首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
固体围压下完整花岗岩粘滑现象的实验研究   总被引:3,自引:0,他引:3  
程海旭  吴开统 《中国地震》1993,9(3):211-222
本文用完整的花岗岩样品在固体围压三轴实验装置上压缩,研究围压和应变速率对岩样变形破裂过程、粘滑应力降、粘滑复发间隔及样品主破裂几何分布的影响。结果表明,加载速率较低时,粘滑应力降较大,复发间隔较长且分布无规律。加载速率越大,粘滑应力降越小,复发间隔也近似相等,粘滑事件表现出准周期性。围压和应变率较低时,岩石的主破裂会演变成两个交叉的共轭断裂面;而围压和应变率较高时,岩石的主破裂则演变成单一断裂面或入字形断裂面。本文结果对认识中国大陆板内地震孕育、发生及重复过程;研究地震重复发生的机制及影响地震复发间隔的主要因素都有重要意义。  相似文献   

2.
断层滑动速率,地震重复时间和平均应力降   总被引:5,自引:0,他引:5  
本文综述了国内外大地震复发间隔研究的现状,系统整理了中国大陆活断层滑运速率,已发现的古地震遗迹及古地震复发间隔,结果表明,在滑动速率较在的活断层发现的古地震复发间隔较短,Kanamori和Alle(1985)研究了具有大范围重复时间(20年到几千年)的板内大地震的震源参数,发现复发间隔较长的大地震具有较高的平均应力降,我们在实验室内研究了应变速率不同时固体围压三轴压缩下完整花岗岩破裂后的粘滑现象。  相似文献   

3.
速率和状态相依赖的摩擦定律是本文采用的重要定律。结合Chester-Higgs摩擦模型和McKenzie-Brune摩擦生热模型,在一维弹簧-滑块-断层近似模型下,利用四阶变步长的Dormand-Prince算法,研究探讨了断层摩擦生热对断层演化的影响。结果表明:与忽略温度影响的情形相比,摩擦生热造成的温度上升可导致断层滑移时刻的略微提前,并伴随着摩擦系数和状态变量的下降,同时也使得断层的滑移量和应力降略有减小,而滑移速率有所增大;另外,在考虑温度影响时,有效正应力和临界滑移距离也会影响断层的演化过程,断层上的有效正应力越大,断层失稳时刻越提前,温度上升越明显;断层的临界滑移距离越大,断层失稳时刻则越迟,温度上升越显著,但当临界滑移距离超过5 cm时,具有不同临界滑移距离的断层,失稳时的温度则基本保持一致。   相似文献   

4.
Seismicity simulation with a rate- and state-dependent friction law   总被引:3,自引:0,他引:3  
The dynamic motions and stabilities of a single-degree-of-freedom elastic system controlled by different friction laws are compared. The system consists of a sliding block connected to an elastic spring, driven at a constant velocity. The friction laws are a laboratory-inferred friction law called the rate-and-state-dependent friction law, proposed by Dieterich and Ruina, and a simple friction law described by dynamic and static frictions. We further extend the solution to a one-dimensional mass-spring model which is an analog of a fault controlled by the rate-and-state-dependent friction law. This model predicts non uniform slip and stress drop along the rupture length of a heterogeneous fault. This result is very different from some earlier modelings based on the simple friction law and a slip weakening friction law. In those earlier modelings the stress and slip functions become smoother with time along the length of the fault rupture, owing to the interactions between fault segments during slip. Because of this smoothing process the number of small events will decrease with time, and the universilly observed stationary magnitude-frequency relation cannot be explained. The interaction between a fault segment and its neighboring segments can be measured when the post-slip stress on this segment is compared with the stress on an identical segment (represented by a block in this modeling) without neighboring segments. If the post-slip stress of the former is much higher than that of the latter, strong interaction exists; if the two are close, only weak interaction exists. The interaction is determined by the relative motion between fault segments and the time duration of interaction. Our new modeling with the rate-and-state-dependent friction law appears to show no such smoothing effect and provides a physical mechanism for the roughening process in the difference between the fault strength and stress that is necessary to explain the observed stationary magnitude-frequency relation. The noninstantaneous healing predicted by the rate-and-state-dependent friction law may be repsonsible for the recurring nonuniform slip and stress drop, and may be explained by the reduction of interaction among fault segments due to the low frictional strength during the fault stopping. The very low friction during slip stopping allows much longer times than does the higher friction due to instantaneous healing for the fault segments to adjust their motions from an upper-limit slip velocity to almost rest. According to newton's second law, a process with fixed masses and constant velocity changes involves low forces and weak interactions if it is accomplished in a long time period, and vice versa. Our modeling also indicates that the existence of strong patches with higher effective stress on a fault is needed for the occurrence of major events. The creeping section of a fault, such as the one along the San Andreas fault in central California, on the other hand, can be simulated with the rate-and-state-dependent friction law by certain model parameters, which, however, must not include strong patches. In this case small earthquakes and aseismic creep relieve the accumulating strain without any large events.  相似文献   

