首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The deep-lake facies of the Yanchang Formation represents a large outflowing lake basin in the Ordos area. Its deposition can be divided into four stages: lake genetic and expanding stage, peak stage, inversion stage and dying stage. All the stages are obviously consistent with the evolution of depositional environment and the paleoclimate in the region. The study indicates that the lake basin has evolution fluctuations from highstand to lowstand for four times in its evolution history, and the deposition center of the lake has not obviously moved, staying along the Huachi-Yijun belt. The deep lake sedimentary system mainly consists of deep water deltas and turbidite fans during the entire evolution course of the lake basin in the Late Triassic. The former mainly developed on the slope of steep shore of the delta in the early period of the deep-water expansion and gradually experienced a big shift from deep-water deltas to shallow-water platform delta. And the latter appeared almost in all the above stages and had two types of turbidite fans, slope-moving turbidite fans and slump turbidite fans. The slope-moving turbidite fans have relatively complete facies belts overlapping one another vertically and consist of the slope channel of inter fans, the turbidite channel, inter turbidite channel and turbidite channel front of middle fans and outer fans (or lakebottom plain). However, the slide-moving turbidity fans are formed in the deep lake with their microfacies difficult to be distinguished, and only the center microfacies and edge microfacies can be determined. The two types of the turbidity fans are similarly distributing in the near-root-slope and far-root-slope regions. The deep-lake deposition governs the distribution of the hydrocarbon and reservoir, while the slope-moving turbidite fans are excellent reservoirs for oil-gas exploration due to their great thickness, widespread distribution and accumulation properties.

  相似文献   

2.
The deep-lake facies of the Yanchang Formation represents a large outflowing lake basin in the Ordos area. Its deposition can be divided into four stages lake genetic and expanding stage, peak stage, inversion stage and dying stage. All the stages are obviously consistent with the evolution of depositional environment and the paleoclimate in the region. The study indicates that the lake basin has evolution fluctuations from highstand to lowstand for four times in its evolution history, and the deposition center of the lake has not obviously moved, staying along the Huachi-Yijun belt. The deep lake sedimentary system mainly consists of deep water deltas and turbidite fans during the entire evolution course of the lake basin in the Late Triassic. The former mainly developed on the slope of steep shore of the delta in the early period of the deep-water expansion and gradually experienced a big shift from deep-water deltas to shallow-water platform delta. And the latter appeared almost in all the above stages and had two types of turbidite fans, slope-moving turbidite fans and slump turbidite fans. The slope-moving turbidite fans have relatively complete facies belts overlapping one another vertically and consist of the slope channel of inter fans, the turbidite channel, inter turbidite channel and turbidite channel front of middle fans and outer fans (or lakebottom plain). However, the slide-moving turbidity fans are formed in the deep lake with their microfacies difficult to be distinguished, and only the center microfacies and edge microfacies can be determined. The two types of the turbidity fans are similarly distributing in the near-root-slope and far-root-slope regions. The deep-lake deposition governs the distribution of the hydrocarbon and reservoir, while the slope-moving turbidite fans are excellent reservoirs for oil-gas exploration due to their great thickness, widespread distribution and accumulation properties.  相似文献   

3.
An exceptionally well-exposed, ancient, intra-arc basin in the Permian Takitimu Group of New Zealand contains 14 km of interbedded primary volcanic and marine volcaniclastic rocks of basaltic to rhyodacitic composition. These are the products of subaerial and submarine arc volcanism and closely associated turbidite sedimentation. The Takitimu oceanic arc/basin setting formed a dynamic closed sedimentary system in which large volumes of volcaniclastic material generated at the arc was rapidly redeposited in marine basins flanking the eruptive centres. Volcanism probably included (1) moderate- to deep-water extrusion of lava and deposition of hyaloclastite, (2) extrusive and explosive eruptions from shallow marine to marginally emergent volcanoes in or on the margin of the basin, and (3) Plinian and phreato-Plinian eruptions from more distant subaerial vents along the arc. Much of the newly erupted material was rapidly transported to the adjacent marine basin by debris flows, slumping and sliding. Hemipelagic sedimentation predominated on the outer margin of the basin, infrequently interrupted by deposition of ash from the most explosive arc volcanism and the arrival of extremely dilute turbidites. Turbidite sedimentation prevailed in the remainder of the basin, producing a thick prograding volcaniclastic apron adjacent to the arc. The volcaniclastic strata closely resemble classic turbidite deposits, and show similar lateral facies variations to submarine fan deposits. Study of such sequences provides insight into poorly understood processes in modern arc-related basins.  相似文献   

