首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The east branch fault of Tan-Lu fault zone extends from Fengshan Town of Sihong County on the north shore of the Huaihe River in Jiangsu Province, into Fushan Town of Mingguang City on the south shore of Huaihe River in Anhui Province. The landform changes from Subei plain on the north of Huaihe River to Zhangbaling uplift area on the south of Huaihe River. The terrain rises gradually with larger relief amplitude. The Fushan section of the Tan-Lu fault zone is located in Ziyang to Fushan area of Mingguang City. The fault is shown in the satellite image as a clear linear image, and the fault extends along the east side of a NNE-trending hillock. In this section the Quaternary strata are unevenly distributed, which causes some difficulties in the study of recent fault activity.In recent years, the author has found that the fault of the Fushan section of the Tan-Lu fault zone on the south of the Huaihe River still has a certain control effect on the landform and the Quaternary strata. Based on satellite imagery and geological data, we select the appropriate location in the Fushan section to excavate the Santang trench Tc1 and Fushannan trench Tc2, and clean up the Fushannan profile Pm, which reveals rich phenomena of recent fault activity. Santang trench reveals three faults, and the faulting phenomenon is obvious. One of the faults shows the characteristic of right-lateral strike-slip normal faulting; Fushannan profile reveals one fault, with the same faulting behavior of right-lateral strike-slip normal fault. Comprehensive stratigraphic sample dating results indicate that the fault dislocated the middle Pleistocene strata, late Quaternary strata and early Holocene strata. All our work shows that the fault of Fushan section has intensive activity since late Pleistocene, and the latest active age can reach early Holocene. The latest earthquake occurred at(10.6±0.8)~(7.6±0.5)ka BP. The faults exposed by trenches and profiles show the characteristics of right-lateral strike-slip normal faulting, which reflects the complexity of the tectonic stress field in the area where the fault locates.  相似文献   

2.
将军山—白水断裂是渭河盆地北缘断裂东段的一分支,位于将军山、东太白山山前,向北东延伸至白水县境内,已有资料及研究成果认为其为晚更新世活动断裂。通过地貌地质调查、音频大地电磁法勘探、浅层地震勘探、钻孔联合剖面探测、第四纪沉积物年代测试等方法,对将军山—白水断裂的展布与活动性进行研究。结果表明该断裂总体走向为NE向,倾向S,为一山前隐伏断裂,最新活动时代为中更新世晚期,未发现晚更新世以来活动的证据,判断其为中更新世活动断层。  相似文献   

3.
华山山前断裂中段晚第四纪活动的地貌表现及响应   总被引:2,自引:1,他引:1  
调查了华山山前断裂中段(石堤峪-杜峪)晚更新世以来,尤其是全新世以来的断层构造地貌,讨论了它们的成因、特点及对断裂活动的响应关系。断层构造地貌主要包括:断层三角面、断层陡坎、洪积阶地、埋藏型洪积扇以及冲沟裂点。对各大沟峪峪口的洪积阶地进行了大比例尺微地貌测量,并在部分沟峪两侧沿断层崖陡坎及冲沟沟床布置了测线。结合T1、T2级洪积阶地位错测量结果及其14C年龄计算得到,华山山前断裂中段6000a-2000aB.P.的垂直滑动速率为1.485mm/a;2000aB.P.以来的垂直滑动速率为3.73mm/a。最后结合野外调查与理论认识,建立了正断层作用下洪积阶地与埋藏型洪积扇的演化模式。本研究结果支持华山山前断裂是1556年华县814级地震发震构造的观点。  相似文献   

4.
韩城断裂是汾渭断陷带临汾盆地WS边界的一条控制性断裂,据最新的野外调查研究结果将该断裂分为3段,其中NE段活动性最强,形成的构造地貌也最为显著。本文在野外地质地貌调查的基础上,在NE段选取4个地点进行了探槽开挖和年代样品测试,并对揭示的古地震事件进行了分析探讨,综合各个探槽及典型地质剖面古地震事件分析结果认为,韩城断裂NE段最新的活动时代为距今6~8ka。  相似文献   