5.
解孟雨  史保平 《地震学报》2016,38(4):590-608
本文首先根据Dieterich和Ruina提出的含速率和状态的摩擦定律(Dieterich-Ruina定律), 基于一维弹簧-滑块模型推导了地震复发周期的解析表达式, 然后将该近似解与数值模拟结果以及Barbot等的相关研究进行了对比分析. 此外, 本文还利用数值模拟与理论分析研究了断层周期和非周期演化的力学成因机制以及非地震滑移形成的另类力学机制, 并讨论了一维弹簧-滑块模型的优点及其局限性. 结果表明: ① 震后滑移和自加速/成核阶段的持续时间在整个演化过程中不能被忽略; ② 在修正后的复发周期模型中, 复发周期的长短除了与断层特征尺度、 作用于断层面上的有效正应力和远场加载速率相关外, 还受Dieterich-Ruina定律中摩擦参数的取值以及临界滑移距离的影响; ③ 当给定各个物理参数和几何参数时, 目前所得到的解析近似解可以很好地估计地震的复发周期, 其相对误差可小于5%; ④ 在断层演化过程中, 施加剪切应力加载会产生非周期的地震滑移, 而在自加速/成核阶段后期或震后滑移阶段早期, 施加较大的剪切应力加载, 则会出现非地震滑移.   相似文献   

6.
To understand precursory phenomena before seismic fault sliP,this work focuses onearthquake nucleation process on a fault plane through numerical simulation.Rate and statedependent friction law with variable normal stress is employed in the analysis.The resultsshow that in the late stage of nucleation process:(1)The maximum slip velocity ismonotonically accelerating;(2)The slipping hot spot(where the slip rate is maximum)migrates spontaneously from a certain instant,and such migration is spatially continuous;(3)When the maximum velocity reaches a detectable order of magnitude(at least one orderof magnitude greater than the loading rate),the remaining time is 20 hours or longer,andthe temporal variation of slip velocity beyond this point may be used as a precursoryindicator;(4)The average slip velocity is related to the remaining time by a log-log linearrelation,which means that a similar relation between rate of microseismicity and remainingtime may also exist;(5)when normal stress variation is taken int  相似文献   

7.
—We propose a new model to physically explain the seismic quiescence precursory to a large interplate earthquake. A numerical simulation is performed to quantitatively examine possible stress changes prior to a great interplate earthquake in a subduction zone. In the present study, the frictional force following a laboratory-derived friction law, in which the friction coefficient is dependent on slip rate and slip history, is assumed to act on a dip-slip fault plane of infinite width in a uniform elastic half-space. The values of friction parameters are determined so that the result of numerical simulation may explain some properties of great interplate earthquakes in subduction zones, such as the recurrence interval and the seismic coupling coefficient. The result of simulation reveals that significant quasi-stable sliding occurs prior to a great earthquake and, accordingly, stresses are changed on and around the plate boundary. In a relatively wide area of the overriding continental plate, the compres sional horizontal-stress perpendicular to the trench axis is decreased for a few years before the occurrence of a great earthquake. This decrease in regional compressional stress may account for the appearance of seismic quiescence prior to a great interplate earthquake.  相似文献   

