首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
2.
Hydraulic conductivity distribution and plume initial source condition are two important factors affecting solute transport in heterogeneous media. Since hydraulic conductivity can only be measured at limited locations in a field, its spatial distribution in a complex heterogeneous medium is generally uncertain. In many groundwater contamination sites, transport initial conditions are generally unknown, as plume distributions are available only after the contaminations occurred. In this study, a data assimilation method is developed for calibrating a hydraulic conductivity field and improving solute transport prediction with unknown initial solute source condition. Ensemble Kalman filter (EnKF) is used to update the model parameter (i.e., hydraulic conductivity) and state variables (hydraulic head and solute concentration), when data are available. Two-dimensional numerical experiments are designed to assess the performance of the EnKF method on data assimilation for solute transport prediction. The study results indicate that the EnKF method can significantly improve the estimation of the hydraulic conductivity distribution and solute transport prediction by assimilating hydraulic head measurements with a known solute initial condition. When solute source is unknown, solute prediction by assimilating continuous measurements of solute concentration at a few points in the plume well captures the plume evolution downstream of the measurement points.  相似文献   

3.
The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot‐North (TEAD‐N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF‐based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well‐calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging‐based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation.  相似文献   

4.
Improved sea ice parcel trajectories in the Arctic via data assimilation   总被引:1,自引:0,他引:1  
An assimilated sea ice motion product is used to track ice parcels in several regions of the Arctic over time periods of one day to several weeks during 1992-1993. Motions simulated using a two-dimensional, dynamic-thermodynamic sea ice model are combined with motions derived from daily 85 GHz special sensor microwave/imager (SSM/I) imagery using an optimal interpolation method that minimizes error covariance. Assimilation attenuates the tracking error over the stand-alone model in comparison to buoy trajectories with the same starting location and time. The average 14-day assimilated trajectory's displacement error is as much as 34% lower than the model trajectory, while the RMS direction error is decreased by up to 10 degrees (24%). Assimilation can also yield an estimate of dispersion, which is not retrievable by point buoy observations. An assimilation approach improves estimates of ice drift and has the potential to further the understanding of ice mass flux, freshwater flux, and pollutant transport in the polar regions.  相似文献   

5.
Improved prediction and tracking of volcanic ash clouds   总被引:3,自引:1,他引:2  
During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.  相似文献   

6.
The Eyjafjallajökull volcanic eruption, which occurred on April 14, 2010, caused many environmental, air traffic and health problems. An attempt has been made to demonstrate for the first time that certain improvements could be made in the quantitative prediction of the volcanic ash parameters, and in the accounting of the processes in the immediate vicinity of the volcano, using a cloud-resolving model. This type of explicit modeling by treatment of volcanic ash and sulfate chemistry parameterization, with input of a number parameters describing the volcanic source, is the way forward for understanding the complex processes in plumes and in the future plume dispersion modeling. Results imply that the most significant microphysical processes are those related to accretion of cloud water, cloud ice and rainwater by snow, and accretion of rain and snow by hail. The dominant chemical conversion rates that give a great contribution to the sulfate budget are nucleation and dynamic scavenging and oxidation processes. A three-dimensional numerical experiment has shown a very realistic simulation of volcanic ash and other chemical compounds evolution, with a sloping structure strongly influenced by the meteorological conditions. In-cloud oxidation by H2O2 is the dominant pathway for SO2 oxidation and allows sulfate to be produced within the SO2 source region. The averaged cloud water pH of about 5.8 and rainwater pH of 4.5 over simulation time show quantitatively how the oxidation may strongly influence the sulfate budget and acidity of volcanic cloud. Compared to observations, model results are close in many aspects. Information on the near field volcanic plume behavior is essential for early preparedness and evacuation. This approach demonstrates a potential improvement in quantitative predictions regarding the volcanic plume distribution at different altitudes. It could be a useful tool for modeling volcanic plumes for better emergency measures planning.  相似文献   

