首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A uniform catalog of earthquakes for seismic hazard asesment in Iran   总被引:6,自引:0,他引:6  
AuniformcatalogofearthquakesforseismichazardasesmentinIranNoorbakhshMirzaei1,2)MENG-TANGAO1)(高孟谭)YUN-TAICHEN1)(陈运泰)JIANWANG1...  相似文献   

2.
Potential sources are simplified as point sources or linear sources in current probabilistic seismic hazard analysis (PSHA) methods. Focus size of large earthquakes is considerable, and fault rupture attitudes may have great influ-ence upon the seismic hazard of a site which is near the source. Under this circumstance, it is unreasonable to use the simplified potential source models in the PSHA, so a potential rupture surface model is proposed in this paper. Adopting this model, we analyze the seismic hazard near the Chelungpu fault that generated the Chi-Chi (Jiji) earthquake with magnitude 7.6 and the following conclusions are reached. 1 This model is reasonable on the base of focal mechanism, especially for sites near potential earthquakes with large magnitude; 2 The attitudes of poten-tial rupture surfaces have great influence on the results of probabilistic seismic hazard analysis and seismic zoning.  相似文献   

3.
川滇地区是我国地震危险性较高的地区之一.本文基于对特大强震的风险性考虑,使用全球地震模型OpenQuake软件,建立了川滇地区地震危险性预测新模型.首先根据构造特征划分多个震源分区,并整理出这些震源分区内断层活动特征与滑动速率;基于震源分区和断层模型,使用GPS应变率转换成的锥形古登堡-里克特关系作为整个区域的地震积累率,并允许超过历史最大震级的特大地震的出现,结合活动断层滑动速率所积累的地震发生率,给出震源分区内断层地震源和背景地震源的地震发生率的比率分配关系;在活动断层分段上,保留了大型断裂或其主要部分,没有根据小的阶区来对断层进行详细分段,以便分配特大地震发生率;并使用地震率平滑方法分配背景地震发生率.最后在OpenQuake中加入地震动预测方程,计算出了川滇地区的PGA分布图,为区域地震危险性提供科学依据.  相似文献   

4.
分析矿震破裂机制及微震的时空分布能够为矿区灾害评估提供更多的有效信息.本研究基于密集台阵观测对2019年11月12日辽宁抚顺2.4级矿震开展震源参数研究,震源机制解显示地震破裂包含明显的非双力偶分量,表现为体积压缩的塌陷机制,且震源深度较浅,最佳拟合矩心深度为0.6 km.同时,对11月3日—25日记录的连续地震波形开展微震扫描,新检测出324个微震事件(-0.5~2.0级),定位结果显示在M 2.4矿震发生前M>1.0级事件显著增多,且在矿震位置存在近南北向的微震条带分布,微震序列随时间向深部迁移(约1.5 km),暗示存在断层活化迹象.结合震源破裂机制,我们认为此次事件与矿区塌陷破裂密切相关,同时伴随先存断裂的剪切滑动.本研究表明,基于密集台阵观测的地震矩张量反演和微震检测研究,对判定矿震类型及防范矿区灾害具有重要的研究意义.  相似文献   

5.
6.
Located on the Alpine-Himalayan earthquake belt, Iran is one of the seismically active regions of the world. Northern Iran, south of Caspian Basin, a hazardous subduction zone, is a densely populated and developing area of the country. Historical and instrumental documented seismicity indicates the occurrence of severe earthquakes leading to many deaths and large losses in the region. With growth of seismological and tectonic data, updated seismic hazard assessment is a worthwhile issue in emergency management programs and long-term developing plans in urban and rural areas of this region. In the present study, being armed with up-to-date information required for seismic hazard assessment including geological data and active tectonic setting for thorough investigation of the active and potential seismogenic sources, and historical and instrumental events for compiling the earthquake catalogue, probabilistic seismic hazard assessment is carried out for the region using three recent ground motion prediction equations. The logic tree method is utilized to capture epistemic uncertainty of the seismic hazard assessment in delineation of the seismic sources and selection of attenuation relations. The results are compared to a recent practice in code-prescribed seismic hazard of the region and are discussed in detail to explore their variation in each branch of logic tree approach. Also, seismic hazard maps of peak ground acceleration in rock site for 475- and 2,475-year return periods are provided for the region.  相似文献   