8.
The Wadi Araba Valley is a morphotectonic depression along part of theDead Sea Transform (DST) plate boundary that separates the Arabian plateon the east from the Sinai subplate on the west. The Wadi Araba fault(WAF) is the main strike-slip faults one of between the Gulf of Aqaba and the E-Wtrending Khunayzira (Amatzayahu) fault that bounds the southern end ofthe Dead Sea. Just south of the Dead Sea, the WAF cuts across severalgenerations of alluvial fans that formed on tributaries to the Wadi Dahalafter the regression of Late Pleistocene Lake Lisan ca. 15 ka. Geomorphicand stratigraphic evidence of active faulting, including left-laterally offsetstream channels and alluvial-fan surfaces, yielded fault slip-rate data for thenorthern segment of WAF. Typical cumulative displacements of 54 m,39 m, and 22.5 m of stream channels and alluvial-fan surfaces acrossthe fault were measured from detailed geologic and topographic mapping.The 54 m offset of the oldest alluvial-fan surface (Q f1 ) occurredafter the final lowering of Lake Lisan (16–15 ka) and before 11 ka yieldinga slip-rate range of 3.4 mm/yr to 4.9 mm/yr. Based on radiocarbonages of charcoal and landsnail shell samples from the buried Q f2 alluvial-fan deposits exposed in trenches excavated across the fault, the39 m and 22.5 m offsets occurred after 9 ka and 5.8 ka, respectively. These data yield a slip-rate range between 3.9 mm/yr and 6.0 mm/yr.The small variability in these slip-rate estimates for different time periodssuggests that the northern Wadi Araba fault has maintained a relativelyconstant slip rate in the past 15 ka. We calculate an average slip rate of 4.7± 1.3 mm/yr since 15 ka based on the three separate displacementsand age estimates. Five separate offsets of 3 m were measured from gullybends and the offset of small fault-scarp alluvial fans. These displacementdata suggest a coseismic slip of 3 m in the last earthquake, or acumulative slip of 3 m in the past few earthquakes. A maximum slip of3 m correspond to a Mw 7 earthquake that ruptures about 49 km offault length. Using an average slip rate of 4.7 ± 1.3 mm/yr togetherwith a 3-m slip-per-event suggests a maximum earthquake recurrence intervalof this fault segment of 500 to 885 years.  相似文献   

9.
Dynamic faulting under rate-dependent friction   总被引:2,自引:0,他引:2  
We discuss the effects of rate-dependent friction on the propagation of seismic rupture on active faults. Several physicists using Burridge and Knopoff's box and spring model of faulting have proposed that fault complexity may arise from the spontaneous development of a self-similar stress distribution on the fault plane. If this model proves to be correct, it has important consequences for the origin of the complexity of seismic sources. In order to test these ideas on a more realistic earthquake model, we developed a new boundary integral equation method for studying rupture propagation along an antiplane fault in the presence of nonlinear rate-dependent friction. We study rupture dynamics of models with single and twin asperities. In our models, asperities are places on the fault with a higher value of prestress. Othewise all fault parameters are homogeneous. We show that for models with such asperities, a slip velocity weakening friction leads to the propagation of supersonic healing phases and to the spontaneous arrest of fracture if the prestress outside the asperities is low enough. For models with asperities, we can also observe narrow slip velocity pulses, qualitatively similar to the so-called Heaton pulses observed in some earthquake accelerograms. We also observe a complex distribution of stress after the rupture that depends on details of the initial distribution of asperities and on the details of the friction law.  相似文献   