5.
合浦-北流断裂带西支合浦盆地段断裂活动性研究   总被引:2,自引:1,他引:1       下载免费PDF全文
合浦-北流断裂起于北部湾海域,经合浦、博白后继续向NE延伸,断裂总长度为400余千米,断裂总体走向为40°~60°,分东、西2支,其中西支自南流江下游合浦盆地西南段一直向NE延伸。文中主要采用地质地貌、地震探测、钻探以及年代学方法,对合浦-北流断裂西支合浦盆地段的活动性进行判定,结果表明:合浦-北流断裂西支合浦盆地段最后1次活动应发生在早更新世中晚期,错距约为10m,断裂被中更新世中、晚期地层覆盖,即中更新世中、晚期以来,断裂的活动趋于减弱或停止  相似文献   

6.
On the basis of consulting historical records about the positions of Hukou waterfall at different times,we conduct a field geological survey along the Yellow River and ultimately determine the specific locations of the Hukou waterfall in the different periods.Based on this,the retrogressive erosion rates in different periods are calculated as about 1.66m/year during the Xia Dynasty to the Tang Dynasty period,about 1.01m/year in the Tang Dynasty to the Yuan Dynasty,about 0.97m/year in the Yuan Dynasty to the Ming Dynasty,about 1.28m/year in the Ming Dynasty to the Republican period,and 0.6m/year from the Republican period to the present.Considering the complex geological conditions along the Yellow River,the average retrogressive erosion rate of Hukou waterfall on the Yellow River is obtained to be 1.51m/year since the historical records (early Qin Dynasty to the present).Lithology surrounding the Hukou waterfall includes mainly the Triassic gray,gray-green thick-layered mid-grained feldspar sandstone and dark purple,yellow-green mudstone,this hardness and softness combination feature is the unique geological condition of the Yellow River.After abrasing the softer shale driven by water cyclotron at this position,water washes off the debris,causing the overlying feldspar sandstone suspended for a long period.Feldspar greywacke block collapses under accumulative water erosion in long years,and then retrogressive erosion occurs in Hukou waterfall.In the process of 1 ︰ 50 000 active fault mapping of Hancheng Fault,we excavated a trench at Shaojialing,and the trench profile shows that:in the early and middle period of late Pleistocene,there are obvious surface ruptures produced by the fault.Cumulative offset near the trench is more than 20 meters in height difference.Yellow River terraces survey at Yumenkou also confirms that a fault slip of about 20 meters occurred during the early and middle period of the late Pleistocene.Assuming the retrogressive erosion rate is constant,the author thinks the Hancheng Fault was activated at early and middle age of the Late Pleistocene,forming a 20~30m high scarp (knick point),and today's position of Hukou waterfall may be the position of this knick point after the retrogressive erosion of about 40 to 50ka.  相似文献   

7.
花海断裂是位于河西走廊西端阿尔金断裂系北侧花海盆地内的一条活动断裂,对该断裂活动性的认识不仅有助于评估该区的地震危险性,而且对深入理解青藏高原向北扩展过程中块体相互作用具有重要的科学意义。遥感解译与地震地质调查表明,花海断裂仅局限于花海盆地内,长度约25 km。断裂走向NNW,南端起自花海镇以南,向北经小泉、大泉、双泉子后穿过山水河,向北逐渐消失在北山山前大型冲积扇前。地貌上,花海断裂南部表现为线性延伸的断层陡坎,北段构成了风成砂丘与冲洪积扇的界线。在断裂北段跨断层陡坎进行了探槽开挖,探槽揭露和光释光年代学测试结果表明,该断裂最新一次古地震事件的时间距今约5万年,全新世以来没有明显的活动迹象,为晚更新世活动断裂。结合陡坎位错分析,花海断裂晚第四纪以来垂直滑动速率小于0.03 mm/a。区域大地构造动力学背景分析表明,花海断裂是在青藏高原向北扩展作用下盆地内形成的次一级活动断裂,是高原外围块体对青藏高原向外扩展的响应。  相似文献   

