首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
综合自上而下的系统动力学模型和自下而上的元胞自动机模型, 从宏观用地总量需求和微观土地供给相平衡的角度, 充分利用系统动力学模型在情景模拟和宏观驱动因素反映上的优势与元胞自动机模型在微观土地利用空间格局反映上的优势, 发展了土地利用情景变化动力学LUSD (Land Use Scenarios Dynamics model)模型. 利用该模型对中国北方13省未来20年土地利用变化的情景模拟结果表明, 由于LUSD模型充分利用了系统动力学模型和元胞自动机模型的特点和优势, 同时考虑了土地利用系统宏观驱动因素复杂性和微观格局演化复杂性的特征, 因而提高了当前土地利用情景模型的可靠性, 这将在一定程度上为理解土地利用系统的复杂驱动行为, 评估脆弱生态区土地系统变化的潜在生态效应提供帮助. 同时, LUSD模型的情景模拟结果也表明, 农牧交错带地区是中国北方未来20年土地利用变化比较明显的地区, 而耕地和城镇用地则是该区域内变化最为显著的两种用地类型.  相似文献   

2.
珠江流域氮、磷营养盐入河量估算及预测   总被引:2,自引:2,他引:0       下载免费PDF全文
徐鹏  林永红  杨顺顺  栾胜基 《湖泊科学》2017,29(6):1359-1371
针对日益严重的流域营养盐污染问题,以珠江流域为例,采用系统动力学模型与多主体农户和农村环境管理模型耦合构建反映农户生产决策实际污染过程的流域氮、磷营养盐排放仿真系统,模拟2000—2030年不同污染源的营养盐产生、排放和进入河流的污染过程,分析其污染特征、影响因素和演变趋势.结果表明:在基准情境下,珠江流域总氮(TN)入河量从2000年的5.79×10~5t增加到2030年9.45×10~5t,在2027年达到峰值(9.53×10~5t);总磷(TP)入河量逐年递增,年均增长率为2.0%,从2000年的7.9×10~4t增加到2030年1.4×10~5t.在TN入河量中,种植业贡献最多,其次是城镇污水、养殖业和农村污水,2000—2030年期间年均贡献率相应为43.5%、32.5%、19.2%和4.9%.在TP入河量中,2000—2030年种植业、养殖业、城镇污水和农村污水的年均贡献比例分别为35.6%、28.8%、21.5%和14.1%;2000—2010年,养殖业为第一污染源,其次是种植业、城镇污水和农村污水;2011年种植业的贡献比例(31.6%)开始超过养殖业(30.8%)成为首要污染.研究显示,流域营养盐排放仿真系统可为营养盐控制提供技术支持和理论依据.  相似文献   

3.
不同生活型水生植物对水环境的影响和碳固持能力不同,开展大尺度范围内不同生活型水生植物的时空分布和动态变化研究,是全面掌握湖泊水生态环境变化趋势、准确核算水生生态系统碳源/碳汇的前提。以长江中下游10 km2以上(共131个)的湖泊为研究对象,基于野外调查和先验知识,通过光谱分析,研发了不同生活型水生植物遥感高精度机器学习识别算法,解析了长江中下游湖泊群不同生活型水生植物的时空变化规律。研究表明,长江中下游湖泊群不同生活型水生植物遥感监测精度为0.81,Kappa系数为0.74;1986—2020年长江中下游湖泊群水生植物面积为2541.58~4571.42 km2,占湖泊总面积的15.99%~28.77%,沉水植物是优势类型(Max1995=2649.21 km2,Min2005=921.38 km2),其次是挺水植物(Max2005=1779.44 km2,Min2020=569.05 km2)和浮叶植物(Max2015=685.68 km2,Min2000=293.04 km2);水生植物主要分布在长江干流流域湖泊群,其次是鄱阳湖流域、洞庭湖流域、太湖流域和汉江流域;变化趋势上,1986—2020年长江中下游湖泊群水生植物面积呈现先增长(1986—1995年)、后下降(1995—2010年)、再增加(2010年后)的趋势。本研究可为长江中下游湖泊群生态环境调查及水环境管理提供重要参考。  相似文献   

