首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On August 8, 2017, Beijing time, an earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, Sichuan Province, with the epicenter located at 33.20°N 103.82°E. The earthquake caused 25 people dead, 525 people injured, 6 people missing and 170000 people affected. Many houses were damaged to various degrees. Up to October 15, 2017, a total of 7679 aftershocks were recorded, including 2099 earthquakes of M ≥ 1.0. The M7.0 Jiuzhaigou earthquake occurred in the northeastern boundary belt of the Bayan Har block on the Qinghai-Tibet Plateau, where many active faults are developed, including the Tazhong Fault(the eastern segment of the East Kunlun Fault), the Minjiang fault zone, the Xueshan fault zone, the Huya fault zone, the Wenxian fault zone, the Guanggaishan-Daishan Fault, the Bailongjiang Fault, the Longriuba Fault and the Longmenshan Fault. As one of the important passages for the eastward extrusion movement of the Qinghai-Tibet Plateau(Tapponnier et al., 2001), the East Kunlun fault zone has a crucial influence on the tectonic activities of the northeastern boundary belt of Bayan Kala. Meanwhile, the Coulomb stress, fault strain and other research results show that the eastern boundary of the Bayan Har block still has a high risk of strong earthquakes in the future. So the study of the M7.0 Jiuzhaigou earthquake' seismogenic faults and stress fields is of great significance for scientific understanding of the seismogenic environment and geodynamics of the eastern boundary of Bayan Har block. In this paper, the epicenter of the main shock and its aftershocks were relocated by the double-difference relocation method and the spatial distribution of the aftershock sequence was obtained. Then we determined the focal mechanism solutions of 24 aftershocks(M ≥ 3.0)by using the CAP algorithm with the waveform records of China Digital Seismic Network. After that, we applied the sliding fitting algorithm to invert the stress field of the earthquake area based on the previous results of the mechanism solutions. Combining with the previous research results of seismogeology in this area, we discussed the seismogenic fault structure and dynamic characteristics of the M7.0 Jiuzhaigou earthquake. Our research results indicated that:1)The epicenters of the M7.0 Jiuzhaigou earthquake sequence distribute along NW-SE in a stripe pattern with a long axis of about 35km and a short axis of about 8km, and with high inclination and dipping to the southwest, the focal depths are mainly concentrated in the range of 2~25km, gradually deepening from northwest to southeast along the fault, but the dip angle does not change remarkably on the whole fault. 2)The focal mechanism solution of the M7.0 Jiuzhaigou earthquake is:strike 151°, dip 69° and rake 12° for nodal plane Ⅰ, and 245°, 78° and -158° for nodal plane Ⅱ, the main shock type is pure strike-slip and the centroid depth of the earthquake is about 5km. Most of the focal mechanism of the aftershock sequence is strike-slip type, which is consistent with the main shock's focal mechanism solution; 3)In the earthquake source area, the principal compressive stress and the principal tensile stress are both near horizontal, and the principal compressive stress is near east-west direction, while the principal tensile stress is near north-south direction. The Jiuzhaigou earthquake is a strike-slip event that occurs under the horizontal compressive stress.  相似文献   

2.
The Yajiang earthquake sequence in 2001, with the major events of Ms5.1 on Feb. 14 and of Ms6.0 on Feb.23, are significant events in the Sichuan region during the last 13 years. Eighty-eight earthquakes in the sequence with at least 5 distinct onset parameters for each recorded by the Sichuan Seismic Network in the period of Jan. 1 through June 30,2001 were chosen for this study. The events are relocated and the focal mechanism is derived from P-wave onsets for 13 events with relatively larger magnitudes. The focal depth of all earthquakes fall between a range of 2km to 16km, with dominant distribution between 9km to 11km. Theforeshocks, the Ms5.1 earthquake and the Ms6.0 earthquake and their aftershocks are all located close to the Zihe fault and the dominant epicentral distribution is in NW direction, identical to that of the fault. The fracture surface of the focal mechanism is determined in accordance to the mass transfer orientation in the recent earth deformation field in the Yajiang region. The P axes of the principal compressive stress in focal mechanism solutions of the 13 events show bigger vertical components, and the horizontal projection trending SE. The earthquakes are of left-lateral, strike-slip normal, and normal strike-slip types. The rupture surface of most earthquakes strike NW-SE, dipping SW. Based on the above information, we conclude that the Zihe fault that crosses the earthquake area, striking NW and dipping SW, is the seismogenic fault for the Yajiang earthquake sequence.  相似文献   