7.
It is a common fact that the majority of today's wave assimilation platforms have a limited, in time, ability of affecting the final wave prediction, especially that of long-period forecasting systems. This is mainly due to the fact that after “closing” the assimilation window, i.e., the time that the available observations are assimilated into the wave model, the latter continues to run without any external information. Therefore, if a systematic divergence from the observations occurs, only a limited portion of the forecasting period will be improved. A way of dealing with this drawback is proposed in this study: A combination of two different statistical tools—Kolmogorov–Zurbenko and Kalman filters—is employed so as to eliminate any systematic error of (a first run of) the wave model results. Then, the obtained forecasts are used as artificial observations that can be assimilated to a follow-up model simulation inside the forecasting period. The method was successfully applied to an open sea area (Pacific Ocean) for significant wave height forecasts using the wave model WAM and six different buoys as observational stations. The results were encouraging and led to the extension of the assimilation impact to the entire forecasting period as well as to a significant reduction of the forecast bias.  相似文献   

8.
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.  相似文献   

9.
In volcanic risk assessment it is necessary to determine the appropriate level of sophistication for a given predictive model within the contexts of multiple sources of uncertainty and coupling between models. A component of volcanic risk assessment for the proposed radioactive waste repository at Yucca Mountain (Nevada, USA) involves prediction of dispersal of contaminated tephra during violent Strombolian eruptions and the subsequent transport of that tephra toward a hypothetical individual via surface processes. We test the suitability of a simplified model for volcanic plume transport and fallout tephra deposition (ASHPLUME) coupled to a surface sediment-transport model (FAR) that calculates the redistribution of tephra, and in light of inherent uncertainties in the system. The study focuses on two simplifying assumptions in the ASHPLUME model: 1) constant eruptive column height and 2) constant wind speed and direction during an eruption. Variations in tephra dispersal resulting from unsteady column height and wind conditions produced variations up to a factor of two in the concentration of tephra in sediment transported to the control population. However, the effects of watershed geometry and terrain, which control local remobilization of tephra, overprint sensitivities to eruption parameters. Because the combination of models used here shows limited sensitivity to the actual details of ash fall, a simple fall model suffices to estimate tephra mass delivered to the hypothetical individual.  相似文献   

10.
A data assimilation method was used to estimate the variability of three ecologically significant features of the Columbia River estuary and plume: the size of the plume, the orientation of the plume, and the length of the salinity intrusion in the estuary. Our data assimilation method was based on a reduced-dimension Kalman filter that enables fast data assimilation of nonlinear dynamics in the estuary and plume. The assimilated data included measurements of salinity, temperature, and water levels at 13 stations in the estuary and at five moorings in the plume.  相似文献   

11.
A list of volcanic eruption plumes observed to ascend into or near the stratosphere since 1883 shows that the volcanoes divide readily into two groups, one at low and one at higher latitudes. A model for the rise of a buoyant volcanic plume rise as applied to volcanic eruptions is corrected for realistic temperature profiles and for the finite vertical extent of the resultant debris clouds. The utility of the model can be questioned, however, owing to the highly uncertain and variable nature of the efficiency of use of heat energy of buoyant rise. The observed correlation of stratospheric plumes with climatic effects indicates that those plumes nearer the equator have the largest impact on surface temperatures. Analysis of the observations also suggests that injection of debris into the stratosphere is more important in determining the effect on climate than either the total volcanic explosivity of the eruption or the actual height reached within the stratosphere.  相似文献   