4.
近20年来巢湖流域景观生态风险评估与时空演化机制   总被引:3,自引:0,他引:3  
黄木易  何翔 《湖泊科学》2016,28(4):785-793
基于1995、2005、2013年3期Landsat TM/ETM+遥感影像及DEM,应用GIS方法开展巢湖流域景观格局特征分析及生态风险网格化定量评估.研究表明:(1)近20年来,巢湖流域景观格局特征变化明显,表现为建设用地景观破碎度、分离度均呈先下降后上升趋势;农地、林地与水体景观破碎度、分离度均呈上升趋势.(2)生态风险时序分析表明,19952013年,巢湖流域低、较低和中等级生态风险区域面积在逐渐缩小,而较高和高等级生态风险区域范围在不断蔓延.近20年来,巢湖流域生态风险主要由低级向高级转化,面积达6025 km2,是由高级向低级转化面积的2.30倍.(3)生态风险时空演化机制分析表明,巢湖流域生态风险变化区域主要集中在北、西南和东南部,具有明显的阶段性和区域性.近20年来,巢湖流域经历了快速的城市化、工业化以及受到行政区划调整的政策影响,高强度土地利用模式及县域经济活力的释放叠加于本身脆弱的流域生态条件,对景观生态系统造成的强烈干扰促进流域生态风险整体有恶化趋势,需重点加强中级以上生态风险区域的生态保护与建设工作.因此,生态风险演化趋势体现了该流域自然特点和区域社会经济发展对景观生态系统干扰的压力响应.  相似文献   

5.
太湖流域土地利用变化的水文响应模拟   总被引:2,自引:2,他引:2       下载免费PDF全文
李恒鹏  杨桂山  金洋 《湖泊科学》2007,19(5):537-543
以城市化快速发展的太湖流域为研究对象,采用1985、1995和2000年TM/ETM土地利用解译资料,应用区域尺度单元格网分布式水文模型,进行长序列水文模拟,定量评估太湖流域土地利用变化及其水文响应特征,为流域用地规划、水资源管理以及灾害防治提供决策参数.研究显示,自1985年到2000年,太湖流域城镇面积扩展了40.38%,增加量占太湖流域总面积的3.88%.在1980-2000年的雨情下,全流域土地利用变化导致产流量平均增加4.11%,约为7.56×108 m3,最高值为11.76%,约为10.0×108 m3.受土地利用变化空间差异影响,产流量增加具有较大区域差异,城镇快速扩展的苏锡常地区和浦东浦西地区,土地利用变化导致产流量平均增加为10.07%和7.03%,最高增量达20%-30%.  相似文献   

6.
加强流域生态核心区的景观生态脆弱性评价及驱动机制研究对于生态系统功能优化调控具有重要意义.以巢湖流域水环境保护区为主体,基于网格单元尺度,应用空间数据探索及地理加权回归(GWR)等工具,对1970-2015年间的研究区景观生态脆弱性时空演变特征及驱动机制进行分析.结果表明:1970-2015年间,巢湖流域水环境保护区内的土地景观类型表现为"两降三升"的变化趋势,其中,农地景观下降6.62%,建设用地景观增加6.26%;近45 a来,景观生态脆弱性均值从1970年的2.9347下降为2000年的2.6720,2015年又上升为2.7989,整体呈波动式下降趋势,景观生态脆弱性的空间分布具有显著的集聚特征; GWR回归系数显示各驱动因子对研究区景观生态脆弱性作用力不同,依次表现为:农地破碎度(FN)植被指数(NDVI)坡度(SLOP)土地利用程度(LUI),各因子的回归系数均存在空间非平稳性.其中,FN因子回归系数呈现由西向东逐渐增强趋势; NDVI因子回归系数的空间分布表现出从中部向两侧递减趋势; SLOP因子回归系数分布则由西向东依次递减; LUI因子回归系数表现出从东、南向西北逐渐减弱趋势.回归系数的空间分布特征显示出不同因子对景观生态脆弱性的影响作用具有各向异性.研究结果可为巢湖流域水环境保护区的生态恢复与土地利用及景观格局优化实践等提供决策支持.  相似文献   