3.
2017年8月8日在青藏高原东缘四川省九寨沟县发生M7.0级强烈地震,极震区烈度达Ⅸ度,但无明显地表破裂,一定程度上限制了发震构造的确定和后续地震危险性判定.本文基于截止至2017年8月14日的地震资料,采用多阶段定位方法,对主震及余震进行了重新定位,同时,利用CAP波形反演方法,获得了M7.0主震与13次ML ≥ 4.0级余震的震源机制解和震源矩心深度,进而初步分析了本次地震的发震构造.结果显示,九寨沟M7.0地震的矩震级MW6.4,震源矩心深度5 km,表明主震发生在上地壳浅部,与2003年伊朗巴姆(Bam)MW6.5地震特征极为相似;12次ML ≥ 4.0级余震的震源矩心深度6~12 km,显示这些余震发生在主震下部,仅1次例外.重新定位后的余震震中呈NW-SE向窄带展布,位于近NS向的岷江断裂与近EW向的东昆仑断裂带东端分支塔藏断裂所夹持的区域,余震带长轴长约38 km,主震位于余震带中部.根据余震震中分布、主震及余震震源机制解等,推测本次九寨沟M7.0地震及其余震的主发震构造为位于岷江断裂与塔藏断裂之间的树正断裂.震源机制解揭示,树正断裂呈左旋走滑,走向约152°,近SE,倾向SW,倾角约70°,该断裂应属于东昆仑断裂东端的分支断裂之一,或与东南侧的虎牙断裂构成统一断裂系.  相似文献   

4.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

5.
九寨沟地震(M_s7.0或M_w6.5)震中位于青藏高原巴颜喀拉块体东缘东昆仑断裂带东端塔藏断裂、岷江断裂和虎牙断裂交汇部位,中国地震局相关科研机构的研究人员曾将该震中区判定为玛沁—玛曲高震级地震危险区.地震应急科学考察期间没有发现地震地表破裂带,但地震烈度等震线长轴方位、极震区基岩崩塌和滑坡集中带、重新定位余震空间展布和震源机制解等显示出发震断层为NNW向虎牙断裂北段,左旋走滑性质,属东昆仑断裂带东端分支断层之一.此外,汶川地震后,在青藏高原东缘和东南缘次级活动断层上发生了包括2017年九寨沟地震(Mw6.5)、2014年鲁甸(M_w6.2)、景谷(M_w6.2)、康定(M_w6.0)等多次中强地震,显示出青藏高原东缘至东南缘各块体主干边界活动断层现今处于中等偏高的应变积累状态,即在巴颜喀拉、川滇等块体主干边界活动断层上具备了发生高震级(M_w≥7.0)地震的构造应力-应变条件,未来发生高震级地震的危险性不容忽视.  相似文献   

6.
On August 8, 2017, a M7.0 earthquake occurred in Jiuzhaigou County, Sichuan Province, China, resulting in significant casualties and property damage. Therefore, it is critical to identify the areas of potential aftershocks before reconstruction and re-settling people to avoid future disasters. Based on the elastic dislocation theory and a multi-layered lithospheric model, we calculate the Coulomb failure stress changes caused by the Wenchuan and Jiuzhaigou earthquakes, discuss the relationship between the Mw7.9 Wenchuan and M7.0 Jiuzhaigou earthquakes, and analyze the influence of the aftershock distribution and stress changes on the major faults in this region caused by the Jiuzhaigou earthquake. The co-and post-seismic stress changes caused by the Wenchuan earthquake significantly increased the stress accumulation at the hypocenter of the Jiuzhaigou earthquake. Therefore,the occurrence of the Jiuzhaigou earthquake was probably stimulated by the Wenchuan earthquake. The aftershock distribution is well explained by the co-seismic stress changes of the Jiuzhaigou earthquake. The stress accumulation and corresponding seismic hazard on the Maqu-Heye segment of the East Kunlun fault and the northern extremity of the Huya fault has been further increased by the Jiuzhaigou earthquake.  相似文献   