10.
地震应力降与岩石破裂应力降   总被引:4,自引:0,他引:4       下载免费PDF全文
臧绍先 《地震学报》1984,6(2):182-194
从应力降的静态理论,讨论了地震应力降的精度,并利用野外观测的最大位移和由地震波得到的地震矩,分别计算了十个研究较充分的地震应力降.对不同作者的结果作了比较,可以看出,应力降有因子为2的变化范围.但从统计观点看,地震应力降是分布在几巴到几百巴的数量级,大多数位于20-60巴;总结了地壳中代表性岩石在地壳温度、压力条件下,粘滑及脆性剪切破裂时的应力降,它们与温度、压力、岩性、含水矿物的存在有关.取值范围是从零到几千巴数量级;讨论了地震断层的物理状态,指出地震应力降是一种平均结果,并由于静态理论忽略了断层面破裂所消耗的能量,所以地震应力降比实际的应力降要低.   相似文献   

11.
龙门山断层地震周期及其动力学过程模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
在断层面上引入速率-状态相依摩擦本构关系、考虑铲形逆冲断层几何结构特征、断层下盘和上盘中下地壳及上地幔为黏弹性介质、上盘上地壳为弹塑性介质,本文用二维有限元动力学模型模拟了龙门山断层上大震准周期复发行为、分析了断层上地震孕育位置、地震周期不同阶段的应力/应变场演化特征.不同于近垂直走滑断层上的地震周期行为,大陆铲形逆冲断层上的构造应力的积累和释放过程更复杂、有其独特性.我们得到如下认识:(1)铲形逆冲断层上的地震复发是准周期行为.(2)龙门山断层最大库仑应力位于断层17~20 km深处,应力长期积累和同震释放都在此深度最大,说明地震会在此处孕育、发动.(3)在断层破裂的深部和浅部,同震滑动大小和构造应力释放大小并非同步,而是差异悬殊.(4)地震仅部分释放区域积累的应变能,断层上盘上地壳顶部和底部的褶皱、破裂等永久变形形式也是释放应变能的重要形式.(5)应变能密度增量的演化图像分为:震间、同震、震后期,清晰反应了龙门山断层附近的地震动力学过程.(6)地震发生除释放能量外,同时也对近断层的中地壳和断层底部有很大的应变能加载;这些加载,在震后期可能通过震后滑移、余震或中下地壳乃至上地幔的驰豫形变用几十年时间释放.以上对大陆内铲形逆冲断层上变形特征的了解,有助于我们在其地震周期行为中评估地震危险性.  相似文献   

12.
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.  相似文献   

13.
黏滑实验的震级评估和应力降分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文通过三种结构模型的黏滑地震模拟实验,利用高频速度连续观测系统获得了地震失稳过程的速度特征,讨论了最大位移量的选取方法,估算了实验室黏滑型地震的矩震级,探讨了黏滑类型、应力降大小与震级的关系.结果表明,黏滑型地震的应力降过程可能包含一次到多次高频振荡,对应若干次黏滑子事件.高频振荡的摆动幅度很大,包含有多种频率成分,峰值速度0.003~0.008 m·s-1.初步估计黏滑型地震的震级范围为-4.4~-3级,断层构造面的差异对各种黏滑模型的地震震级分布有明显影响.总体来看应力降与地震震级没有明显相关性,决定地震震级的主要因素应当是震源尺度.  相似文献   

14.
震源动力学破裂过程数值模拟研究   总被引:2,自引:1,他引:1  
张丽芬  姚运生 《地震学报》2013,35(4):604-615
首先阐述了震源动力学过程研究的重要意义, 在此基础上, 研究了复杂的断层几何形态及介质模型对动力学破裂过程的影响, 并对常用的有限元方法、 离散元方法、 有限差分方法和边界积分方程方法等进行了相应介绍. 讨论了这些数值模拟方法各自的优缺点, 建议在方法的选择上应视具体问题及计算的精度而定. 最后对动力学数值模拟的关键部分, 滑动摩擦准则进行了论述. 常用的滑动摩擦准则有滑动弱化准则、 速率弱化准则和速率-状态依赖摩擦准则. 在单纯考虑某个地震的动力学破裂传播过程时, 滑动弱化准则较为常用, 其中滑动弱化距离的选取至关重要. 但若考虑整个地震循环, 速率-状态依赖摩擦准则更为合适.   相似文献   