8.
孟连断裂是滇西南地区的1条区域性活动断裂。本文通过地形地貌、断裂剖面及地震活动等对断裂的空间展布及晚第四纪活动性进行分析和研究,获得了断裂活动时代和活动速率等参数。研究表明:孟连断裂晚第四纪期间仍在活动,最新活动时代为全新世,运动性质以左旋走滑为主,晚第四纪以来的平均水平滑动速率为3.8—5.1mm/a;该断裂控制着孟连、勐阿等第四纪盆地的发展及演化,沿断层发生了1995年7月12日中缅边境7.3级地震。  相似文献   

9.
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution. Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou. Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface. Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.  相似文献   

10.
五道梁-曲麻莱断裂系位于青藏高原中部,关于其晚第四纪活动性迄今鲜有介绍。由高分辨率卫星影像解译和野外地质考察可知,断裂系西段由五道梁南山北缘断裂和五道梁南山南缘断裂组成,二者分别断错了五道梁南山两侧的各级洪积扇。通过洪积扇上的断错地貌分析和光释光测年方法得到南缘断裂缩短速率为(0.25±0.11)mm/a,北缘断裂缩短速率为(0.50±0.05)mm/a。基于经验公式和最新洪积扇上陡坎高度,推测南、北缘断裂可能曾发生7.2~7.4级地震,大震复发周期长达8 000余年;如果陡坎高度由2次古地震事件叠加形成,则可能发生6.9~7.1级地震,全新世中期以来大震复发周期可能为2 000~3 000年。  相似文献   

11.
山东半岛东北部新发现近EW向活断层   总被引:4,自引:0,他引:4       下载免费PDF全文
山东半岛东北部地区晚第四纪的构造活动以整体性抬升为主,内部的断裂活动相对较弱,晚更新世以来的断裂活动仅分布在局部地区,新发现的东殿后断裂是其中的1条。断裂总体走向近EW,全长约20km,地貌上表现为由3条河流上游组成的谷地。断裂错断的最新地层的热释光年龄为84~75kaBP,上覆坡积角砾层的热释光年龄为64kaBP,断裂发育的松软断层泥的热释光年龄为82kaBP。断裂的剖面特征和断盖地层的年龄表明,东殿后断裂的最新活动时代是晚更新世早中期,垂直活动速率不<016mm/a,晚更新世晚期以来停止活动;断裂的最大潜在地震为6级  相似文献   