7.
基于InSAR技术,利用欧空局升降轨Sentinel-1A/IW宽幅数据,获取了2017年8月8日四川九寨沟7.0级地震InSAR同震形变场,并以升降轨InSAR观测结果为约束,反演了断层滑动分布,基于三种不同接收断层计算了同震库仑应力变化.结果表明,同震形变场发生在塔藏断裂、岷江断裂和虎牙断裂交汇的三角地带,升降轨干涉位移均显示本次地震的形变场影响范围约为50 km×50 km,形变场长轴方向为NW向,升降轨观测的形变量相反,反映断层运动性质以走滑运动为主,升降轨数据观测得到的最大LOS (Line of Sight,视线向)形变量分别为~22 cm和~14 cm.非对称形变场反映出断层两侧的运动差异.反演结果显示,最大滑动量约为1 m,平均滑动角为-9°,矩震级为MW6.5,地震破裂主要集中在地下1~15 km深度范围内,但整体而言本次地震破裂较为充分,基本将该区域1973年及1976年4次 > MW6.0地震的破裂空区完全破裂.考虑到塔藏断裂和虎牙断裂的运动性质,可初步判定发震断层为虎牙断裂北侧延伸分支.基于三种不同接收断层模型的同震库仑应力变化计算结果反映出该区域以应力释放为主,进一步触发较大走滑型余震的可能性不大.  相似文献   

8.
2014年11月22日康定M6.3级地震序列发震构造分析   总被引:18,自引:5,他引:13       下载免费PDF全文
2014年11月22日在NW向鲜水河断裂带中南段四川康定县发生M6.3级地震,11月25日在该地震震中东南约10km处再次发生M5.8级地震.基于中国国家数字地震台网和四川区域数字地震台网资料,采用多阶段定位方法对本次康定M6.3级地震序列进行了重新定位;利用gCAP(generalized Cut And Paste)矩张量反演方法获得了M6.3和M5.8级地震的震源机制解与矩心深度,分析了本次地震序列的发震构造,并结合历史强震破裂时空分布和2001年以来小震重新定位结果,对鲜水河断裂带中段强震危险性进行了初步探讨.获得的主要结果如下:(1)M6.3级主震震中位于101.69°E、30.27°N,震源初始破裂深度约10km,矩心深度9km;M5.8级地震震中位于101.73°E、30.18°N,初始破裂深度约11km,矩心深度9km.gCAP矩张量反演结果揭示这两次地震双力偶分量占主导,M6.3级地震的最佳双力偶解节面Ⅰ走向143°/倾角82°/滑动角-9°,节面Ⅱ走向234°/倾角81°/滑动角-172°.M5.8级地震最佳双力偶解节面Ⅰ走向151°/倾角83°/滑动角-6°,节面Ⅱ走向242°/倾角84°/滑动角-173°.依据余震分布长轴展布与断裂走向,判定节面Ⅰ为发震断层面,M6.3和M5.8级地震均为带有微小正断分量的左旋走滑型地震.(2)序列中重新定位的459个地震平均震源深度约9km,地震主要集中分布在6~11km深度区间,余震基本发生在M6.3和M5.8级地震震源上部.依据余震密集区展布范围,推测本次康定地震的震源体尺度长约30km、宽约4km、深度范围约6km.M6.3级主震震源附近的余震稀疏区可能是一个较大的凹凸体(asperity),在主震中能量得以充分释放.(3)最初3天的余震主要分布在M6.3级地震NW侧;而M5.8级地震之后的余震主要集中在其震中附近.M6.3级地震以及最初3天的绝大部分余震发生在倾角约82°近直立的NW走向色拉哈断裂上;M5.8级地震与其后的多数余震发生在倾角约83°近直立的NW走向折多塘断裂北端走向向北偏转部位,M5.8级地震可能是M6.3级地震触发相邻的折多塘断裂活动所致.(4)康定M6.3与M5.8级地震发生在鲜水河断裂带乾宁与康定之间的色拉哈强震破裂空段,本次地震破裂尺度较小,尚不足以填补该强震空段.色拉哈段以及相邻的乾宁段7级地震平静时间均已超过其平均复发周期估值,未来几年存在发生7级地震的危险.康定M6.3级地震序列基本填补了震前存在于塔公与康定之间的深部小震空区,未来强震发生在塔公至松林口段深部小震稀疏区内的可能性很大.  相似文献   