7.
我国快速的城镇化过程造成了河流氮、磷等营养盐的污染和潜在的水体富营养化问题.对城镇流域水体氮、磷污染特征及其演变趋势的识别具有重要意义.本研究选取长三角典型城镇地区宁波市北仑区小浃江流域为研究对象,在流域内根据空间分布、土地利用类型、人类活动强度等情况布设样点,于2017年夏季和冬季采集水样,研究流域水体氮、磷污染的时空分布特征并分析其污染来源和评估其富营养化水平.结果表明:流域内铵态氮(NH4+-N)、;硝态氮(NO3--N)、亚硝态氮(NO2--N)、总氮(TN)、总磷(TP)和叶绿素a(Chl.a)浓度范围分别为0.63~3.25 mg/L、0.52~3.75 mg/L、0.02~0.22 mg/L、1.61~12.86 mg/L、0.02~0.74 mg/L和0.6~60.57 μg/L.各个采样点氮、磷分布具有较大的空间异质性和季节变化规律.富营养化综合指数EI评估结果显示,整个流域富营养化程度属于贫至中营养级.氮、磷浓度与土地类型面积占比的Spearman相关性统计表明,100 m缓冲区建设用地面积占比与NH4+-N、NO2--N、TN、溶解氧(DO)浓度具有显著相关性,湿地面积占比与DO浓度呈显著正相关.汇水区域内林地面积占比与NH4+-N、NO2--N、TP、PO43--P、COD、Chl.a浓度呈显著负相关,与DO浓度呈显著正相关.相关性分析和冗余分析表明城镇化的面源污染及可能存在的点源污染是小浃江流域氮、磷污染的主要来源.因此,在小浃江流域100 m范围内,控制建设用地的规模和污染排放是减轻流域氮、磷污染的主要途径.在汇水区域内,增加林地植被的面积对减少氮、磷污染具有重要影响.  相似文献   

8.
近30年中国沿海围垦土地利用格局及其驱动机制   总被引:1,自引:0,他引:1  
文章以近30年中国沿海地区围垦土地为研究对象,以1985年为基期,分为1985~1990年、1990~1995年、1995~2000年、2000~2005年、2005~2010年、2010~2016年六个时段,系统剖析了中国沿海围垦土地时空演变特征、格局与驱动机制,模拟分析了三种不同发展情景下的围垦土地利用变化及其社会经济、生态环境综合效应.结果表明:(1)近30年中国沿海地区围垦土地9310.6km2,设施农业用地、工矿用地与空闲地面积较大,分别占总围垦面积的42.1%、14.08%和13.9%;全国沿海土地围垦面积变化可划分为增长速率降低阶段、增长速率提升阶段、增长速率减缓阶段;(2)近30年土地围垦最终流向为耕地、农业设施用地与工矿用地,受政策、经济、人口的驱动影响明显,最终形成土地围垦的恶性循环;(3)在三种不同模拟情景下,生态环境效应下降,社会经济效应逐渐增加,珠江三角洲、长江三角洲和环渤海地区的社会经济效应的增速起点时间具有明显差异,分别为1990年、2000年和2005年.最后,深入探析了围垦土地利用问题产生的根源及成因,提出了实现沿海围垦土地可持续利用和加强沿海地区生态环境保护的对策与建议.  相似文献   

