
钢管混凝土柱-钢筋混凝土环扁梁节点性能试验研究   总被引:1,自引:0,他引:1  
本文进行了钢管混凝土柱-钢筋混凝土环扁梁节点的静载和低周反复荷载试验,分析了节点的破坏形态、承载能力、延性、耗能能力等性能。本次试验结果显示,钢管混凝土核心区未发生屈服破坏情况,塑性铰产生于扁梁和环扁梁交界处(静载)和环扁梁上(低周反复荷载),环扁梁与钢管混凝土柱间未发生明显滑移现象;试验节点连接可靠,具有较好的承载力、延性以及耗能能力,能够满足延性抗震设计要求。  相似文献   

8.
梁柱-板柱组合结构(住宅)体系模型振动台试验研究   总被引:2,自引:0,他引:2  
梁柱-板柱组合结构(住宅)体系由上部大开间板柱结构和底部框架结构构成,是一种可持续发展的新型结构形式。通过两个12层l:15模型的振动台对比试验,探讨其动力特性、地震反应和破坏情况。试验表明,该体系的抗震性能介于框架结构和板柱结构之间。总层数在12层以下时,不设剪力墙的该体系在7度区基本上满足规范要求,合理设置剪力墙后可用于8度区。  相似文献   

9.
提出一种新型型钢-混凝土组合柱,并对其进行数值模拟分析,研究翼缘厚度、钢管径厚比、轴压比、混凝土强度等参数对该组合柱抗震性能的影响。将新型型钢-混凝土组合柱截面进行合理简化,基于平截面假定建立组合柱正截面承载力计算公式,通过对比试验与模拟数据,发现公式计算结果具有较高精度。进一步提出组合柱截面屈服点、峰值点、破坏点、加载刚度、卸载刚度等特征参数的计算方法,确定恢复力模型的滞回规则,最终建立基于退化三线型模型的新型型钢-混凝土组合柱恢复力模型。将公式计算得到的滞回曲线与试验得到的滞回曲线进行对比,发现二者吻合较好。  相似文献   

10.
为改善混凝土装配结构的抗震性能,提出了混凝土挂柱挂板组合墙装配框架结构体系,并通过设计1/2缩尺模型对混凝土挂柱挂板组合墙装配框架结构的抗震性能进行了振动台试验研究,通过白噪声扫描和输入地震波强度逐步增加的加载试验方法,研究了整体结构的动力特性变化规律、整体结构的动力响应规律、局部组合墙体与主体结构相互作用以及退化规律。研究结果表明:挂柱挂板组合墙与主体结构的连接以及挂板挂柱之间具有较好的连接性能,能保证整体结构的抗震性能;挂柱挂板组合墙对整体结构的刚度贡献随着地震强度的增加先增加后减小;整体结构首先在挂板挂柱出现裂缝,随后挂柱挂耳两端逐步损伤压碎,最后主体结构逐渐屈服,表现出良好的整体连接性能和抗震性能。  相似文献   

11.
为了提高装配式钢构建筑梁柱的抗震性能,设计一种变截面交叉柔性力学模型进行截面抗震性的预应力评估。方法中采用极限承载力约束进行抗震性分析,引入抗弯刚度软化系数进行误差修正,求出钢构建筑梁柱的荷载作用力矩,通过应力评估和结构解耦性设计,实现钢构建筑梁柱的抗震性评估。构建以钢材强度、延性指标和钢框架地震易损特征为约束参量的抗震性能分析函数,建立装配式钢构建筑梁柱开裂初始预应力预测方法,实现装配式钢构建筑梁柱预应力的准确评估。试验结果表明,所提模型能够对装配式钢构建筑梁柱的应力应变关系、屈服强度以及极限承载力进行准确计算,提高配式钢构建筑梁柱的抗震性能。  相似文献   