12.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

13.
Data assimilation combines atmospheric measurements with knowledge of atmospheric behavior as codified in computer models, thus producing a “best” estimate of current conditions that is consistent with both information sources. The four major challenges in data assimilation are: (1) to generate an initial state for a computer forecast that has the same mass-wind balance as the assimilating model, (2) to deal with the common problem of highly non-uniform distribution of observations, (3) to exploit the value of proxy observations (of parameters that are not carried explicitly in the model), and (4) to determine the statistical error properties of observing systems and numerical model alike so as to give each information source the proper weight. Variational data assimilation is practiced at major meteorological centers around the world. It is based upon multivariate linear regression, dating back to Gauss, and variational calculus. At the heart of the method is the minimization of a cost function, which guarantees that the analyzed fields will closely resemble both the background field (a short forecast containing a priori information about the atmospheric state) and current observations. The size of the errors in the background and the observations (the latter, arising from measurement and non-representativeness) determine how close the analysis is to each basic source of information. Three-dimensional variational (3DVAR) assimilation provides a logical framework for incorporating the error information (in the form of variances and spatial covariances) and deals directly with the problem of proxy observations. 4DVAR assimilation is an extension of 3DVAR assimilation that includes the time dimension; it attempts to find an evolution of model states that most closely matches observations taken over a time interval measured in hours. Both 3DVAR and, especially, 4DVAR assimilation require very large computing resources. Researchers are trying to find more efficient numerical solutions to these problems. Variational assimilation is applicable in the upper atmosphere, but practical implementation demands accurate modeling of the physical processes that occur at high altitudes and multiple sources of observations.  相似文献   

14.
Reducing discrepancies in ground and satellite-observed eruption heights   总被引:2,自引:2,他引:0  
The plume height represents a crucial piece of evidence about an eruption, feeding later assessment of its size, character, and potential impact, and feeding real-time warnings for aviation and ground-based populations. There have been many observed discrepancies between different observations of maximum plume height for the same eruption. A comparison of maximum daily height estimates of volcanic clouds over Indonesia and Papua New Guinea during 1982–2005 shows marked differences between ground and satellite estimates, and a general tendency towards lower height estimates from the ground. Without improvements in the quality of these estimates, reconciled among all available methods, warning systems will be less effective than they should be and the world's record of global volcanism will remain hard to quantify. Examination of particular cases suggests many possible reasons for the discrepancies. Consideration of the satellite and radar cloud observations for the 1991 Pinatubo eruptions shows that marked differences can exist even with apparently good observations. The problem can be understood largely as a sampling issue, as the most widely reported parameter, the maximum cloud height, is highly sensitive to the frequency of observation. Satellite and radar cloud heights also show a pronounced clumping near the height of the tropopause and relative lack of eruptions reaching only the mid-troposphere, reinforcing the importance of the tropopause in determining the eruption height in convectively unstable environments. To reduce the discrepancies between ground and satellite estimates, a number of formal collaboration measures between vulcanological, meteorological and aviation agencies are suggested.  相似文献   

15.
The maximum height attained by a volcanic eruption cloud is principally determined by the convective buoyancy of the mixture of volcanic gas + entrained air + fine-sized pyroclasts within the cloud. The thermal energy supplied to convection processes within an eruption cloud is derived from the cooling of pyroclastic material and volcanic gases discharged by an explosive eruption. Observational data from six recent eruptions indicates that the maximum height attained by volcanic eruption clouds is positively correlated with the rate at which pyroclastic material is produced by an explosive eruption (correlation coefficient r = + 0.97). The ascent of industrial hot gas plumes is also governed by the thermal convection process. Empirical scaling relationships between plume height and thermal flux have been developed for industrial plumes. Applying these scaling relationships to volcanic eruption clouds suggests that the rate at which thermal energy is released into the atmosphere by an explosive eruption increases in an approximately linear manner as an eruption's pyroclastic production rate increases.  相似文献   

16.
Application of the extended Kalman filter in the data assimilation problem of the one-dimensional (1D) Parker dynamo model is considered for two extreme cases: (1) when the magnetic field observations are taken uniformly across the entire surface of the liquid core of the Earth and (2) when the observations are taken at one spatial point. The algorithm allows the model solution with arbitrary initial conditions to be modified based on observations. It is shown that the redundancy of the noised data can reduce the efficiency of the recovery of the solution. Considerations on the applicability of data assimilation for the case of a higher dimension and a solution’s convergence dependent on the density of the flow of information assimilated are suggested.  相似文献   