12.
The Yarlung Tsangbo fault zone, one of the most important geological interfaces in the Yarlung Tsangbo suture zone which is a huge geotectonic boundary with nearly east-west-trending in southern Tibet Plateau, has undergone a long-term tectonic evolution. Studying this fault zone can help us understand the development and evolution history of the suture zone and the tectonic mechanism of subduction-collision about the Tibet Plateau, so it has always been a hot topic in the field of geology. Most of existing data suggest that the current tectonic activity in southern Tibet is given priority to the rift system with nearly north-south-trending, and the Yarlung Tsangbo fault zone with nearly east-west-trending has relatively weaker activity since late Quaternary. There are only some evidences of Holocene activity found in the Lulang town section near eastern Himalayan syntaxis, and there are few reports about the reliable geological evidences of late Quaternary activity of the section on the west of Milin County of the fault zone. Based on image interpretation, field investigation and chronological method, we found several fault profiles along the Yarlung Tsangbo fault zone near the Angren Lake in this study. These profiles reveal that loose fault gouge has been developed on the fault plane which nearly extends to the surface and offsets the loess sediments and its overlying alluvial-proluvial gravels. The loess is characterized by coarser grains, higher content of fine sand and tiny small gravels. The results of the two OSL dating samples collected in the loess are(94.68±6.51)ka and(103.84±5.14)ka respectively, showing that the loess revealed at the Angren site should be the middle-late Pleistocene sand loess distributed on the high-terraces along the Yarlung Tsangpo River. Consequently, the Angren segment of the Yarlung Tsangpo fault zone is active since the late Quaternary. In addition, synchronous left-lateral offsets of a series of small gullies and beheaded gullies can be seen near the profiles along the fault, which are the supporting evidence for the late Quaternary activity of the fault. However, the segment with obvious geomorphology remains is relatively short, and no evidence of late Quaternary activity have been found in other sections on the west of Milin County of the Yarlung Tsangpo fault zone. Existing data show that, in the southern Tibet, a series of near NS-trending rift systems are strongly active since the late Quaternary, cutting almost all of the near east-west-trending tectonic belts including the Yarlung Tsangpo fault zone. In addition, majority of the earthquakes occurring in southern Tibet are related to the NS-trending rift systems. Tectonic images show that the Angren segment locates between the Shenzha-Dingjie rift and the Dangreyong Lake-Gu Lake rift. These two adjacent rifts are special in the rift system in southern Tibet:Firstly, the two rifts are located in the conversion position of the trend of the whole rift system; Secondly, the size of the two rifts varies significantly between the north side and the south side of the Yarlung Tsangbo fault zone. Thirdly, the Shenzha-Dingjie rift seems to be of right-lateral bending, while the Dangreyong Lake-Gu Lake rift shows left-lateral bending. These characteristics may lead to the fact that the amount of absorption and accommodation of the rift activities in the north side of the Yarlung Tsangbo fault zone is larger than that in the south side during the migration of the plateau materials, leading to the differential movement of the block between the two sides of the fault zone. Therefore, the Yarlung Tsangbo fault zone possesses the accommodating tectonic activity, of course, the intensity of this accommodating activity is limited and relatively weaker, which may be the reason why it is difficult to find large-scale tectonic remains characterizing the late Quaternary activity along the fault zone. The scale of the rift system in southern Tibet is systematically different between the two sides of the Yarlung Tsangbo fault zone, so it cannot be ruled out that there are also weak activities similar to the Angren segment in other sections of the fault zone.  相似文献   

13.
四川龙泉山断裂带变形特征及其活动性初步研究   总被引:9,自引:3,他引:6  
文中通过野外调查和地震反射剖面研究,获取了龙泉山断裂带的变形特征。龙泉山断裂带主逆冲断层位于龙泉山背斜的西翼,具有明显的分段性特征,北段与南段断层面倾向NW,断续分布;中段断层面倾向SE,形成典型的断层传播褶皱,并且断层已经沿背斜前翼膝折带的轴突破,形成贯通的突破断层。因此,中段构成了龙泉山断裂的主体。地貌对断裂活动性的响应表明龙泉山断裂早更新世—晚更新世有过一定的活动,晚更新世以来活动速率较低,且活动性具有从南向北逐渐减弱的趋势  相似文献   

14.
Geological setting of the 8 October 2005 Kashmir earthquake   总被引:1,自引:0,他引:1  
The source of the 8 October 2005 earthquake of M 7.6 was the northwest-striking Balakot–Bagh (B–B) fault, which had been mapped by the Geological Survey of Pakistan prior to the earthquake but had not been recognized as active except for a 16-km section near Muzaffarabad. The fault follows the Indus–Kohistan Seismic Zone (IKSZ); both cut across and locally offset the Hazara–Kashmir Syntaxis defined by the Main Boundary and Panjal thrusts. The fault has no expression in facies of the Miocene–Pleistocene Siwalik Group but does offset late Pleistocene terrace surfaces in Pakistan-administered Jammu-Kashmir. Two en-échelon anticlines near Muzaffarabad and Balakot expose Precambrian Muzaffarabad Limestone and are cut by the B–B fault on their southwest sides, suggesting that folding and exposure of Precambrian rocks by erosion accompanied Quaternary displacement along the fault. The B–B fault has reverse separation, northeast side up; uplift of the northeast side accompanied displacement, producing higher topography and steeper stream gradients northeast of the fault. No surface expression of the B–B fault has been found northwest of the syntaxis, although the IKSZ and steeper stream gradients continue at least as far as the Indus River, the site of the Pattan earthquake of M 6.2 in 1974. To the southeast, northwest-striking faults were mapped by the Geological Survey of Pakistan. One of these faults, the Riasi thrust, cuts across the southwest flank of an anticline exposing Precambrian limestone. Farther southeast, in Indian-administered territory, Holocene activity on the Riasi thrust has been described. In the Kangra reentrant still farther southeast, active faulting may follow the Soan thrust, along which Holocene and Pleistocene offsets have been described. The Soan thrust, rather than the south flank of the Janauri anticline, may represent the surface projection of the 1905 Kangra earthquake of M 7.8.  相似文献   