15.
不对称双侧破裂过程的研究及其在海城地震的应用   总被引:10,自引:3,他引:10       下载免费PDF全文
本文计算并分析了不对称双侧破裂方式的矩形断层辐射的 P 波远场位移谱, 提出研究不对称双侧破裂过程的初步方法, 并将它应用于1975年2月4日辽宁省海城7.3级地震的震源破裂过程的研究.研究结果表明, 海城地震的破裂方式是在震源地区北西西断层上发生的不对称双侧破裂过程, 断层总长度为54公里, 主破裂朝北西西方向, 破裂长度为38公里, 破裂速度为1.3公里/秒, 向南东东方向破裂的长度为16公里, 破裂速度亦为1.3公里/秒.进而求得海城地震的震源参数为:走向滑动平均错距117厘米;倾向滑动平均错距33厘米;地震矩5.2×1026 达因·厘米;应力降22巴;应变降3.3×10-5; 释放的总能量3.4×1022尔格.   相似文献   

16.
基于Dieterich地震活动性理论,本文推导出计算余震发生率和余震累积次数的一般表达式,其中主震后发震断层内部的剪切应力随时间的演化过程遵从Jeffreys-Lomnitz蠕变模型,且与修正Omori定律直接相关。修正Omori定律中的p值与震后断层的短时应力加卸载过程正相关。采用Rubin和Ampuero 给出的震后断层自维持蠕滑模型本文得出计算余震发生率的近似表达式,并对2008年汶川地震序列进行拟合。结果表明,p值的大小直接对应了速率-状态摩擦定律中摩擦参量b/a,而修正Omori定律中的c值则与速率-状态摩擦定律中的临界滑移Dc相关。对于汶川余震序列而言,拟合结果显示b/a约为1.13,Dc约为2—3 cm。Rubin-Ampuero震后自维持蠕滑描述了震后孕震层内部短暂的速率变化特征,是孕震断层演化过程不可缺少的环节。   相似文献   

17.
On 12 May 2008, the devastating Wenchuan earthquake struck the Longmenshan fault zone, which comprised the eastern margin of the Tibetan Plateau, and this fault zone was predominantly a convergent boundary with a right-lateral strike-slip component. After such a large-magnitude earthquake, it was crucial to analyze the influences of the earthquake on the surrounding faults and the potential seismic activity. In this paper, a complex viscoelastic model of western Sichuan and eastern Tibet regions was constructed including the topography. Based on the findings of co-seismic static slip distribution, we calculated the stress change caused by the Wenchuan earthquake with the post-seismic relaxation into consideration. Our preliminary results indicated that: (1) The tectonic stressing rate was relatively high in Kunlun mountain pass-Jiangcuo, Ganzi-Yushu, Xianshuihe and Zemuhe faults; while in the east Kunlun and Longriba was medium; also the value was less in the Minjiang, Longmenshan, Anninghe and Huya faults. As to the Longmenshan fault, the value was 0.28×10-3 MPa/a to 0.35×10-3 MPa/a, which is coincident with the previous long recurrence interval of Wenchuan earthquake; (2) The Wenchuan earthquake not only caused the Coulomb stress decrease in the source region, but also the stress increase in the two terminals, especially the northeastern segment, which is comparatively consistent with the aftershock distribution. Meanwhile, the high concentration areas of the static slip distribution were corresponding to the Coulomb stress reductions; (3) The Coulomb stress change caused by Wenchuan earthquake showed significant increase on five major faults, which were northwestern segment of Xianshuihe fault, eastern Kunlun fault, Longriba fault, Minjiang fault and Huya fault respectively; also the Coulomb stress on the fault plane of the Yushu earthquake was faintly increased; (4) We defined the recurrence interval as the time needed to accumulate the magnitude of the stress drop, and the recurrence interval of Wenchuan earthquake was estimated about 1 714 a to 2 143 a correspondingly.  相似文献   