7.
A seismic hazard assessment study of continental Ecuador is presented in this paper. The study begins with a revision of the available information on seismic events and the elaboration of a seismic catalog homogenized to magnitude Mw. Different seismic source definitions are revised and a new area-source model, based on geological and seismic data, is proposed. The available ground motion prediction equations for crustal and subduction sources are analyzed and selected for the tectonic environments observed in Ecuador. A probabilistic seismic hazard assessment approach is carried out to evaluate the exceedance probability of several levels of peak ground acceleration PGA and spectral accelerations SA (T) for periods (T) of 0.1, 0.2, 0.5, 1 and 2s. The resulting hazard maps for continental Ecuador are presented, together with the uniform hazard spectra of four province capital cities. Hazard disaggregation is carried out for target motions defined by the PGA values and SA (1s) expected for return periods of 475 and 2475 years, providing estimates for short-period and long-period controlling earthquakes.  相似文献   

8.
Delineation of potential seismic sources for seismic zoning of Iran   总被引:3,自引:1,他引:2  
A total of 235 potential seismic sources in Iran and neighboring regions are delineated based on available geological, geophysical, tectonic and earthquake data for seismic hazard assessment of the country. In practice, two key assumptions are considered; first, the assumption of earthquake repeatedness, implying that major earthquakes occur preferentially near the sites of previous earthquakes; second, the assumption of tectonic analogy, which implies that structures of analogous tectonic setting are capable of generating same size earthquakes. A two-step procedure is applied for delineation of seismic sources: first, demarcation of seismotectonic provinces; second, determination of potential seismic sources. Preferentially, potential seismic sources are modeled as area sources, in which the configuration of each source zone is controlled, mainly, by the extent of active faults, the mechanism of earthquake faultings and the seismogenic part of the crust.  相似文献   

9.
The objective of this study is to evaluate the seismic hazard in Eastern Marmara Region using an improved probabilistic seismic hazard assessment methodology. Two significant improvements over the previous seismic hazard assessment practices are accomplished in this study: advanced seismic source characterization models in terms of source geometry and recurrence relationships are developed, and improved global ground motion models (NGA-W1 models) are employed to represent the ground motion variability. Planar fault segments are defined and a composite magnitude distribution model is used for all seismic sources in the region to properly represent the characteristic behavior of the North Anatolian Fault without the need for an additional background zone. Multi-segment ruptures are considered using the rupture model proposed by the Working Group on California Earthquake Probabilities (2003). Events in the earthquake catalogue are attributed to the fault zones and scenario weights are determined by releasing the accumulated seismic energy. The uniform hazard spectra at 10 % probability of exceedance in 50 years hazard level for different soil conditions (soil and rock) are revealed for specific locations in the region (Adapazar?, Düzce, Gemlik, Izmit, Iznik and Sapanca). Hazard maps of the region for rock site conditions at the selected hazard levels are provided to allow the readers perform site-specific hazard assessment and develop site-specific design spectrum for local site conditions.  相似文献   