4.
Deltas on planet Mars record past climate, but so far a wide range of hypotheses for their formation have been proposed. The objective of this paper is to understand martian fan deltas, their formative conditions, evolution and formative duration, and implications for the past climate. As an introduction to Mars, physiographic provinces are described and unambiguous proof is listed for the presence of flowing water in the past, such as certain minerals, groundwater, catastrophic outflow channels, alluvial fans and fan deltas, distributary networks and glaciers. The climate history of Mars differs from that of Earth by having had much drier conditions than on Earth, extreme intermittency and extreme events, most of them billions of years ago. Tens of fan deltas, unchannelized fan deltas and stepped fans have been found in impact crater and other lakes. The stepped fans were likely formed by backstepping under fast rising lake levels and have no known terrestrial equivalent. The fan deltas were formed once the lake overflowed. Alluvial fans are much more numerous and formed with less water. The delta studies illustrate how major challenges of martian morphology and reconstruction of past conditions can be taken up most effectively by combinations of the available high‐resolution images and digital elevation models, terrestrial analogues, laboratory experiments and physics‐based models gleaned from geomorphology. To resolve formative mechanisms and time scale of martian fans and deltas, morphological distinctions between dense debris flows and dilute fluvial flows must be identified for both source and sink areas. Furthermore, the properties of the martian surface material are very poorly constrained but can be explored by modelling various mass wasting, fluvial and glacial phenomena and hydrology, and by experimentation with slightly cohesive sediment. Finally, the highly debated role of groundwater sapping in valley and delta formation on Mars should be explored experimentally. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
通过对云贵高原西北部鹤庆钻孔古湖相沉积岩芯的粒度、碳酸盐含量和烧失量等指标的综合分析、研究,重建了鹤庆盆地2.78 Ma以来的古环境演化过程.岩芯磁性地层表明,鹤庆湖盆形成于约2.78 Ma.环境代用指标的综合分析显示:鹤庆盆地2.78 Ma以来有过三次大的环境转变,即2.65 Ma鹤庆湖盆积水成湖,1.55 Ma、0.99 Ma左右山盆高差两次加大,这分别与青藏运动B幕、C幕和昆黄运动耦合.  相似文献   

6.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
CopyrightbyScienceinChinaPress2004Theconfigurationandpredictionofdepositionalsystemsinasedimentarybasinhavelongbeenoneofthemajortasksofbasinanalysisandsedimentarygeologicalresearch.Intermsofsequencestratigraphy,originallyestablishedinstudyoftectonicallytablecontinentalmargins,thesealevelchangehasbeenusedtoeffectivelyinterpretandpredictthedistributionandevolutionofdepositionalsystemsinthesebasins[1,2].Butintectonicallyactivebasins,tectonismmaycontrolpredominatelythearchitectureandevolutionofth…  相似文献   

8.
The Early Triassic is a critical period in earth his- tory. A series of events such as volcano eruptions[1,2], sea-level fluctuations, changes in environmental con- ditions[3], mass extinctions[4,5] as well as global negative carbon isotope excursions[6-9] have been discovered in the uppermost Permian or across the Permian-Triassic boundary. Large scale sea-level rise[10-12], restoration of environment conditions, re- covery of ecosystem[13], including gradual carbon iso- tope rise[14] occur…  相似文献   