9.
气候变化将对水资源产生重要影响, 评估其潜在影响可为区域可持续发展提供重要的依据. 本研究的目标是评估2010~2039年气候变化对黄土高原黑河流域水资源的可能影响并进而探讨适应性对策. 基于4种全球环流模式(CCSR/NIES, CGCM2, CSIRO-Mk2和HadCM3)的各3种排放情景(A2, B2和GGa), 使用比例法预估了降水、最高和最低温度的未来变化; 使用SWAT (Soil and Water Assessment Tool)模型模拟气候变化的水文响应; 基于元胞自动机-马尔可夫模型(CA-Markov)建立未来土地利用情景. 结果表明, 与目前气候相比, 全球环流模式预测年均降水变化-2.3%~7.8%, 年均最高和最低温度分别增长0.7~2.2和1.2~2.8℃. 不考虑土地利用变化时, SWAT预测2010~2039年的年均径流变化-19.8%~37.0%, 土壤水分含量变化-5.5%~17.2%, 蒸散量普遍增长0.1%~5.9%. 尽管水文气象变量的变化复杂, 但增长的概率较大; 且水文过程将发生变化, 如冬季径流减少等. 考虑土地利用变化时, 较2000年土地利用, 建立的2015土地利用情景将分别增加土壤水分和径流4.0%和5.7%而减少蒸散0.6%. 这表明调整土地利用模式可以有效调控水资源, 可被用来减缓气候变化的不利影响.  相似文献   

10.
基于SWAT模型的南四湖流域非点源氮磷污染模拟   总被引:7,自引:2,他引:5  
李爽  张祖陆  孙媛媛 《湖泊科学》2013,25(2):236-242
本文利用SWAT模型结合实测数据,对南四湖流域2001-2010年年均非点源氮磷污染进行模拟,分析了南四湖流域非点源氮磷负荷空间分布特征,计算各河流流域对南四湖湖区污染的贡献率,并对非点源氮磷污染严重的关键区进行识别.研究表明:(1)先模拟湖东和湖西的两个典型小流域的非点源氮磷污染,并将模型推及整个南四湖流域,该方法不仅提高了计算效率,且得到了较好的模拟结果.通过对比发现,湖东的模拟效果要好于湖西,一定程度上说明SWAT模型在起伏较大的地区能取得更高的精度.(2)南四湖流域非点源氮磷污染严重,几乎所有区域的氮负荷超标,40%以上的区域磷负荷超标严重.湖东非点源氮磷污染较湖西严重,其中洸府河流域是南四湖湖区非点源氮磷污染的主要贡献者.(3)通过对径流量、泥沙负荷、氮负荷、磷负荷的相关分析可以得出,南四湖流域非点源氮负荷以溶解态为主,随径流进入水体;非点源磷负荷以吸附态为主,随泥沙进入水体.  相似文献   

11.
近30年来南四湖流域城市化进程中的水系变化分析   总被引:1,自引:1,他引:0       下载免费PDF全文
城市化对水系演化影响的研究国内目前多集中在快速、高速城市化地区,而对大流域、城市化发展较缓地区的研究比较薄弱.以南四湖流域为研究区,基于1987、2000和2014年3期遥感影像,分析了流域城市化进程中的下垫面变化特征;选取流域1980s、2003和2014年的地形图进行水系提取,从数量参数、结构参数和连通性参数3个角度分析近30年城市化进程中水系结构的时空变化特征.结果表明:(1)近30年来流域建设用地增加了1568.06 km~2,2000年以后城市建设用地扩张显著,2012年流域人口城市化率为32%;(2)1980s—2010s流域总河流长度、面积和河网密度均呈现出持续减少趋势,分别减少了135.46 km、2.75 km~2和0.49 km/km~2,各级河流表现出不同的变化特点,较低等级河流受到的影响较大;而流域水面率持续增加,近30年共增加了59.79%;(3)流域水系总体上还保持着自然状态下的空间格局,但结构特征发生了较大改变,河网结构稳定度减少了4.30%,连接率和实际结合度分别减少了21.82%和21.62%;子流域内部距湖区越远的空间城市扩展强度指数值越大,城市化对水系的影响越显著.该研究将补充对不同空间尺度、不同城市化水平地区河网水系演化影响的案例,并为研究区河网水系的保护提供支持与参考.  相似文献   

