首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
The primary objective of this paper is to develop output only modal identifi cation and structural damage detection.Identif ication of multi-degree of freedom(MDOF) linear time invariant(LTI) and linear time variant(LTV—due to damage) systems based on Time-frequency(TF) techniques—such as short-time Fourier transform(STFT),empirical mode decomposition(EMD),and wavelets—is proposed.STFT,EMD,and wavelet methods developed to date are reviewed in detail.In addition a Hilbert transform(HT) approach to determine ...  相似文献   

2.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

3.
A structure's health or level of damage can be monitored by identifying changes in structural or modal parameters. However, the fundamental modal frequencies can sometimes be less sensitive to (localized) damage in large civil structures, although there are developing algorithms that seek to reduce this difficulty. This research directly identifies changes in structural stiffness due to modeling error or damage using a structural health monitoring method based on adaptive least mean square (LMS) filtering theory. The focus is on computational simplicity to enable real‐time implementation. Several adaptive LMS filtering based approaches are used to analyze the data from the IASC–ASCE Structural Health Monitoring Task Group Benchmark problem. Results are compared with those from the task group and other published results. The proposed methods are shown to be very effective, accurately identifying damage to within 1%, with convergence times of 0.4–13.0 s for the twelve different 4 and 12 degree of freedom benchmark problems. The resulting modal parameters match to within 1% those from the benchmark problem definition. Finally, the methods developed require 1.4–14.0 Mcycles of computation and therefore could easily be implemented in real time. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The paper discusses the synthesis of acceleration time histories primarily for use in structural response estimation. A proposed model for the acceleration time history is based on the summation of dispersive wave modes over the range of frequencies of typical interest to structural response. The values of the modal amplitudes and the travel times (or group velocities) are, for cases examined here, extracted from a target earthquake (or an ensemble of them). The synthetic accelerograms are constructed from these parameters with the inclusion of a probabilistic definition of those or other characteristics of the strong ground shaking and, in particular, the modal phase angle. The probability distributions of the peak acceleration and the integral of the square acceleration of the synthetic records are examined along with comparisons of the pseudo spectral velocity (PSV) response.  相似文献   

5.
Output‐only modal identification is needed when only structural responses are available. As a powerful unsupervised learning algorithm, blind source separation (BSS) technique is able to recover the hidden sources and the unknown mixing process using only the observed mixtures. This paper proposes a new time‐domain output‐only modal identification method based on a novel BSS learning algorithm, complexity pursuit (CP). The proposed concept—independent ‘physical systems’ living on the modal coordinates—connects the targeted constituent sources (and their mixing process) targeted by the CP learning rule and the modal responses (and the mode matrix), which can then be directly extracted by the CP algorithm from the measured free or ambient system responses. Numerical simulation results show that the CP method realizes accurate and robust modal identification even in the closely spaced mode and the highly damped mode cases subject to non‐stationary ambient excitation and provides excellent approximation to the non‐diagonalizable highly damped (complex) modes. Experimental and real‐world seismic‐excited structure examples are also presented to demonstrate its capability of blindly extracting modal information from system responses. The proposed CP is shown to yield clear physical interpretation in modal identification; it is computational efficient, user‐friendly, and automatic, requiring little expertise interactions for implementations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Based on the Hilbert–Huang spectral analysis, a method is proposed to identify multi‐degree‐of‐freedom (MDOF) linear systems using measured free vibration time histories. For MDOF systems, the normal modes have been assumed to exist. In this method, the measured response data, which are polluted by noises, are first decomposed into modal responses using the empirical mode decomposition (EMD) approach with intermittency criteria. Then, the Hilbert transform is applied to each modal response to obtain the instantaneous amplitude and phase angle time histories. A linear least‐square fit procedure is proposed to identify the natural frequency and damping ratio from the instantaneous amplitude and phase angle for each modal response. Based on a single measurement of the free vibration time history at one appropriate location, natural frequencies and damping ratios can be identified. When the responses at all degrees of freedom are measured, the mode shapes and the physical mass, damping and stiffness matrices of the structure can be determined. The applications of the proposed method are illustrated using three linear systems with different dynamic characteristics. Numerical simulation results demonstrate that the proposed system identification method yields quite accurate results, and it offers a new and effective tool for the system identification of linear structures in which normal modes exist. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of identification of the modal parameters of a structural model using measured ambient response time histories is addressed. A Bayesian spectral density approach (BSDA) for modal updating is presented which uses the statistical properties of a spectral density estimator to obtain not only the optimal values of the updated modal parameters but also their associated uncertainties by calculating the posterior joint probability distribution of these parameters. Calculation of the uncertainties of the identified modal parameters is very important if one plans to proceed with the updating of a theoretical finite element model based on modal estimates. It is found that the updated PDF of the modal parameters can be well approximated by a Gaussian distribution centred at the optimal parameters at which the posterior PDF is maximized. Examples using simulated data are presented to illustrate the proposed method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
This paper proposes a method for the estimation of the seismic energy demands of two-way asymmetric-plan buildings under bi-directional ground excitations. The modal absorbed energies of asymmetric-plan buildings are estimated by using the three-degree-of-freedom (3DOF) modal systems. The 3DOF modal system represents the two roof translations versus the two base shears and the roof rotation versus the base torque relationships of each vibration mode of two-way asymmetric-plan buildings. Not only the total absorbed energy but also the portions of the total absorbed energy contributed from translational and rotational deformations can be respectively estimated. This study verifies the relationship between the signs of modal eccentricities and the trend of uneven distribution of modal absorbed energy on floor-plan edges of asymmetric-plan buildings. The accuracy of the proposed method was verified by analyzing one 3-storey and one 20-storey two-way asymmetric-plan buildings subjected to bi-directional ground motions. The computational efficiency of the proposed method is confirmed by comparing the computation time with that required by using the nonlinear response history analysis.  相似文献   