9.
Based on a multi-proxy investigation into the deep core of the Cuoe Lake in the middle of Tibetan Plateau, a 2.8 Ma paleoclimatic and paleoenvironmental evolution is reconstructed. The result of magnetic stratum indicates that the lake basin was formed at about 2.8 MaBP, while the multi-proxy analyses of lithology, grain size, magnetic susceptibility and geochemical elements reveal that there have been three major environmental evolution stages and at least two intensive uplifts of the Tibetan Plateau in the lake basin area, i.e. during 2.8-2.5 MaBP, the lake basin came into being as a result of the disaggregation of the planation surface and rapid rising of the Tibetan Plateau. During 2.5-0.8 MaBP, with gradual uplift of the Tibetan Plateau, the environment of this area was more effectively controlled by the climatic cycle of the alternative glacial-interglacial stages. After 0.8 MaBP, the middle part of the Plateau accelerated its uplift and entered cryoshere.  相似文献   

10.
The Dead Sea has been continuously dropping 0·4–1·0 m yr?1 since the middle of the 20th century and thus provides a unique field laboratory for studying in real time the response of drainage systems to a non‐tectonic base‐level fall. The aim of this work is to study the short‐term ongoing erosive response to a rapid base‐level drop in a small, steep‐fronted, erodible fan‐delta setting. The work explores the controls of the steep Qedem fan‐delta, guided by its clinoform structure, on its incision. Longitudinal profiles of the fan‐delta and of its entrenched channel were measured in the field. Sedimentary facies changes – fluviatile, shallow lacustrine and beach – were followed along exposures. The existence of large boulders provided an opportunity to examine the uncertain role of armouring and boulder flux on incision. The field study was combined with digital elevation models (DEMs) that were extracted from pairs of overlapping aerial photos. Maps of erosion and deposition were prepared using a change detection algorithm. The longitudinal profile of the entrenched channel was found to be steep and linear. The outlet temporarily ‘hangs’ elevated and ungraded above the retreating lake level, indicating years without incision flow events, which cause lags in response to the rapid lake level drop. In spite of the large boulders, the small drainage basin and precipitation volume over the basin of the Qedem, the recorded vertical incision rates in the unconsolidated sediments are as high as 0·8 m yr?1, i.e. similar to those of the largest wadis draining to the Dead Sea. The steep front of the fan‐delta is suggested to be a main factor controlling the efficient incision. A unique transport mechanism of rolling boulders, following undercutting, contributed to the entrenchment efficiency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
花东海盆浊流沉积的磁性特征及其环境意义   总被引:2,自引:0,他引:2       下载免费PDF全文
对取自台湾以东花东海盆GX168孔的浊流沉积物进行系统的岩石磁学研究,揭示其沉积学和岩石磁学特征,分析其物源和形成机制.研究结果显示,剖面上共识别出12层浊流沉积物,其分布存在规律,下部350~700cm共发育11层浊流沉积物,而0~350cm仅出现1层浊流沉积物.浊流沉积物粒径明显较背景沉积物粗,石英、长石含量更高,底部与下伏背景沉积呈突变接触,顶部与上覆背景沉积呈渐变接触,内部发育典型的正粒序韵律结构.浊流沉积物和背景沉积物具有相似的磁学特征,两者均以磁铁矿为主要载磁矿物类型,且磁铁矿颗粒均以准单畴和多畴颗粒为主.同时,两者也存在一定差异,浊流沉积物中磁铁矿较背景沉积物更为富集,磁化率和饱和等温剩磁更强,磁铁矿粒径更粗,这与浊流沉积物原始沉积区更靠近物源区有关.花东海盆浊流沉积形成的诱发机制可能是末次冰期以来频发的海平面波动造成陆坡之上沉积物重力失稳,导致陆坡沉积物向海盆搬运.  相似文献   