12.
蓝藻水华暴发时间变化一定程度上表征了藻华物候特征,研究藻华物候变化可为湖泊水环境健康问题治理和缓解水生生态系统环境退化提供科学依据。以往巢湖蓝藻水华遥感监测主要基于2000年以来的MODIS卫星数据,限制了对巢湖蓝藻水华暴发时空变化过程的理解。本文利用Landsat扩展时间序列,联合MODIS数据,基于浮游藻类指数和阈值分割技术提取巢湖蓝藻水华,在评估二者藻华提取结果一致性的基础上,获取并分析了巢湖1987-2020年蓝藻水华暴发物候的规律及影响因子。结果表明:(1) 2000年前,巢湖蓝藻水华暴发规模较小,2000年后面积显著上升,大面积蓝藻水华出现频繁,2011年达到最高峰(608.4 km2);(2)1987-2020年间,巢湖蓝藻水华暴发可以分为3个阶段:(1)1987-2004年,巢湖蓝藻水华年暴发开始时间显著提前,暴发持续时间显著增加;(2)2005-2010年,藻华年暴发开始时间显著延迟,但暴发持续时间变化不显著;(3)2011-2020年,巢湖藻华暴发开始、结束和持续时间呈现年际波动,年暴发开始时间、结束时间和持续时间有所提前,但不显著;(3)巢湖...  相似文献   

13.
土地利用/覆被变化对明晰气候变化和人类活动对湖泊水环境的影响有重要作用.以北方典型农牧交错的岱海流域为研究对象,基于遥感解译技术、马尔可夫转移矩阵、综合污染指数法等方法,对2000-2018年岱海流域土地利用/覆被和湖泊水质的变化进行分析,并结合冗余分析法和计量分析模型探究长时间序列尺度下土地利用/覆被变化对湖泊水质的影响.结果表明:近20年来,岱海流域的土地利用/覆被类型以耕地和草地为主,其变化特征主要是草地和林地转化为耕地,水域转化为季节性河流,岱海转化为内陆滩涂、沼泽草地和灌丛沼泽;岱海湖泊水质因子高锰酸盐指数、五日生化需氧量、总磷和总氮浓度存在不同程度的超标现象;岱海、湿地、林地对水质具有积极的改善作用,耕地、草地、建设用地是加剧水质污染的主要原因.该研究为岱海湖泊流域土地资源合理利用、湖泊水质改善和生态保护提供了一定的科学理论依据.  相似文献   

14.
鄱阳湖是我国最大淡水湖和长江中游仅存的两个通江湖泊之一,重建其近百年自然通江的湖泊湿地演变过程,对于鄱阳湖湿地生态修复与保护具有重要意义.本研究基于两期历史时期地形图和遥感产品,构建了1930s、1970s、1990s、2000s和2010s鄱阳湖湿地格局变化数据集,探究了土地利用方式改变和水文连通变化对鄱阳湖湿地变化的影响.结果表明:鄱阳湖湿地面积由1930s的5024.3 km2下降至2010s的3232.7 km2,近百年损失率高达35.7%,其中1930s-1970s时期面积变化最为显著,损失率达33.2%,且主要集中分布于赣江与饶河的入湖尾闾地区和南部康山圩.湖泊湿地向耕地的转移是鄱阳湖湿地丧失的主要形式,1930s以来,共有累计1149.6 km2的湖泊湿地受垦殖的作用转变为耕地.闸坝与圩垸导致的水文连通性降低加剧了鄱阳湖自然通江的湖泊湿地格局的变化.相较1930s,累计有683.4 km2的湖泊湿地与主湖相阻隔,水文节律完全独立于通江水域.基于地统计学的水文连通函数曲线也表明,近百年来鄱阳湖的横向和纵向水文连通性均呈现一定程度的下降,且在1990s以后保持相对稳定的状态.本研究能够为鄱阳湖乃至长江中游湖泊湿地生态修复与生态系统服务提升提供参考状态与客观资料.  相似文献   