12.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
一般采用梁柱焊接节点钢框架结构在遭遇强烈地震地震作用下,结构倒塌破坏可能由于是耗能能力不足所导致。以某钢框架结构为算例,选取20条实际地震动记录,对结构进行易损性分析,对比不同损伤指标和不同梁端构造形式的钢框架结构抗震性能差异。研究显示:对梁柱焊接的普通钢框架结构,其倒塌破坏是由于结构耗能能力不足所导致的,评价结构抗震性能不仅需考虑结构变形能力,尚需同时考虑结构耗能能力;对于改进形式的钢框架结构,结构耗能能力得到显著提高,使得位移首超破坏先于累积损伤破坏,此时基于变形的评价结果更加可靠。  相似文献   

14.
In this study, a direct static design method for structures with metal yielding dampers is proposed based on a new design target called the seismic capacity redundancy indicator (SCRI). The proposed method is applicable to the design of elastic‐plastic damped structures by considering the influence of damper on different structural performance indicators separately without the need for iteration or nonlinear dynamic analysis. The SCRI—a quantitative measure of the seismic capacity redundancy—is defined as the ratio of the seismic demand required by the target performance limit to the design seismic demand. Changes in the structural SCRI are correlated with the parameters of the supplemental dampers so that the dampers can be directly designed according to a given target SCRI. The proposed method is illustrated through application to a 12‐story reinforced‐concrete frame, and increment dynamic analysis is performed to verify the effectiveness of the proposed method. The seismic intensity corresponding to the target structural performance limit is regarded as a measure of the structural seismic capacity. The required seismic intensity increases after the structure is equipped with the designed metal yielding dampers according to the expected SCRI. It is concluded that the proposed method is easy to implement and feasible for performance‐based design of metal yielding dampers.  相似文献   