9.
本文采用双差定位法对2017年8月8日至10月31日期间四川九寨沟MS7.0主震及5200个余震序列进行相对定位,得到4036个重定位地震事件.采用中国区域地震台网观测到的宽频带垂直分向波形数据和W震相反演方法,得到了主震震源机制解.重定位结果显示,余震序列分别沿NNW和SSE两个方向扩展,展布长度约58 km,且这些余震主要集中在22 km深度之上.余震分布的另一个重要特点是具有分区特性,即在主震NNW方向约5 km处存在明显的西北和东南两区余震活动分界线;西北区的余震由深至浅具有较好连续性,而东南区却在约10 km深度处存在不连续性.余震分布的这种分区特征,说明九寨沟地震震源区的地壳结构存在强烈的不均匀性.余震分布与主震破裂特征的一致性,证实了我们定位结果的可靠性.主震的震源机制解展示出节面Ⅰ的走向/倾角/滑动角分别为246°/83.7°/-177°,而节面Ⅱ的走向/倾角/滑动角为155.7°/87.1°/-6.3°,最佳质心深度为15.5 km,矩震级MW为6.5.根据余震分布较为垂直和主震震源机制解两节面的倾角均在80°以上,并结合野外地质调查结果,推测此次九寨沟地震为与节面Ⅱ参数相近的一次高角度的左旋走滑型事件.  相似文献   

10.
戴宗辉  李冬梅  王鹏  郑建常  王志才  李霞 《地震》2022,42(1):111-121
本文利用基于波形互相关的双差定位方法对2020年2月18日长清MS4.1地震序列进行了精定位计算, 共得到33个地震事件的精定位结果。 结果显示, 地震序列主要沿NW向分布, 在水平方向上具有自NW向SE迁移, 在深度上具有由浅向深迁移的特征; 序列震源深度主要集中在2~7 km, 其中, 主震的震源深度约2.8 km。 由于长清地震序列的地震数量较少, 为了更准确地了解长清地震序列的发震构造、 探索该序列的发生和发展过程, 本文采用CAP方法反演了主震的震源机制解, 其中, 节面Ⅰ走向223°、 倾角42°、 滑动角-160°, 节面Ⅱ走向117.9°、 倾角76.8°、 滑动角-49.8°, 最佳拟合震源矩心深度约2.8 km, 矩震级MW4.2。 结合区域构造特征分析认为, 长清MS4.1地震的发震断裂为孝里铺断裂和东阿断裂之间发育的一条浅层次生断裂。 在ENE向区域应力场作用下, 发震断裂产生高角度正断滑动, 并伴有左旋走滑分量, 从而引发长清地震序列。  相似文献   

11.
四川芦山7.0级地震及其与汶川8.0级地震的关系   总被引:8,自引:1,他引:7       下载免费PDF全文
2013年4月20日在四川省雅安市芦山县发生M7.0级地震.根据四川省台网资料和收集的国内外相关资料,我们分析了芦山地震的基本参数、余震分布、序列衰减等特征.结果表明:芦山地震位于龙门山断裂南段,其震源力学机制显示为纯逆冲性质,与龙门山断裂构造特征相符合;芦山地震的余震较丰富,震后15天震区已发生7800多次余震,其中,5级以上余震4次,最大余震是4月21日17时5分芦山、邛崃交界M5.4级地震;余震分布形成的图形显示其长轴走向与龙门山断裂构造走向一致,余震分布显示密集区长轴约40 km,短轴约20 km.与汶川M8.0级地震在震源力学机制、破裂过程、余震空间展布以及地表破裂等对比分析后表明:芦山地震与汶川地震的震源错动类型、破裂过程、地表破裂以及余震活动等特征存在明显差异;芦山地震与汶川地震震中位置相距90 km,两次地震的余震密集区相距50 km;汶川8.0级地震造成龙门山断裂中北段较充分破裂,芦山7.0级地震则展布于龙门山断裂南段且破裂尺度有限;两者有发震构造上的联系,但两次地震是相对独立的地震事件.  相似文献   