10.
The analysis of seismic hazards relies on the statistical analysis of historical seismic data and the instrumental seismic catalog to obtain the regional earthquake recurrence interval and earthquake probability. The accuracy of analysis thus depends strongly on the completeness of the seismic data used. However, available seismic catalogs are too short or incomplete for the reliable analysis of the statistical characteristics of earthquakes. If a long-term synthetic seismic catalog can be generated using a physics-based numerical simulation, and the simulation results match the crustal deformation, seismicity, and other observations,then such a synthetic catalog helps us to further understand the characteristics of seismic activity and analyze the regional seismic hazard. In this paper, taking the northeastern Tibetan Plateau as a case study, we establish a three-dimensional visco-elastoplastic finite-element model to simulate earthquake cycles and the spatiotemporal evolution of earthquakes on the model fault system and obtain a seismic catalog on a time scale of tens of thousands of years. On the basis that the model satisfies the regional geodynamics of the northeastern Tibetan Plateau, we analyze seismicity on the northeastern Tibetan Plateau using the simulated synthetic earthquake catalog. The characteristics of earthquake recurrence at different locations and different magnitudes, and the long-term average probability of earthquake occurrence within the fault system on the northeastern Tibetan plateau are studied. The results are a reference for regional seismic hazard assessment and provide a basis for the physics-based numerical prediction of earthquakes.  相似文献   

11.
Iran is located in one of the seismically active regions of the world. Due to the high probability of earthquakes throughout the country and the potential for tsunami inundation along the coasts and offshore, comprehensive studies on the interaction of these natural phenomena are necessary. In this study, the most conservative scenarios are determined for possible earthquakes within the Khark zone (Persian Gulf) based on experimental relations between the fault length, magnitude and displacement, which are parameters for determining tsunamigenic sources. Subsequently, the maximum height of tsunami waves are calculated based on the specifications of the seismic source and its distance from the shore as well as the coastal slope. A zoning map of tsunami hazard is finally presented.  相似文献   

12.
徐伟进  高孟潭 《地震学报》2012,34(4):526-536
根据华北地区的地震目录,建立了4个空间光滑的地震活动性模型,并以这些模型为空间分布函数,将华北地震区每个地震带的地震年发生率分配到空间格点中,计算这一地区的地震危险性.结果表明,采用仪器记录地震计算得到的地震活动性模型和地震危险性结果能够反映华北地区现今的地震活动水平和地震危险性水平,符合人们对现今华北地区地震危险性的认识;采用历史破坏性地震(Mge;4.7)计算的地震活动性模型和地震危险性结果,较好地反映了华北地区中强地震活动区的地震危险性水平;以地震应变计算地震活动率,并根据点椭圆模型和线椭圆模型计算得到的地震活动性模型,能够较好地反映大地震的活动水平和空间构造特征.将根据4个模型计算得到的50年超越概率10%峰值加速度(PGA)分布加权平均,得到综合的华北地区PGA分布,并将该PGA分布与根据《中国地震动参数区划图》中综合潜源方案计算得到的50年超越概率10%的PGA分布做了比较,发现二者无本质差别,均能反映华北地震区的地震危险性水平.当然,二者也具有一定的差异:前者计算得到的符合PGAge;100 cm/s2条件的区域面积明显要比后者的大,而符合PGAge;250 cm/s2条件的区域面积则比后者的要小. 这主要是由于潜在震源区类型和空间分布函数不同造成的.   相似文献   

13.
活断层与古地震定量数据在美国近三代地震区划图中的应用基本上体现了各阶段活断层研究的最新成果,其中断裂震源模型起到了桥梁的作用,并不断得到完善。在1996年地震区划图中引入了特征地震模型与截断的G—R模型,用以表述断层的震级一频度分布关系。在2002年地震区划图中更明确地处理了参数的不确定性,并引入逻辑树概念,同时在特征地震模型中试用了多段破裂模型。在2008年地震区划图中引用了更为广泛的逻辑树来描述地震构造几何形态、地震震级和复发周期的不确定性,其中特征地震模型包括:单段破裂和多段破裂的特征地震模型,以及给定震级的浮动地震模型(或不固定分段模型)。这些经验值得在我国第五代地震区划图的编制工作中借鉴。  相似文献   

