首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Owing to their simplicity and reasonable accuracy, Beam on Nonlinear Winkler Foundation (BNWF) models are widely used for the analysis of laterally loaded piles. Their main drawback is idealizing the soil continuum with discrete uncoupled springs representing the soil reactions to pile movement. Static py curves, obtained from limited full-scaled field tests, are generally used as a backbone curve of the model. However, these empirically derived p–y curves could not incorporate the effects of various pile properties and soil continuity. The strain wedge method (SWM) has been improved to assess the nonlinear p–y curve response of laterally loaded piles based on a three-dimensional soil–pile interaction through a passive wedge developed in front of the pile. In this paper, the SWM based p–y curve is implemented as the backbone curves of developed BNWF model to study the nonlinear response of single pile under cyclic lateral loading. The developed nonlinear model is capable of accounting for various important soil–pile interaction response features such as soil and pile yielding, cyclic degradation of soil stiffness and strength under generalized loading, soil–pile gap formation with soil cave-in and recompression, and energy dissipation. Some experimental tests are studied to verify the BNWF model and examine the effect of each factor on the response of laterally loaded pile embedded in sand and clay. The experimental data and computed results agree well, confirming the model ability to predict the response of piles under one-way and two-way cyclic loading. The results show that the developed model can satisfactorily simulate the pile stiffness hardening due to soil cave in and sand densification as observed in the experiment. It is also concluded from the results that the gap formation and soil degradation have significant effects on the increase of lateral pile-head deflection and maximum bending moment of the pile in cohesive soils.  相似文献   

2.
Downhole arrays are deployed to measure motions at the ground surface and within the soil profile, with some arrays instrumented to also record the pore pressure response within soft soil profiles during excitation. The measurements from these arrays have typically been used in conjunction with parametric and nonparametric inverse analysis approaches to identify soil constitutive model parameters for use in site response analysis or to identify averaged soil behavior between locations of measurement. The self-learning simulations (SelfSim) inverse analysis framework, previously developed and applied under total stress conditions, is extended to effective stress considerations and is employed to reproduce the measured motions and pore pressures from downhole arrays while extracting the underlying soil behavior and pore pressure response of individual soil layers. SelfSim is applied to the 1987 recordings from the Imperial Valley Wildlife Liquefaction Array. The extracted soil behavior suggests a new functional form for modeling the degradation of the shear modulus with respect to excess pore pressures. The extracted pore pressure response is dependent on the number and amplitude of shear strain cycles and has a functional form similar to current strain-based pore pressure generation models.  相似文献   

3.
4.
A simple mechanical model is presented for the three-dimensional dynamic soil-structure interaction analysis of surface foundations. The model is made of one-dimensional vertical beams with distributed mass and horizontal springs which interconnect the two adjacent beams. Its parameters are rather uniquely related with the soil properties alone and thus are minimally dependent on the loading condition and the foundation conditions like geometry, flexibility and size. Formulations are provided to determine the model parameters from the soil properties. Solving the governing equations of this model, expressions for the subgrade behavior in response to the applied load and soil-foundation interaction are developed in analytical forms for various cases. The dynamic and static response of three-dimensional surface foundations are computed by these expressions. It is verified that the model is well capable of reproducing the three-dimensional soil-structure interaction behavior.  相似文献   

5.
Abstract

A finite element model to simulate runoff and soil erosion from agricultural lands has been developed. The sequential solutions of the governing differential equations were found: Richards' equation with a sink term for infiltration and soil water dynamics under cropped conditions; St Venant equation with kinematic wave approximation for overland and channel flow; and sediment continuity equation, for soil erosion. The model developed earlier has been improved to simulate erosion/deposition in impoundments and predicted and observed soil loss values were in reasonably good agreement when the model was tested for a conservation bench terrace (CBT) system. The finite element model was extensively applied to study the hydrological behaviour of a CBT system vis-à-vis the conventional system of sloping borders. The model estimates runoff and soil loss reasonably well, under varying conditions of rainfall and at different crop growth stages. The probable reasons for discrepancies between observation and simulation are reported and discussed. Sensitivity analysis was carried out to study the effect of various hydrological, soil and topographical parameters, such as ratio of contributing to receiving areas, weir length, depth of impoundment, slope of contributing area, etc. on the flow behaviour in a CBT system.  相似文献   