15.
For efficient and targeted management, this study demonstrates a recently developed non-point source (NPS) pollution model for a year-long estimation in the Pingqiao River Basin (22.3 km2) in China. This simple but physically reasonable model estimates NPS export in terms of land use by reflecting spatial hydrological features and source runoff measurements under different land-use types. The NPS export was separately analysed by a distributed hydrological model, a spatial hydrograph-separation technique, and an empirical water quality sub-model. Simulation results suggest that 57 890 kg of total nitrogen (TN) and 1148 kg of total phosphorus (TP) were delivered. The results, validated with observed stream concentrations, show relative errors of 23.3% for TN and 47.4% for TP. Countermeasures for urban areas (5.3% of total area) were prioritized because of the high contribution rate to TN (14.1%) and TP (26.2%) which is caused by the high degree of runoff (8.5%) and pollution source.  相似文献   

16.
To investigate the effects of anthropogenic activity, namely, land use change and reservoir construction, on particulate organic carbon (POC) transport, we collected monthly water samples during September 2007 to August 2009 from the Longchuanjiang River to understand seasonal variations in the concentrations of organic carbon species and their sources and the yield of organic and inorganic carbon from the catchment in the Upper Yangtze basin. The contents of riverine POC, total organic carbon and total suspended sediment (TSS) changed synchronously with water discharge, whereas the contents of dissolved organic carbon had a small variation. The POC concentration in the suspended sediment decreased non‐linearly with increasing TSS concentration. Higher molar C/N ratio of particulate organic matter (average 77) revealed that POC was dominated by terrestrially derived organic matter in the high flows and urban wastewaters in the low flows. The TSS transported by this river was 2.7 × 105 t/yr in 2008. The specific fluxes of total organic carbon and dissolved inorganic carbon (DIC) were 5.6 and 6 t/km2/yr, respectively, with more than 90% in the high flow period. A high carbon yield in the catchment of the upper Yangtze was due to human‐induced land use alterations and urban wastes. Consistent with most rivers in the monsoon climate regions, the dissolved organic carbon–POC ratio of the export flux was low (0.41). Twenty‐two percent (0.9 t/km2/yr) of POC out of 4 t/km2/yr was from autochthonous production and 78% (3.1 t/km2/yr) from allochthonous production. The annual sediment load and hence the organic carbon flux have been affected by environmental alterations of physical, chemical and hydrological conditions in the past 50 years, demonstrating the impacts of human disturbances on the global and local carbon cycling. Finally, we addressed that organic carbon flux should be reassessed using adequate samples (i.e. at least two times in low‐flow month, four times in high‐flow month and one time per day during the flood period), daily water discharge and sediment loads and appropriate estimate method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In order to simulate the potential effect of forecasted land‐cover change on streamflow and water availability, there has to be confidence that the hydrologic model used is sensitive to small changes in land cover (<10%) and that this land‐cover change exceeds the inherent uncertainty in forecasted conditions. To investigate this, a 26‐year streamflow record was simulated for 33 basins (54–928 km2) in the Delaware River Basin using three dates of land cover: the 2011 National Land‐Cover Dataset (Homer, Fry, & Barnes, 2012 ), 2030 land‐cover conditions representing median values from 101 equally‐likely forecasts, and 2060 land‐cover conditions corresponding to the same iterations used to represent 2030. Streamflow was simulated using a process‐based hydrologic model that includes both pervious and impervious methods as parameterized by three land‐cover‐based hydrologic response units (HRUs)—forested, agricultural, and developed land. Small, but significant differences in streamflow magnitude, variability, and seasonality were seen among the three time periods—2011, 2030, and 2060. Temporal differences were discernible from the range of conditions simulated with 101 equally likely forecasts for 2030. Development was co‐located with the most frequent landscape components, as characterized by topographic wetness index, resulting in a change in hydrology for each HRU, highlighting that knowing the location of disturbance is key to understanding potential streamflow changes. These results show that streamflow simulation using regional calibration that incorporates land‐cover‐based HRUs can be sensitive to relatively small changes in land‐cover and that temporal trends resulting from land‐cover change can be isolated in order to evaluate other changes that might affect water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号