15.
This paper describes a new seismic protection system for timber platform frame buildings, either for new construction or retrofit. The system consists in connecting the timber frame to a steel structure that includes hysteretic energy dissipators designed to absorb most of the seismic input energy thus protecting the timber frame and the other steel members; alternatively, the system might use other types of dissipative devices. The steel structure consists of four steel stacks (located at each of the four façades) and steel collectors embracing each slab; the stacks and the collectors are connected, at each floor level, through the energy dissipators. The steel structure is self‐supporting, that is, the timber frame is not affected by horizontal actions and can be designed without accounting for any seismic provision; in turn, the steel members do not participate in the main load‐carrying system. The timber‐steel interface is designed to avoid any stress concentration in the transfer of horizontal forces and to guarantee that the yielding of the dissipators occurs prior to any timber failure. The energy dissipation capacity of the suggested system is discussed, and an application example on a six‐story timber building is presented; this case corresponds to highly demanding conditions because of the relatively large building height and weight, the high local seismicity, and the soft soil condition. This research belongs to a wider project aiming to promote the structural use of timber by improving the seismic capacity of wooden buildings; this research includes experiments and advanced numerical simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Given their excellent self‐centering and energy‐dissipating capabilities, superelastic shape memory alloys (SMAs) become an emerging structural material in the field of earthquake engineering. This paper presents experimental and numerical studies on a scaled self‐centering steel frame with novel SMA braces (SMAB), which utilize superelastic Ni–Ti wires. The braces were fabricated and cyclically characterized before their installation in a two‐story one‐bay steel frame. The equivalent viscous damping ratio and ‘post‐yield’ stiffness ratio of the tested braces are around 5% and 0.15, respectively. In particular, the frame was seismically designed with nearly all pin connections, including the pinned column bases. To assess the seismic performance of the SMA braced frame (SMABF), a series of shake table tests were conducted, in which the SMABF was subjected to ground motions with incremental seismic intensity levels. No repair or replacement of structural members was performed during the entire series of tests. Experimental results showed that the SMAB could withstand several strong earthquakes with very limited capacity degradation. Thanks to the self‐centering capacity and pin‐connection design, the steel frame was subjected to limited damage and zero residual deformation even if the peak interstory drift ratio exceeded 2%. Good agreement was found between the experimental results and numerical simulations. The current study validates the prospect of using SMAB as a standalone seismic‐resisting component in critical building structures when high seismic performance or earthquake resilience is desirable under moderate and strong earthquakes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The steel plate shear wall (SPSW) system is a robust option for earthquake resistance due to the strength, stiffness, ductility and energy dissipation that it provides. Although thin infill plates are efficient for resisting lateral loads, boundary frames that are proportioned based on capacity design requirements add significant structural weight that appears to be one of the factors limiting the use of the system in practice. An alternate configuration, the SPSW with coupling (SPSW‐WC), was explored recently as an option for increasing architectural flexibility while also improving overall system economy and seismic performance. The SPSW‐WC, which extensively employs flexural boundary frame contribution, has shown promise in analytical, numerical and experimental studies, but recent research on uncoupled SPSWs suggests that boundary frame contribution should not be considered for carrying seismic design shear. As a result, in the present study, boundary frame contribution in SPSWs was explored with detailed three‐dimensional finite element models, which were validated against large‐scale SPSW‐WC tests. Six‐story systems were considered, and the study matrix included single and double uncoupled SPSWs along with coupled SPSWs that had various degrees of coupling. Variations in design methodology were also explored. The modeling framework was employed to conduct static monotonic and cyclic pushover analyses and dynamic response history analysis. These analyses demonstrate the beneficial effect of coupling in SPSWs and illustrate the need to consider boundary frame contribution in design of coupled SPSWs. In addition, sharing design shear between the infill plate and the boundary frame is more generally shown to not be detrimental if this sharing is done in the design stage based on elastic analysis and the resulting boundary frame provides adequate secondary strength and stiffness following infill plate yielding. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The self‐centering rocking steel frame is a seismic force resisting system in which a gap is allowed to form between a concentrically braced steel frame and the foundation. Downward vertical force applied to the rocking frame by post‐tensioning acts to close the uplifting gap and thus produces a restoring force. A key feature of the system is replaceable energy‐dissipating devices that act as structural fuses by producing high initial system stiffness and then yielding to dissipate energy from the input loading and protect the remaining portions of the structure from damage. In this research, a series of large‐scale hybrid simulation tests were performed to investigate the seismic performance of the self‐centering rocking steel frame and in particular, the ability of the controlled rocking system to self‐center the entire building. The hybrid simulation experiments were conducted in conjunction with computational modules, one that simulated the destabilizing P‐Δ effect and another module that simulated the hysteretic behavior of the rest of the building including simple composite steel/concrete shear beam‐to‐column connections and partition walls. These tests complement a series of quasi‐static cyclic and dynamic shake table tests that have been conducted on this system in prior work. The hybrid simulation tests validated the expected seismic performance as the system was subjected to ground motions in excess of the maximum considered earthquake, produced virtually no residual drift after every ground motion, did not produce inelasticity in the steel frame or post‐tensioning, and concentrated the inelasticity in fuse elements that were easily replaced. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the development, experimental testing, and numerical modelling of a new hybrid timber‐steel moment‐resisting connection that is designed to improve the seismic performance of mid‐rise heavy timber moment‐resisting frames (MRF). The connection detail incorporates specially designed replaceable steel links fastened to timber beams and columns using self‐tapping screws. Performance of the connection is verified through experimental testing of four 2/3 scale beam‐column connections. All 4 connection specimens met the acceptance criteria specified in the AISC 341‐10 provisions for steel moment frames and exhibit high strength, ductility, and energy dissipation capacity up to storey drifts exceeding 4%. All of the timber members and self‐tapping screw connections achieved their design objective, remaining entirely elastic throughout all tests and avoiding brittle modes of failure. To assess the global seismic performance of the newly developed connection in a mid‐rise building, a hybrid timber‐steel building using the proposed moment‐resisting connection is designed and modelled in OpenSees. To compare the seismic performance of the hybrid MRF with a conventional steel MRF, a prototype steel‐only building is also designed and modelled in OpenSees. The building models are subject to a suite of ground motions at design basis earthquake and maximum credible earthquake hazard levels using non‐linear time history analysis. Analytical results show that drifts and accelerations of the hybrid building are similar to a conventional steel building while the foundation forces are significantly reduced for the hybrid structure because of its lower seismic weight. The results of the experimental program and numerical analysis demonstrate the seismic performance of the proposed connection and the ability of the hybrid building to achieve comparable seismic performance to a conventional steel MRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号