6.
Based on the Theory of Porous Media (TPM), a mathematical model of a two-dimensional incompressible fluid-saturated elastic soil is established, and the periodic boundary conditions are presented to analyze the transient dynamic response of this soil under a moving cyclic loading. The differential quadrature method (DQM) and the second-order backward difference scheme are applied to discretize the governing equations on the spatial and temporal domains, respectively. As application, a typical two-dimensional wave-induced transient problem with a seabed of finite thickness is analyzed, and the numerical results are compared with the analytical results presented in the present work. In addition, a transient dynamic response of fluid-saturated soil under limit moving vehicle loadings is studied. The effects of the velocity of vehicle and the volume fraction on the settlement and the pore water pressure are studied.  相似文献   

7.
In this paper, a numerical sensitivity analysis of the site effect on dynamic response of pipelines embedded in some idealised soil deposits resting on a halfspace covering a wide range of soil profiles encountered in practice and subjected to vertically propagating shear waves, is presented. The power spectrum of the lateral differential displacement between two distant points due to the site effect is formulated analytically by using an analytical amplification function of a viscoelastic inhomogenous soil profile overlying either a compliant halfspace or a bedrock, represented by a more realistic continuous model. Also, Kanai-Tajimi spectrum parameters are estimated and expressed analytically from the soil profile model. Finally, results in the form of stochastic response spectrum of pipelines, for different key soil and pipeline parameters, are given and discussed.  相似文献   

8.
Simple methods of analysis are developed for computing the dynamic steady-state axial response of floating pile groups embedded in homogeneous and non-homogeneous soil deposits. Physically-motivated approximations are introduced to account for the interaction between two individual piles. It is found that such an interaction arises chiefly from the ‘interference’ of wave fields originating along each pile shaft and spreading outward. For homogeneous deposits the wave fronts originating at an individual pile are cylindrical and the interaction is essentially independent of pile flexibility and slenderness. For non-homogeneous deposits the wave fronts are non-cylindrical and ray-theory approximations are invoked to derive pile flexibility-dependent interaction functions. Results are presented for the dynamic stiffness and damping of several pile groups, as well as for distribution of the applied load among individual piles. For deposits with modulus proportional to depth, the agreement with the few rigorous solutions available is encouraging. A comprehensive parameter study focuses on the effects of soil inhomogeneity and pile-group configuration. It is demonstrated that the ‘dynamic group efficiency’ may far exceed unity at certain frequencies. Increasing soil inhomogeneity tends to reduce the respective resonant peaks and lead to smoother interaction functions, in qualitative agreement with field evidence.  相似文献   

9.
The performance of rectangular closed diaphragm walls(RCDW) subjected to earthquake ground motions is extremely complicated in gently sloping liquefiable deposits and requires further investigation. A nonlinear finite element(FE) model was developed to investigate the seismic performance of an RCDW in the OpenSees platform. Initially, the feasibility of the FE model to simulate the seismic behavior of the RCDW was validated by comparing the numerical results with the experimental data. The numerical results agree well with the centrifuge test data. Then, the calibrated model was used to study the seismic performance of the RCDW subjected to different ground motions in gently sloping liquefiable deposits.The numerical results indicate that the soil-RCDW system under near-fault ground motions is more likely to be damaged than that under far-fault ground motions. The difference between the maximum and minimum(D_(max-min)) the RCDW displacement and the maximum excess pore pressure in the soil core increased as the Arias intensity increased. The seismic response of the soil-RCDW system was strongly affected by the frequency content, durations, energy distribution and initial directions of the ground motions. Moreover, the modified specific energy density(MSED) has a good linear relationship with the D_(max-min) of the RCDW displacement.  相似文献   