15.
The NE-trending Xinyi-Lianjiang fault zone is a tectonic belt, located in the interior of the Yunkai uplift in the west of Guangdong Province, clamping the Lianjiang synclinorium and consisting of the eastern branch and the western branch. The southwestern segment of the eastern branch of Xinyi-Lianjiang fault zone, about 34km long, extends from the north of Guanqiao, through Lianjiang, to the north of Hengshan. However, it is still unclear about whether the segment extends to Jiuzhoujiang alluvial plain or not, which is in the southwest of Hengshan. If it does, what is about its fault activity? According to ‘Catalogue of the Modern Earthquakes of China’, two moderately strong earthquakes with magnitude 6.0 and 6.5 struck the Lianjiang region in 1605 AD. So it is necessary to acquire the knowledge about the activity of the segment fault, which is probably the corresponding seismogenic structure of the two destructive earthquakes. And the study on the fault activity of the segment can boost the research on seismotectonics of moderately strong earthquakes in Southeast China. In order to obtain the understanding of the existence of the buried fault of the southwestern segment, shallow seismic exploration profiles and composite borehole sections have been conducted. The results indicate its existence. Two shallow seismic exploration profiles show that buried depth of the upper breakpoints and vertical throw of the buried fault are 60m and 4~7m(L5-1 and L5-2 segment, the Hengshan section), 85m and 5~8m(L5-3 segment), 73m and 3~5m(Tiantouzai section), respectively and all of them suggest the buried fault has offset the base of the Quaternary strata. Two composite borehole sections reveal that the depth of the upper breakpoints and vertical throws of the buried segment are about 66m and 7.5m(Hengshan section) and 75m and 5m(Tiantouzai section), respectively. The drilling geological section in Hengshan reveals that the width of the fault could be up to 27m. Chronology data of Quaternary strata in the two drilling sections, obtained by means of electron spin resonance(ESR), suggest that the latest activity age of the buried fault of the southwestern segment is from late of early Pleistocene(Tiantouzai section) to early stage of middle Pleistocene(Hengshan section). Slip rates, obtained by Hengshan section and Tiantouzai section, are 0.1mm/a and 0.013mm/a, respectively. As shown by the fault profile located in a bedrock exposed region in Shajing, there are at least two stages of fault gouge and near-horizontal striation on the fault surface, indicating that the latest activity of the southwestern segment is characterized by strike-slip movement. Chronology data suggest that the age of the gouge formed in the later stage is(348±49) ka.  相似文献   