14.
We developed a recipe for predicting strong ground motions based on a characterization of the source model for future crustal earthquakes. From recent developments of waveform inversion of strong motion data used to estimate the rupture process, we have inferred that strong ground motion is primarily related to the slip heterogeneity inside the source rather than average slip in the entire rupture area. Asperities are characterized as regions that have large slip relative to the average slip on the rupture area. The asperity areas, as well as the total rupture area, scale with seismic moment. We determined that the areas of strong motion generation approximately coincide with the asperity areas. Based on the scaling relationships, the deductive source model for the prediction of strong ground motions is characterized by three kinds of parameters: outer, inner, and extra fault parameters. The outer fault parameters are defined as entire rupture area and total seismic moment. The inner fault parameters are defined as slip heterogeneity inside the source, area of asperities, and stress drop on each asperity based on the multiple-asperity model. The pattern of rupture nucleation and termination are the extra fault parameters that are related to geomorphology of active faults. We have examined the validity of the earthquake sources constructed by our recipe by comparing simulated and observed ground motions from recent inland crustal earthquakes, such as the 1995 Kobe and 2005 Fukuoka earthquakes.  相似文献   

15.
The occurrence of the Algiers earthquake (M 6.8) of May 21, 2003, has motivated the necessity to reassess the probabilistic seismic hazard of northern Algeria. The fact that this destructive earthquake took place in an area where there was no evidence of previous significant earthquakes, neither instrumental nor historical, strongly encourages us to review the seismic hazard map of this region. Recently, the probabilistic seismic hazard of northern Algeria was computed using the spatially smoothed seismicity methodology. The catalog used in the previous computation was updated for this review, and not only includes information until June 2003, but also considers a recent re-evaluation of several historical earthquakes. In this paper, the same methodology and seismicity models are utilized in an effort to compare this methodology against an improved and updated seismic catalog. The largest mean peak ground acceleration (PGA) values are obtained in northernmost Algeria, specifically in the central area of the Tell Atlas. These values are of the order of 0.48 g for a return period of 475 years. In the City of Algiers, the capital of Algeria, and approximately 50 km from the reported epicenter of this latest destructive earthquake, a new mean PGA value of 0.23 g is obtained for the same return period. This value is 0.07 g greater than that obtained in the previous computation. In general, we receive greater seismic hazard results in the surrounding area of Algiers, especially to the southwest. The main reason is not this recent earthquake by itself, but the significant increase in the mmax magnitude in the seismic source where the city and the epicenter are included.  相似文献   

16.
The application of a newly developed physics-based earthquake simulator to the active faults inferred by aeromagnetism in southern Calabria has produced a synthetic catalog lasting 100 ky including more than 18,000 earthquakes of magnitude ≥?4.0. This catalog exhibits temporal, spatial and magnitude features, which resemble those of the observed seismicity. As an example of the potential use of synthetic catalogs, a map of the peak ground acceleration (PGA) for a given exceedance probability on the territory under investigation has been produced by means of a simple attenuation law applied to all the events reported in the synthetic catalog. This map was compared with the existing hazard map that is presently used in the national seismic building regulations. The comparison supports a strong similarity of our results with the values given in the present Italian seismic building code, despite the latter being based on a different methodology. The same similarity cannot be recognized for the comparison of our present study with the results obtained from a previous study based on our same methodology but with a different geological model.  相似文献   

17.
Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58–73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173–215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.  相似文献   