12.
邵叶  刘特培  刘吉平 《地震》2016,36(2):132-140
利用广东新丰江锡场2012和2013年2次MS4.8地震震中附近的2009年1月至2015年6月精定位小震资料,依据小震丛集发生在大震断层面及附近的原则,采用模拟退火算法和高斯-牛顿算法相结合的方法,反演得到了锡场附近2条相交断层的详细参数及地理分布。NEE向断层F1的走向为78.5°,倾角为87.7°,长度约8.2km,以右旋走滑错动为主;NW向断层F2的走向为137.3°,倾角为87.9°,长度约5.9km,以左旋走滑错动为主。用断层附近ML3以上地震的震源机制解证明反演结果是可靠的,并由2次4.8级地震的震源机制解判断出各自的发震断层。  相似文献   

13.
汪建军  许才军 《地球物理学报》2017,60(11):4398-4420
2017年8月8日21时19分在我国四川省北部阿坝州九寨沟县发生了MW6.5左旋走滑型地震.该地震发生在青藏高原巴颜喀拉块体东北缘,东昆仑断裂南东段的塔藏断裂、岷江断裂和虎牙断裂的交汇地带.包括此次地震,近年来在巴颜喀拉块体周缘已发生了九次6级以上强震,表明巴颜喀拉块体周缘主要活动断裂上的应力水平仍处于不断调整之中.本文采用库仑应力模型研究2017年MW6.5九寨沟地震激发的库仑应力变化、该地震与周边地震的应力触发关系以及强震对周边主要活动断裂的应力扰动.强震序列包括周边区域1536-1975年M≥6历史强震和1976-2017年的MW≥ 6 gCMT地震目录中的强震,共计32个.研究结果表明:(1)2017年MW6.5九寨沟地震激发的同震库仑应力变化仅在局部范围内超过0.1×105Pa,且75%的余震(~12.7天)受到该地震明显的同震应力触发作用,而其余25%的余震落在应力影区,采用最优破裂面可以进一步提高同震库仑应力变化与余震分布的空间相关性;(2)2008年MW7.9汶川地震对2017年MW6.5九寨沟地震的发生有一定的促进作用,在后者震源处激发的同震库仑应力变化为(0.026~0.263)×105Pa,震后黏弹性库仑应力变化为(0.010~0.032)×105Pa.该库仑应力的变化范围取决于汶川地震源断层参数和九寨沟地震接收断层参数.2013年MW6.6芦山地震对九寨沟地震的发生几乎没有影响(< 0.001×105Pa);(3)1654年M8.0甘肃天水南地震对九寨沟地震的发生有明显的促进作用,在九寨沟地震震源处激发的同震库仑应力变化为(0.410~1.266)×105Pa,震后库仑应力变化为(0.147~0.490)×105Pa.1879年M8.0甘肃武都地震可能有比1654年M8.0甘肃天水南地震更强的应力触发作用,但也有可能对九寨沟地震的发生起到抑制作用.在选取的8个九寨沟地震接收断层面上,其中6个接收断层面上该地震所激发的同震库仑应力变化为(0.913~2.364)×105Pa,2个接收断层面上该地震所激发的同震库仑应力变化为(-1.326~-0.454 )×105Pa;在4个接收断层面上震后库仑应力变化为(0.094~1.072)×105Pa,在另外4个接收断层面上震后库仑应力变化为(-1.593~-0.106)×105Pa.1933年四川叠溪地震对九寨沟地震的发生影响较弱,其所激发的同震库仑应力变化为(0.015~0.080)×105Pa,震后库仑应力变化为(-0.029~0.025)×105Pa;(4)九寨沟地震仅在其附近的岷江断裂北段、塔藏断裂和虎牙断裂南段造成较明显的同震库仑应力变化,其分别为0.09×105Pa、(0.14~2.03)×105Pa和0.25×105Pa.而进一步顾及其余31个强震的库仑应力作用则发现,同震库仑应力增加非常显著的主要活动断裂分段为:岷江断裂北段南侧和岷江断裂南段的库仑应力变化分别升高5.6×105Pa和9.8×105Pa.鲜水河断裂北段南侧库仑应力升高23.0×105Pa,鲜水河断裂南段道孚-康定段的北侧库仑应力升高9.0×105Pa,而最南端库仑应力升高3.0×105Pa;龙门山断裂带中段的北侧库仑应力变化为(6.1~7.4)×105Pa,中段库仑应力增加(2.1~11.5)×105Pa;西秦岭北缘断裂东段库仑应力变化为4.4×105Pa;龙日坝断裂北段最北侧的库仑应力变化为2.0×105Pa;小金河断裂北段库仑应力变化为1.7×105Pa;安宁河断裂北段库仑应力变化为1.6×105Pa;(5)由于下地壳和上地幔的黏弹性松弛作用,所有强震在九寨沟地震震后20年造成的黏弹性库仑应力变化在鲜水河断裂、龙门山断裂中段、塔藏断裂以及秦岭南缘断裂西段比较显著,其分别为:(1.0~3.0)×105Pa、2.8×105Pa、(2.3~2.7)×105Pa和0.9×105Pa.但总体上黏弹性库仑应力变化没有改变各断裂上的同震库仑应力变化空间分布.总的库仑应力变化在鲜水河断裂北段南侧和南段的道孚至康定段北侧、龙门山断裂中段北侧、岷江断裂南段和北段南侧、虎牙断裂、塔藏断裂以及西秦岭北缘东段很显著(均超过4×105Pa).由于库仑应力明显升高可能预示着地震潜在危险性增强,因此这些断裂分段可能将来需要重点加以关注.  相似文献   