16.
The Yangjia Village-Yaodian segment of Weihe Fault, starting from Yangjia Village in the west, passing through Weijiaquan, Jinjiazhuang, Donger Village, Chenjiatai to Yaodian, occurs as a NE-striking fault dipping south with a total length of 33 kilometers. As a syn-depositional normal fault, it extends along the leading and trail edge of T1, T2 and T3 terrace at the northern bank of Weihe River. Results of remote sensing interpretation, shallow seismic exploration, exploratory trench, and drilling show that the Yangjia Village-Yaodian section of Weihe Fault manifests as fault scarps, overlapping with the NE-extending terrace scarp at the northern bank of Weihe River. Weihe Fault broke the T1 that can be distinguished on the shallow seismic profile and multiple profiles with broken signs from T1 to the ground, which is the same with the cracks through the Han Tomb at the top of the exploratory trench in Yangjia Village. It shows that the fault may still be active from the late Pleistocene to Holocene. Through composite drilling section and the analysis of exploratory trench, there is no significant difference in activity between the Yangjia Village-Jinjiazhuang and Donger Village-Yaodian section. This segment has experienced a large displacement event since (46.0±3.3)ka BP, approximately 11.0~16.5m, with a vertical slip rate of 0.34~0.45mm/a. The most recent activity occurred approximately around 2.0ka BP. The left-step en echelon fracture zone at Jingjiazhuang separates this section into two minor ones, Yangjia Village-Jinjiazhuang section and Donger Villag-Yaodian section. Yangjia Village-Yaodian section in Weihe Fault and Yaodian-Zhangjiawan section which was found out in the Xi'an active fault detection and seismic risk assessment project can be combined into the Yangjia Village-Zhangjiawan section.  相似文献   

17.
河北省怀安盆地北缘断裂活动性研究   总被引:2,自引:0,他引:2  
本文以野外地质调查为主,讨论了怀安盆地北缘断裂的几何展布和活动特征,并进行了断裂的活动性分段,对断裂的运动学特片也进行了探讨,研究认为,该断裂是一条第四纪活动断裂,以东段活动性最强,Q3^2以来平均垂滑动速率达0.21-0.22mm/a;中段活动次之,西段活动较弱,整个断裂活动年代有自西南向东北迁移的趋势。最后,文章对1626年25/4级地震的震中位置作了讨论。  相似文献   

18.
则木河断裂带南北分别与安宁河断裂带和小江断裂带相接,自中更新世复活以来,以左旋走滑为主,并成为一条重要的地震断层。据TL和ESR 测年分析,则木河谷地广泛存在的最低一级冲积扇为10 000 ~15 000 年以来形成。切割这些冲积扇的冲沟被则木河断裂带错断,其发生时间与冲积扇相当或者更新,平均位移值测量为86m 。据此计算,则木河断裂带晚更新世以来的平均走滑速率为5-8 ~8-6m m/a  相似文献   