10.
Analytical equations for the moment–rotation response of a rigid foundation on a Winkler soil model are presented. An equation is derived for the uplift-yield condition and is combined with equations for uplift- and yield-only conditions to enable the definition of the entire static moment–rotation response. The results obtained from the developed model show that the inverse of the factor of safety, χ, has a significant effect on the moment–rotation curve. The value of χ=0.5 not only determines whether uplift or yield occurs first but also defines the condition of the maximum moment–rotation response of the footing. A Winkler model is developed based on the derived equations and is used to analyze the TRISEE experiments. The computed moment–rotation response agrees well with the experimental results when the subgrade modulus is estimated using the unload–reload stiffness from static plate load–deformation tests. A comparison with the recommended NEHRP guidelines based on the FEMA 273/274 documents shows that the choice of value of the effective shear modulus significantly affected the comparison.  相似文献   

11.
A one-dimensional constitutive model, developed for the nonlinear ground response analysis of layered soil deposits, is calibrated and validated experimentally in this paper. The small number of parameters renders the model easily implementable, yet quite flexible in effectively reproducing almost any type of experimentally observed hysteretic soil behavior. In particular, the model generates realistic shear modulus and damping curves as functions of shear strain, as well as stress–strain hysteresis loops. The model is calibrated against three sets of widely-used published shear modulus and damping (G : γ and ξ : γ) curves and a library of parameter values is assembled to facilitate its use. The model, along with a developed explicit finite-difference code, NL-DYAS, for analyzing the wave propagation in layered hysteretic soil deposits, is tested against established constitutive models and numerical tools such as Cyclic1D [12] and SHAKE [42], and validated against experimental data from two centrifuge tests. Emphasis is given on the proper assessment of the Vs profile in the centrifuge tests, on the role of soil nonlinearity, and on comparisons of two inelastic codes (NL-DYAS and Cyclic1D) with equivalent linear (SHAKE) analysis.  相似文献   

12.
Finite element (FE) response sensitivity analysis is an important component in gradient-based structural optimization, reliability analysis, system identification, and FE model updating. In this paper, the FE response sensitivity analysis methodology based on the direct differentiation method (DDM) is applied to a bounding surface plasticity material model that has been widely used to simulate nonlinear soil behavior under static and dynamic loading conditions. The DDM-based algorithm is derived and implemented in the general-purpose nonlinear finite element analysis program OpenSees. The algorithm is validated through simulation of the nonlinear cyclic response of a soil element and a liquefiable soil site at Port Island, Japan, under earthquake loading. The response sensitivity results are compared and validated with those obtained from Forward Finite Difference (FFD) analysis. Furthermore, the results are used to determine the relative importance of various soil constitutive parameters to the dynamic response of the system. The DDM-based algorithm is demonstrated to be accurate and efficient in computing the FE response sensitivities, and has great potential in the sensitivity analysis of nonlinear dynamic soil-structure systems.  相似文献   

13.
The seismic analysis of soil deposits is most often carried out with an iterative computational scheme, proposed by Seed and Idriss, in which inelastic effects are only approximately modeled through soil degradation curves. Laboratory experimental data indicate that for highly confined materials, the standardized reduction curves commonly used overestimate the capacity of soils to dissipate energy. This paper first presents the results obtained with a simple four-parameter constitutive soil model, which when used to simulate cyclic loading, produces results that agree well with available laboratory experiments for soils under arbitrarily large confining pressures. Thereafter, a frequency- and pressure-dependent iterative algorithm for seismic amplification is proposed, which provides time histories that match well the results obtained with a true non-linear model. Finally, the modified linear iterative analysis is successfully used for the seismic analysis of a 1 km deep model for the Mississippi embayment near Memphis, Tennessee, and a class-A prediction of the seismic amplification in Treasure Island during the Loma Prieta earthquake.  相似文献   