12.
The Dongsha submarine canyon is a large canyon belonging to a group of canyons on the northeastern South China Sea margin. Investigation of the Dongsha canyon is important for understanding the origin of this canyon group as well as the transport mechanism of sediments on the margin, and the evolution of the Taixinan foreland basin and the associated Taiwan orogenic belt. In this study, the morphology, sedimentary characteristics, and origin of the Dongsha canyon were investigated by integrating high-resolution multi-channel seismic reflection profiles and high-precision multibeam bathymetric data. This is a slope-confined canyon that originates in the upper slope east of the Dongsha Islands, extends downslope in the SEE direction, and finally merges with the South Taiwan Shoal canyon at a water depth of 3000 m. The total length and average width of the canyon are around 190 and 10 km, respectively. Eleven seismic sequence boundaries within the canyon fills were identified and interpreted as incision surfaces of the canyon. In the canyon fills, four types of seismic facies were defined: parallel onlap fill, chaotic fill, mounded divergent facies, and migrated wavy facies. The parallel onlap fill facies is interpreted as alternating coarser turbidites or other gravity-flow deposits and fine hemipelagic sediments filling the canyon valley. The chaotic fill facies is presumed to be debrites and/or basal lag deposits filling the thalwegs. The mounded divergent and migrated wavy seismic facies can be explained as canyon levees consisting mainly of overspilled fine turbidites and sediment waves on the levees or on the canyon-mouth submarine fans. Age correlation between the sequence boundaries and the ODP Site 1144 data suggests that the Dongsha canyon was initiated at approximately 0.9 Ma in the middle Pleistocene. Mapping of the canyon indicates that the canyon originated at the upstream portion of the middle reach of the modern canyon, and has been continuously expanding both upstream and downstream by retrogressive erosion, incision, and deposition of turbidity currents and other gravity transport processes. The ages of the sequence boundaries representing major canyon incision events are in good agreement with those of global sea-level lowstands, indicating that sea-level changes may have played an important role in the canyon's development. The Dongsha canyon developed in a region with an active tectonic background characterized by the Taiwan uplifting and the development of the Taixinan foreland basin. However, no evidence suggests that the canyon formation is directly associated with local or regional faulting and magmatic activities. Turbidity currents and other gravity transport processes(including submarine slides and slumps) may have had an important influence on the formation and evolution of the canyon.  相似文献   

13.
济阳坳陷第三系隐蔽藏储层预测配套技术   总被引:17,自引:15,他引:2       下载免费PDF全文
利用沉积学、层序地层学理论分析和研究沉积相特征,得出探区内发育的储层主要有冲积扇、河流、三角洲、浊积扇和滩坝五大沉积体系,提出了上第三系”水流控砂”、下第三系”坡槽控砂”的沉积模式,得到储层按构造带分布的规律.隐蔽性油气藏以”断导”模式成藏,与储层发育相匹配形成四个大的隐蔽性油气藏群.研究地震储层描述方法的适应性和敏感性,利用正、反演类比方法研究地震反射特征,实现了地震相和沉积相的转换.剖析典型的油气藏类型,分析成功的经验,总结失败的教训,得到了针对河流、冲积扇、三角洲、滩坝和浊积扇的描述流程和配套技术系列.  相似文献   

14.
南海北部神狐海域是我国首次获取海洋天然气水合物实物样品的海域.然而,陆坡区深水水道和海底峡谷的侵蚀以及频发的沉积物失稳,将会加剧地层对比和沉积相识别的难度,导致目前该区域典型地震相-沉积相特征、沉积体类型、成因机制和空间匹配关系等方面还缺少精细的研究,特别是第四纪以来的沉积演化涉及较少,区域内水合物形成和分布的沉积地质条件尚不清晰.基于海底地形特征的描述、层序地层格架的对比和地震资料的综合解释,本次研究在第四纪以来的沉积充填序列中识别出5种典型的地震相类型,并分析了对应的沉积体类型:进积型的陆坡、第四纪早期发育的小型浊积水道、沉积物失稳(滑移和滑塌)、海底峡谷和伴生的沉积物变形、以及深海沉积-块体流沉积的复合体.通过沉积单元的空间匹配关系,将沉积演化划分为3个阶段:浊积水道侵蚀-沉积物再沉积阶段、陆坡进积-沉积物失稳阶段、海底峡谷的侵蚀-充填阶段.研究结果表明,受第四纪早期小型浊积水道的侵蚀,再沉积的沉积物将在中-下陆坡以"近源"的方式堆积下来,可能具有相对较好的物性条件,从而可被视为适于水合物赋存的有利沉积体.进积型陆坡带来的沉积物易于发生失稳,在研究区内广泛分布,因其具有较小的沉积物颗粒粒度和较好的垂向连续性,可被认为是水合物的区域盖层.大量发育的海底峡谷及伴生的沉积物变形,将会侵蚀和破坏先前沉积的有利沉积体,使其呈现为"斑状/补丁状"的平面展布特征,进而影响了神狐海域水合物的分布.因此,神狐海域第四纪以来的沉积演化是钻探区水合物不均匀性分布的关键控制因素之一.  相似文献   