19.
The southeast section of Zhongdian-Daju Fault is located in the northern part of Haba and Yulong Snow Mountain, belonging to the southwestern boundary of the secondary block in northwestern Sichuan, an important boundary fault striking 310°~320° on the whole. The nature of the fault, the age of its activity and the slip rate are of great significance for the analysis of the secondary block movement in the northwestern Sichuan and the intersection relationship with the eastern piedmont fault of Yulong Mountains. Based on the 1 ︰ 5 million-scale active fault geological mapping, this paper studies in detail the stratigraphic landform, scarp landform, surface rupture, typical fault profile and river terrace along the fault. Based on the research results, we divide the southeastern section of Zhongdian-Daju Fault into two sub-segments, the Majiacun-Daju sub-segment and the Daju-Dadong sub-segment, according to the geometric structure, fault landforms and fault activity. (1)Fault scarp:In the Majiacun-Daju sub-segment, the fault parallelly controls the two sides of the Haba fault depression. It cuts the late Pleistocene moraine deposits, forming a fault scarp of about 4.5km long and(14±2)m high. The continuity of the scarp is very good, and it is also very obvious in the remote sensing image. In the Daju-Dadong sub-segment, a scarp with a height of about 2m is formed, and an optical luminescence dating sample is collected from the upper part of the gravel layer on the second-order terrace to obtain an age of(22±2.2)ka. (2)Horizontal dislocation:In the Majiacun-Daju sub-segment, through the analysis of the development of outwash fans in the area and the measurement and induction of the gully dislocations, it is considered that there are at least three stages of outwash fans developed in the area and there may be four phases of faulting. That is, the earliest-stage outwash fan and gully are horizontally dislocated about 1km; the second-stage outwash fan and gully are horizontally dislocated about 47m, and the vertical dislocation is about(14±2)m; the gully in the third stage outwash fan is horizontally dislocated twice, the first dislocation formed a beheaded gully with a dislocation of 22m, and the second formed a beheaded gully with a dislocation of 8.5m. It is further proved that the fault has strong activity since the Holocene in the Majiacun to Daju area. In the Daju-Dadong sub-segment, there are no obvious horizontal dislocations in the alluvial deposits since the Holocene. Only 3~4 gullies are found to be offset right-laterally in the ridges east of Wenhe Village, with the maximum dislocation of 210m, which may be the older phase dislocation. (3)Surface rupture:In the northwest direction of Dabazi Village on the T3 terrace in the basin between Majiacun and Daju, an earthquake surface rupture zone is found, extending in the NW direction. The rupture zone left clear traces on the about 1m-thick, hard T3 terrace surface formed by calcification of sand gravels, and the overburden either upwarps and bulges, or ruptures, generates ground fissures, or forms small pull-apart "depressions" locally. However, the rupture zone is not large in size, about 350m long, 60m wide at the widest point, and 0.3~1.5m high. It is partially en-echelon or obliquely arranged, dominated by compressive ruptures. Through observation, the possibility of artificial transformation is ruled out for these upwarping bulges, ruptures or ground fissures. The fault section is found in the southeast direction of the rupture zone. The slickensides at the section show that the fault is dominated by right-lateral strike-slip with a small amount of thrust. In the eastern sub-segment, only intermittently distributed surface ruptures are found in the northern part of the village, and the scale is small. In summary, through the field geological survey, it is found that the Majiacun-Daju sub-segment is a Holocene active segment. Though the Daju-Dadong sub-segment also offset the late Pleistocene to Holocene strata, it is considered that its Holocene activity is weak in terms of either the dislocation amount or the slip rate of this segment. By analyzing the geological and geomorphological evidences, such as fault scarps, horizontal dislocation and surface ruptures along the fault, it is considered that the Majiacun-Daju sub-segment is a right-lateral strike-slip fault with a normal faulting component, and its vertical slip rate since the late Pleistocene is(0.4~0.8)mm/a, the horizontal slip rate is 1.5~2.4mm/a. The Daju-Dadong sub-segment is dominated by right-lateral strike-slip with a normal faulting component, and its vertical slip rate since the late Late Cenozoic is 0.1mm/a. The formation of the NW-trending surface rupture zone found in the Daju Basin is very young, where there are only two major earthquakes, namely, the MS6.4 1966 Zhongdian earthquake and the 1996 Lijiang MS7.0 earthquake, and both earthquakes produced NW-oriented surface rupture zones. Therefore, it cannot be ruled out that the rupture zone is a product of the 1966 Zhongdian MS6.4 earthquake or the 1996 Lijiang MS7.0 earthquake.  相似文献   

20.
涉县断裂为太行山隆起区内涉县盆地的控盆构造,走向由NE转为近EW向,倾向NW/N,中部在井店东被EW向断裂错断,是控制涉县盆地的一组断裂。本文采用地质地貌调查、河流阶地分析和地质测年等方法,研究了涉县断裂晚第四纪活动特征。研究发现,涉县断裂带由多组断裂构成,带宽约200m,在清漳河两侧表现为山前的陡崖地貌、基岩破碎变形带,具有正断兼走滑特征,在基岩变形带上部发育走向NNE向和NWW向次级滑动面,次级滑动面错断第四系黄土,最新活动到晚更新世;断裂在盆地区通过,地表形成低缓陡坎,断裂错断Q2-3地层,表现为上陡下缓的正断层。通过对涉县断裂两侧清漳河河流阶地、夷平面和地层年龄综合分析,估算涉县断裂晚更新世以来平均垂直滑动速率为0.06~0.08mm/a,中更新世以来平均垂直滑动速率为0.22~0.34mm/a,垂直差异活动主要发生于中更新世期间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号