14.
The removal of chemicals in solution by overland flow from agricultural land has the potential to be a significant source of chemical loss where chemicals are applied to the soil surface, as in zero tillage and surface‐mulched farming systems. Currently, we lack detailed understanding of the transfer mechanism between the soil solution and overland flow, particularly under field conditions. A model of solute transfer from soil solution to overland flow was developed. The model is based on the hypothesis that a solute is initially distributed uniformly throughout the soil pore space in a thin layer at the soil surface. A fundamental assumption of the model is that at the time runoff commences, any solute at the soil surface that could be transported into the soil with the infiltrating water will already have been convected away from the area of potential exchange. Solute remaining at the soil surface is therefore not subject to further infiltration and may be approximated as a layer of tracer on a plane impermeable surface. The model fitted experimental data very well in all but one trial. The model in its present form focuses on the exchange of solute between the soil solution and surface water after the commencement of runoff. Future model development requires the relationship between the mass transfer parameters of the model and the time to runoff to be defined. This would enable the model to be used for extrapolation beyond the specific experimental results of this study. The close agreement between experimental results and model simulations shows that the simple transfer equation proposed in this study has promise for estimating solute loss to surface runoff. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Liquefaction of saturated sand deposits under seismic excitation is studied on the basis of a fatigue failure approach. The model includes a stochastic treatment of the input, of the soil response and of the cumulative pore pressure effects produced by cycling stresses in the soil. A method of establishing safety factors against liquefaction is also considered. Results obtained from analysis of a case history confirm the applicability of the model for engineering purposes.  相似文献   

16.
A numerical study on the influence that cracks and discontinuities (closed cracks) can have on the seismic response of a hypothetical soil–structure system is presented and discussed. A 2-D finite-difference model of the soil was developed, considering a bilinear failure surface using a Mohr–Coulomb model. The cracks are simulated with interface elements. The soil stiffness is used to characterize the contact force that is generated when the crack closes. For the cases studied herein, it was considered that the crack does not propagate during the dynamic event. Both cases, open and closed cracks, are considered. The nonlinear behavior was accounted for approximately using equivalent linear properties calibrated against several 1-D wave propagation analyses of selected soil columns with variable depth to account for changes in depth to bed rock. Free field boundaries were used at the edges of the 2-D finite-difference model to allow for energy dissipation of the reflected waves. The effect of cracking on the seismic response was evaluated by comparing the results of site response analysis with and without crack, for several lengths and orientations. The changes in the response obtained for a single crack and a family of cracks were also evaluated. Finally, the impact that a crack may have on the structural response of nearby structures was investigated by solving the seismic-soil–structure interaction of two structures, one flexible and one rigid to bracket the response. From the results of this investigation, insight was gained regarding the effect that discontinuities may have both on the seismic response of soil deposits and on nearby soil–structure systems.  相似文献   

17.
18.
A thin layer element method is formulated to compute the dynamic response of submerged soil. The formulation is based on Biot's equation describing the dynamic behavior of fluid-saturated elasto-porous medium. The dynamic response of submerged soil is computed for various cases by using the developed formulation. The effects of submerged conditions are examined for submerged soil deposits with a water level at and above the ground surface. It is found that both submerged conditions and water body above the ground surface can considerably affect the dynamic response of soil deposits.  相似文献   

19.
水平成层均质土地震反应非线性分析的半解析算法   总被引:1,自引:0,他引:1  
采用动态应力-应变关系及其推广的Masing加卸载准则,考虑土体在地震等不规则加载条件下的非线性滞回特征,将增量法与相应场地地震线性反应解析解相结合,提出了该动力非线性方程的半解析时域算法,以水平成层场地一维剪切梁模型为例,建立了求解土体地震反应的非线性分析技术。针对Seed-Idriss给出的砂土平均曲线,分析计算了非均匀层状密砂的线性和非线性地震反应。  相似文献   

20.
玻璃钢夹砂管在土木水利工程领域得到了愈来愈广泛的应用,但现有的埋地管道地震响应分析模型大多不考虑管-土动力相互作用,且多针对均质材料管道,无法应用于具有明显层状复合材料结构特征的玻璃钢夹砂管。基于玻璃钢夹砂管的层状复合材料结构特征,建立了完整的埋地玻璃钢夹砂管地震响应分析模型,在数值分析模型中,考虑了管-土间复杂的动力相互作用,以及地震散射波从有限域向无限域的传播。算例分析表明,所建立的埋地玻璃钢夹砂管地震响应分析模型可合理地分析埋地玻璃钢夹砂管在地震荷载作用下的动力响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号