14.
利用青海和周边87个地震台站于2022年1月8—13日记录的青海门源M6.9地震主震及680次余震资料,经双差地震定位重新进行震源位置的修定,获得633个地震重新定位后的震源信息。结果显示,此次地震的余震分布明显以昌马—俄博断裂南末梢端为界分为东、西两段,西段呈近EW向沿托勒山断裂东段分布,东段呈NWW向沿冷龙岭断裂西段分布。重新定位前余震初始震源深度集中分布在5~15 km,重新定位后变化为在0~20 km深度范围内偏正态分布。根据重新定位后余震分布特点并参考地表破裂带的展布,依据成丛地震发生在断层附近的原则,选取2个矩形区域,基于这2个区域内重新定位后的震源信息,利用模拟退火与高斯\|牛顿相结合的算法进行断层面拟合计算,完整地获得每一个拟合区域的断层面参数。结果表明托勒山断裂东段断层面与冷龙岭断裂西段断层面分别为长约15 km总体走向为近EW向的高倾角左旋走滑断裂与长约12 km总体走向为NWW向的高倾角大型左旋走滑断裂。此次青海门源地震可能是上述两断层面末端相互挤压共同破裂形成的。  相似文献   

15.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   

16.
2017年8月8日的九寨沟MS7.0地震发生在岷江断裂、塔藏断裂及虎牙断裂交汇地区,地处青藏高原东北部的川甘交界地区,位于巴颜喀拉地块的东缘,地质构造复杂,对于九寨沟地震震中位置和发震断层的确定,存在不同意见.本文利用GNSS及升降轨InSAR观测,在获取九寨沟地震同震形变场的基础上,基于均匀弹性半无限位错模型,联合反演了发震断层的滑动分布模型,并计算了同震库仑应力变化.InSAR同震形变场显示,视线向最大沉降量和抬升量分别为0.21 m和0.16 m,形变场长轴为NW向,形变主要集中在断层西侧.距震中40 km和65 km的九寨和松潘两县,水平向的GNSS同震位移分别达14.31 mm和8.22 mm.联合GNSS和InSAR同震形变场反演得到的滑动分布主要集中在沿走向5~33 km,倾向2~20 km的范围内,平均滑动量为0.18 m,最大滑动量为0.91 m.发震断层长40 km,宽30 km,走向155°,倾角81°,滑动角-9.56°.同震位移场及滑移分布模型表明此次地震为一次左旋走滑为主的地震事件,地震破裂并未完全到达地表,与虎牙断裂北段的几何产状和运动学性质更为接近,结合精定位余震的分布,我们确定虎牙断裂北段为此次地震的发震断层,震中位于北纬33.25°,东经103.82°,震源深度10.86 km,矩震量为7.754×1018 Nm,相应的矩震级为MW6.5,与美国地调局和哈佛大学给出的震源机制解基本一致.同震库仑应力导致了虎牙断裂北段延长线的东北和西南两端应力增强,其中塔藏断裂的罗叉段和马磨段未来强震的危险性值得关注.  相似文献   