18.
Stochastic finite fault modeling is used to derive the coseismic stress parameter distribution on the fault surface of three well-recorded California earthquakes: M7.0, 1989, Loma Prieta; M7.3, 1992, Landers; and M6.7, 1994, Northridge. Classical waveform inversion techniques are inherently more powerful than stochastic modeling as a means of deriving detailed source parameters. However, the application of stochastic methods to the source modeling problem is useful to: (1) explore and calibrate the limitations and boundaries of stochastic modeling, (2) understand its relationship to more deterministically based techniques, and (3) provide a view of the source radiation not available from deterministic modeling. The stress parameter distribution for the M7.0 1989 Loma Prieta earthquake fault shows a concentration of stress in the lower part of the northwest side of the fault and another concentration in the upper southeast side of the fault, with an average stress parameter of 80 bars over the fault surface. The stress parameter distribution for the M7.3 1992 Landers earthquake fault shows a gradual increase of stress starting from the southeast side of the fault, close to the hypocenter, towards the center. The maximum stress occurs in the lower central part of the modeled fault surface. The average stress parameter is 70 bars for the Landers earthquake. The stress parameter distribution of the M6.7 1994 Northridge earthquake shows a concentration at the lower southeast end of the fault surface, extending toward the center of the fault surface and stretching to the northwest end. The average stress parameter is 80 bars for Northridge earthquake. The stress parameter distributions derived in this study by stochastic finite-fault modeling of high-frequency motions show considerable similarity to many of the slip distributions provided by different research groups for the same earthquakes, suggesting that the derivation of stress parameter distribution on a fault surface by the method applied in this study is reliable and closely tied to slip on the fault.  相似文献   

19.
A two degree-of-freedom earthquake model with static/dynamic friction   总被引:3,自引:0,他引:3  
Can a simple multi-block-spring model with total symmetry make interesting predictions for fault behaviour? Our model consists of a symmetric, slowly driven, two degree-of-freedom block-spring system with static/dynamic friction. The simple friction law and slow driving rate allow the state of this fourth order system to be described between slip events by a single variable, the difference in the stretch of the driving springs. This stretch difference measures the locked-in stress and is closely related to fault stress inhomogeneity. In general,smoothing is not observed. A spatially homogeneous stress state is found to almost always be unstable, in that the system tends toward an inhomogeneous state after many slip events. The system evolves either to a cycle that alternates between two types of earthquakes, or to a cycle with repeating but identical asymmetric earthquakes. One type of alternating earthquake solution is structurally unstable, which implies a great sensitivity to model perturbations. For this simple model, spatial asymmetry necessarily occurs, despite the symmetry in the model, thus suggesting that spatial structure in seismicity patterns may be a consequence of earthquake dynamics, not just fault heterogeneity.  相似文献   

20.
本文利用2015年尼泊尔MW7.9地震断层面滑动位移分布的运动学反演结果,通过傅里叶变换法得到了主断层面上的两分量应力状态,并研究了余震的空间分布和断层面上应力状态之间的关系.发现滑动位移分布与应力状态分布都相对较为集中,大约70%的余震分布在应力变化为正的区域,而其余发生在应力降区域的余震,又大多发生在应力变化梯度较大的地区.为了得到一个更符合实际的滑动模型来解释余震的触发机制,我们计算了波数域中滑动位移和应力状态的傅里叶谱,发现此次地震的滑动位移和应力状态近似满足k-3k-2衰减.我们利用简化的圆盘模型说明了非均匀应力变化下的衰减过程,计算了圆盘模型的有效半径re约等于0.7倍的圆盘半径.这就说明圆盘模型中应力增加的部分应该占整个圆盘破裂面积的51%.在本次尼泊尔MW7.9地震实例中,断层面上应力状态为负的区域比滑动位移为正的区域有了明显地缩小.事实表明,余震可以发生在有滑动位移的区域,非均匀应力降模型比均匀应力降模型更加接近真实的震源破裂过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号