15.
The Lower Triassic Xikou Formation in southwestern Fujian, China is a set of complex deep-water sediments which includes turbidites, sandy contourites and isolated olistoliths. Five facies and seven subfacies are recognized in the deep-water turbidites, which are considered to belong to five facies associations of upper, middle and lower fans, respectively. The sandy contourites, which occur within turbidites as isolated thin layers with structures of traction current, are formed by reworking turbidites. They occur in discrete units, not as a part of a vertical sequence of structures, such as Bouma sequence. Paleocurrent directions derived from sandy contourites are perpendicular to or at a large angle of those derived from turbidites. In some areas, within the Formation there exist large oolitic limestone blocks slided from shallow sea. The temporal-spatial distribution of three types of sediments mentioned above and the related evidences could indicate that a passive continental margin from shallow sea to bathyal-abyssal region, dipping toward southeast, once occurred in study area during the early Triassic. The early Triassic represents a period of sealevel uprising. The uprising of sea level and the development of isolated olistoliths probably imply gradual shrinking of an ocean basin at that time. Project supported by the National Natural Science Foundation of China (Grant Nos. 49490011, 49702036).  相似文献   

16.
The relative importance of tectonics, climate, base level and source lithology as primary factors on alluvial‐fan evolution, fan morphology and sedimentary style remain in question. This study examines the role of catchment lithology on development and evolution of alluvial megafans (>30 km in length), along the flanks of the Kohrud Mountain range, NE Esfahan, central Iran. These fans toe out at axial basin river and playa‐fringe sediments towards the centre of basin and tectonics, climatic change and base‐level fluctuations, were consistent for their development. They formed in a tectonically active basin, under arid to semiarid climate and a long term (Plio‐Pleistocene to Recent) change from wetter to drier conditions. The key differences between two of these fans, Soh and Zefreh fans, along the west and south flanks of this mountain range, is that their catchments are underlain by dissimilar bedrock types. The source‐area lithologies of the Soh and Zefreh fans are in sedimentary and igneous terrains, respectively, and these fans developed their geometry mainly in response to different weathering intensities of their catchment bedrock lithologies. Fan surface mapping (based on 1/50000 topographic maps, satellite images, and fieldwork), reveals that the geomorphic evolution of these fans differs in that the relatively large‐scale incision and through trenching of the Soh fan is absent in the Zefreh fan. Whereas the limited sediment supply of the Soh fan has resulted in a deep incised channel, the Zefreh fan has remained aggradational with little or no trenching into proximal to medial fan surface due to its catchment bedrock geology, composed mainly by physically weathered volcaniclastic lithology and characterized by high sediment supply for delivery during episodic flash floods. Sediment supply, which is mainly a function of climate and source lithology, is a dominant driver behind the development of fan sequences in alluvial megafans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This work details the role of fault reactivation in the development of tropical montane lakes by using basin morpho-structural analysis and seismostratigraphic studies. The upland lakes are severely faulted sinkholes, whose faults penetrate the Quaternary sedimentary units. Four main stages are related to the lake formation: (i) an Early Proterozoic tectonic deformation of the rocks along the southern border of the Carajás Structure, where the lake is placed; (ii) differential erosion by – and building of – the formation of the South Carajás Hill; (iii) Fe-rich crust formation by weathering and gravitational collapse faults following the E–W plateau border and the start of Violão Lake formation during the Pliocene–Pleistocene; and (iv) episodic fault-fracture reactivation by gravitational collapse causing pulses of subsidence in the lake and outlining its faulted borders. Dissolution of the lateritic crust and erosion by runoff drainage under wet climate conditions were coeval with fault activities, which allowed the deposition of relatively thick clastic deposits