17.
Volcanic plumes interact with the wind at all scales. On smaller scales, wind affects local eddy structure; on larger scales, wind shapes the entire plume trajectory. The polar jets or jetstreams are regions of high [generally eastbound] winds that span the globe from 30 to 60° in latitude, centered at an altitude of about 10 km. They can be hundreds of kilometers wide, but as little as 1 km in thickness. Core windspeeds are up to 130 m/s. Modern transcontinental and transoceanic air routes are configured to take advantage of the jetstream. Eastbound commercial jets can save both time and fuel by flying within it; westbound aircraft generally seek to avoid it.Using both an integral model of plume motion that is formulated within a plume-centered coordinate system (BENT) as well as the Active Tracer High-resolution Atmospheric Model (ATHAM), we have calculated plume trajectories and rise heights under different wind conditions. Model plume trajectories compare well with the observed plume trajectory of the Sept 30/Oct 1, 1994, eruption of Kliuchevskoi Volcano, Kamchatka, Russia, for which measured maximum windspeed was 30–40 m/s at about 12 km. Tephra fall patterns for some prehistoric eruptions of Avachinsky Volcano, Kamchatka, and Inyo Craters, CA, USA, are anomalously elongated and inconsistent with simple models of tephra dispersal in a constant windfield. The Avachinsky deposit is modeled well by BENT using a windspeed that varies with height.Two potentially useful conclusions can be made about air routes and volcanic eruption plumes under jetstream conditions. The first is that by taking advantage of the jetstream, aircraft are flying within an airspace that is also preferentially occupied by volcanic eruption clouds and particles. The second is that, because eruptions with highly variable mass eruption rate pump volcanic particles into the jetstream under these conditions, it is difficult to constrain the tephra grain size distribution and mass loading present within a downwind volcanic plume or cloud that has interacted with the jetstream. Furthermore, anomalously large particles and high mass loadings could be present within the cloud, if it was in fact formed by an eruption with a high mass eruption rate. In terms of interpretation of tephra dispersal patterns, the results suggest that extremely elongated isopach or isopleth patterns may often be the result of eruption into the jetstream, and that estimation of the mass eruption rate from these elongated patterns should be considered cautiously.  相似文献   

18.
Landsat satellite images were selected for the analysis of a tephraladen eruption cloud and a volcanic fume cloud. A 35 km long eruption plume from Sakurazima Volcano, Kyushu, Japan was viewed by the satellite on December 2, 1972. Multispectral Scanner (MSS) band 4 was density sliced into eight levels. Grey levels over the tephra-laden cumulus, which had formed at the terminus of the eruption plume, were distinct from most of the nearby cumulus clouds. MSS band 4 is the key band for identifying eruption clouds in overcast volcanic regions. A lume cloud from Stromboli, Italy was studied in the same manner. It is easily identified over land areas and for 8 km over water in areas of clear sky, but cannot be distinguished from banks of cumulus clouds.  相似文献   

19.
计凤桔  李齐 《地震地质》1998,20(4):15-304
首次利用TL测年技术,测定了五大连池火山群中两座最新喷发的火山熔岩中的烘烤捕虏体的年代。测定结果((264±19)aB.P.,(273±19)aB.P.)在误差范围内与喷发的历史记载(1719~1721年)一致,表明这两座火山是同期喷发的产物,同时也表明利用TL测年技术能比较准确地测定年轻火山活动的年代,它为恢复火山最新喷发历史的研究提供了一种比较可靠的年代测定途径  相似文献   

20.
Volcanic ash fallout represents a serious threat to people living near active volcanoes because it can produce several undesirable effects such as collapse of roofs by ash loading, respiratory sickness, air traffic disruption, or damage to agriculture. The assessment of such volcanic risk is therefore an issue of vital importance for public safety and its mitigation often requires to evaluate the temporal evolution of the phenomenon through reliable computational models.We develop an Eulerian model, named FALL3D, for the transport and deposition of volcanic ashes. The model is based on the advection–diffusion–sedimentation equation with a turbulent diffusion given by the gradient transport theory, a wind field obtained from a meteorological limited area model (LAM) and the source term derived from by buoyant plume theory. It can be used to forecast either ash concentration in the atmosphere or ash loading on the ground. Model inputs are topography, meteorological data given by a LAM, mass eruption rate, and a particle settling velocity distribution. A test application to the July 2001 Etna eruption is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号