18.
Singapore and Kuala Lumpur, the capital of Malaysia, may well represent the classic examples of area with low seismic hazard but with high consequence. Both cities are located in a low-seismicity region of Southeast Asia, where active seismic sources are located more than 300 km away. Seismic designs have not been implemented in this seemingly low-hazard region though distant earthquakes in Sumatra had frequently shaken high-rise structures in the two cities. Several studies have been conducted to systematically assess the seismic hazards of Singapore and the Malay Peninsula. The present research particularly addresses issues in deriving a new set of attenuation relationships of peak ground acceleration (PGA), peak ground velocity (PGV) and response spectral acceleration (RSA) for the Sumatran-subduction earthquakes. To be relevant for the seismic hazard assessment of the remote metropolises, the derived attenuation relationships cover a long distance range from 150 to 1500 km. The attenuation relationships are derived using synthetic seismograms that account for source and path effects. The uncertainties in rupture parameters, such as stress drop, strike, dip and rake angles, have been defined according to the regional geological and tectonic settings as well as the ruptures of previous earthquakes. The seismic potential of the Sumatran subduction zone are high in the region from 2°N to 5°S as there has been no recurrence of great thrust events since 1861. A large event with Mw greater than 7.8 in this particular subduction zone may be capable of generating destructive ground motions in Singapore and Kuala Lumpur, even at a distance of 700 km.  相似文献   

19.
信浓川地震带位于日本大地沟北部,地壳运动十分强烈,区内地震主要沿信浓川流域发生,并密集成带,大地构造上处于日本海板块向本州板块俯冲的边界线上。该地震带大多数地震为中强震,且均为浅源地震,地震发生伴随着明显的地下水前兆异常,震中区有强烈的超压热水系的喷溢活动。震中区地下水的温度、电导率以及主要地球化学成分呈线性异常分布,并与地震强弱或地震断裂规模有关,地震断层的规模控制了超压热水系喷溢活动的强度和规模。地震发生与超压热水系喷溢活动有着密切的成生关系,超压热水系喷溢活动使断层发生活动所需应力条件降低,诱发地震发生,同时断层活动为超压热水系向上喷溢提供通道。  相似文献   

20.
Earthquake hazard in Marmara Region, Turkey   总被引:2,自引:0,他引:2  
Earthquake hazard in the Marmara Region, Turkey has been investigated using time-independent probabilistic (simple Poissonian) and time-dependent probabilistic (renewal) models. The study culminated in hazard maps of the Marmara Region depicting peak ground acceleration (PGA) and spectral accelerations (SA)'s at 0.2 and 1 s periods corresponding to 10 and 2% probabilities of exceedance in 50 yrs. The historical seismicity, the tectonic models and the known slip rates along the faults constitute the main data used in the assignment. Based on recent findings it has been possible to provide a fault segmentation model for the Marmara Sea. For the main Marmara Fault this model essentially identifies fault segments for different structural, tectonic and geometrical features and historical earthquake occurrences. The damage distribution and pattern of the historical earthquakes have been carefully correlated with this fault segmentation model. The inter-event time period between characteristic earthquakes in these segments is consistently estimated by dividing the seismic slip estimated from the earthquake catalog by the GPS-derived slip rate of 22±3 mm/yr. The remaining segments in the eastern and southern Marmara region are also identified using recent geological, geophysical studies and historical earthquakes. The model assumes that seismic energy along the segments is released by characteristic earthquakes. For the probabilistic studies characteristic earthquake based recurrence relationships are used. Assuming normal distribution of inter-arrival times of characteristic earthquakes, the ‘mean recurrence time’, ‘covariance’ and the ‘time since last earthquake’ are developed for each segment. For the renewal model, the conditional probability for each fault segment is calculated from the mean recurrence interval of the characteristic earthquake, the elapsed time since the last major earthquake and the exposure period. The probabilities are conditional since they change as a function of the time elapsed since the last earthquake. For the background earthquake activity, a spatially smoothed seismicity is determined for each cell of a grid composed of cells of size 0.005°×0.005°. The ground motions are determined for soft rock (NEHRP B/C boundary) conditions. Western US-based attenuation relationships are utilized, since they show a good correlation with the attenuation characteristics of ground motion in the Marmara region. The possibility, that an event ruptures several fault segments (i.e. cascading), is also taken into account and investigated by two possible models of cascading. Differences between Poissonian and renewal models, and also the effect of cascading have been discussed with the help of PGA ratio maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号