17.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

18.
杨宜海  范军  花茜  高见  王朝亮  周鲁  赵韬 《地球物理学报》2017,60(10):4098-4104
搜集了四川地震台网的波形资料,采用全波形反演2017年8月8日九寨沟M7.0地震序列震源机制解.反演结果显示,九寨沟主震矩震级为MW6.36,震源深度为22 km,节面I走向为150°,倾角为80°,滑动角为-20°;节面Ⅱ走向为244°,倾角为70°,滑动角为-169°.余震主要分布在14~22 km深度范围内,震源机制以走滑型为主,其中正断型地震2个,逆冲型地震2个,走滑型地震24个,混合型地震8个.断层面优势方向为SSE向,与塔藏断裂和虎牙断裂走向基本一致,但与塔藏断裂最南段存在明显差异.倾角变化集中在60°~80°,滑动角主要分布在0°附近,表明九寨沟地震序列主要受SSE走向、近似直立的左旋走滑断层控制.P轴优势方位为SEE向,仰角主要分布在30°以内,与区域应力场基本一致.震源区的机制类型和应力状态均存在空间分段差异.本文推测此次九寨沟M7.0地震序列可能发生在虎牙断裂向北延伸的隐伏断裂上,但不排除地震引起了塔藏断裂南段和虎牙断裂以北隐伏断裂同时破裂的可能.  相似文献   

19.
张辉  张浪平  冯建刚 《地震》2014,34(4):110-117
针对2013年7月22日甘肃岷县漳县发生的Ms6.6地震序列,采用CAP(Cut and Paste)方法反演了岷县漳县6.6级地震及部分强余震的震源机制解。结果显示,6.6级主震最佳双力偶解节面I走向189°,倾角51°,滑动角142°;节面II参数走向305°,倾角61°和滑动角46°,主震为逆冲兼走滑型,矩心震源深度均为7km;8次Ms≥3.0余震震源机制解向NE倾的节面II的优势倾角约为52°,表现出逆冲分量大的特性。结合震区的活动构造、余震及烈度分布,判定节面II代表了相应地震的发震断层面,地震序列震源机制的特性反映了与临潭一宕昌断裂带相似的活动特征,分析认为,岷县漳县6.6级地震的发生与临潭-宕昌断裂的活动可能存在一定的相关性。  相似文献   

20.
On August 8, 2017, a M7.0 earthquake occurred in Jiuzhaigou County, Sichuan Province, China, resulting in significant casualties and property damage. Therefore, it is critical to identify the areas of potential aftershocks before reconstruction and re-settling people to avoid future disasters. Based on the elastic dislocation theory and a multi-layered lithospheric model, we calculate the Coulomb failure stress changes caused by the Wenchuan and Jiuzhaigou earthquakes, discuss the relationship between the Mw7.9 Wenchuan and M7.0 Jiuzhaigou earthquakes, and analyze the influence of the aftershock distribution and stress changes on the major faults in this region caused by the Jiuzhaigou earthquake. The co- and post-seismic stress changes caused by the Wenchuan earthquake significantly increased the stress accumulation at the hypocenter of the Jiuzhaigou earthquake. Therefore, the occurrence of the Jiuzhaigou earthquake was probably stimulated by the Wenchuan earthquake. The aftershock distribution is well explained by the co-seismic stress changes of the Jiuzhaigou earthquake. The stress accumulation and corresponding seismic hazard on the Maqu-Heye segment of the East Kunlun fault and the northern extremity of the Huya fault has been further increased by the Jiuzhaigou earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号