organized in three main seismostratigraphic units associated with major lake-level fluctuations. Initial fault reactivation under low-level water started lacustrine basin development with deposition of prograding fan deltas related to the main drainage. A second fault reactivation by gravitational collapse increased the lake accommodation space and resulted in the deposition of fine-grained sediments from dilute interflows or overflows until 36 000 cal year BP. At about 31 000 cal year BP, rapid decreases in the lake water level under redox conditions at the sediment/water interface allowed widespread siderite formation. A third gravitational collapse episode was responsible for the increase in the lake area and depth and the returning of clastic/organic deposition up to the present. This tropical montane lake can be seen as a representative example for understanding the formation of other upland lakes controlled by fault reactivation. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
Mountainous regions are important contributors to the terrestrial organic carbon (OC) sink that affect global climate through the regulation of carbon‐based greenhouse gases. However, mountain OC dynamics are poorly quantified. We quantified OC storage in subalpine lake deltas in the Washington Central Cascades and Colorado Front Range with the objectives of determining the magnitude of transient carbon storage and understanding the differences in storage between the two ranges. We used field, laboratory, and GIS techniques to determine the magnitude of and controls on the subalpine lake delta OC pool in 26 subalpine lake deltas. Soil moisture, soil texture, mean basin slope, and delta valley confinement are significantly correlated with soil carbon on deltas. Average soil OC concentration on subalpine lake deltas ranges from 3 to 41%, and stocks range from 140 to 1256 Mg C/ha. Surprisingly, the carbon content of subalpine lake deltas is not significantly different between the two regions, despite stark contrasts in their climate, vegetation, and total ecosystem carbon stocks. We present a conceptual model that invokes geomorphic and biogeochemical processes to suggest that carbon is more likely to reach subalpine lake deltas from the upstream basin in the Colorado Front Range compared with the Washington Central Cascades, thus accounting for the similarity in OC storage between the two regions despite differences in total ecosystem carbon stocks and climate. This points to a complex interaction among carbon production, transport, and stability in each region, and supports the idea that geomorphic and biogeochemical processes determine the magnitude of transient OC storage more strongly than primary productivity or climate. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
临清坳陷某区块缺少岩心、薄片、录井及常规测井资料。为了研究其目的层山西组沉积相对储层的控制作用,指导非常规天然气的高效开发。通过利用较少的录井岩性统计资料,结合地震物探方法,分析地震剖面特征、优选地震均方根振幅及相对波阻抗属性,确定该区目的层沉积相。通过上述地震属性研究的物探方法,确定山西组储层为河控浅水三角洲相和碳酸盐台地相,主要发育分流河道、分流间湾及局限台地沉积微相。其中三角洲相是主要的沉积相类型,分流河道是有效储层发育的主要微相类型。   相似文献   

20.

Sediments shed from the northern margin of the Tibetan Plateau, the Qilian Mountains, are widely deposited in the foreland basin, the Jiuxi Basin, archiving plenty of information about the mountain surface uplift and erosion history. The Laojunmiao section, 1960 m thick, representing the upper sequence of the Cenozoic basin sediments, is paleomagnetically dated to about 13-0 Ma BP. Detailed sedimentary study of this sequence has revealed five sedimentary facies associations which determine four stages of sedimentary environment evolution. They are: (I) the half-deep lake system before 12.18 Ma BP, (II) the shallow lake system between 12.18 and 8.26 Ma BP, (III) the fan delta dominated sedimentary system in dry climate between 8.26 and 6.57 Ma BP, and (IV) alluvial fan system since 6.57 Ma BP. The associated mountain erosion and uplift are suggested to have experienced three phases, that is, tectonic stable (13-8.26 Ma BP), gradual uplift (8.26-<4.96 Ma BP), and rapid intermittent uplift (>3.66-0 Ma BP). The uplift at ∼3.66 Ma BP is of great importance in tectonics and geomorphology. Since then, tectonic uplift and mountain building have been accelerated and become strong intermittent. At least three significant tectonic events took place with ages at <1.80-1.23, 0.93-0.84 and 0.14 Ma BP, respectively. Thus, the uplift of the northern Tibetan Plateau is a complex process of multiple phases, unequal speed and irregular movements.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号