9.
The paper presents a method for synthesizing the modal properties of substructures to obtain the exact modal properties of a combined structure. Unlike the currently available modal synthesis approaches, the proposed approach does not require the solution of any transformed eigenvalue problem of the combined structure by conventional means. The substructures are assumed to be coupled by connecting elements and the coupling is done sequentially with one element at a time. The eigenvalues at each stage of coupling are obtained by solving a non-linear characteristic equation. A simple Newton-Raphson solution scheme is adequate for this purpose. Once the eigenvalues are determined, the eigenvectors can be calculated in closed form. Several examples demonstrating the applicability of the proposed approach are presented.  相似文献   

10.
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.  相似文献   

11.
The viability of a complete structural characterization of civil structures is explored and discussed. In particular, the identification of modal (i.e. natural frequencies, damping ratios and modal shapes) and physical properties (i.e. mass and stiffness) using only the structure’s free decay response is studied. To accomplish this, modal analysis from free vibration response only (MAFVRO) and mass modification (MM) methodologies are engaged along with Wavelet based techniques for optimal signal processing and modal reconstruction. The methodologies are evaluated using simulated and experimental data. The simulated data are extracted from a simple elastic model of a 5 story shear building and from a more realistic nonlinear model of a RC frame structure. The experimental data are gathered from shake table test of a 2-story scaled shear building. Guidelines for the reconstruction procedure from the data are proposed as the quality of the identified properties is shown to be governed by adequate selection of the frequency bands and optimal modal shape reconstruction. Moreover, in cases where the structure has undergone damage, the proposed identification scheme can also be applied for preliminary assessment of structural health.  相似文献   

12.
针对微震信号具有高噪声、突变快、随机性强等特点,基于经验模态分解(EMD)及独立成分分析(ICA)提出一种微震信号降噪方法.首先,对含噪信号进行EMD分解,获得一系列按频率从高到低的内蕴模态函数(IMF),利用原信号与各IMF之间的互相关系数辨识出噪声与信号的分界,将分界之上的高频噪声滤除;其次,为有效去除分界IMF中的模态混叠噪声,基于ICA算法对分界IMF进行盲源分离,提取其中的微震有效信号,并将其与剩余的IMF累加重构,从而得到降噪后的微震信号;最后,利用快速傅里叶变换(FFT)时频谱对比分析降噪前后的信号特征,定性说明本文方法的有效性;引入信噪比和降噪后信号占原信号的能量百分比两个参数,定量说明本文方法能充分保留微震信号的瞬态非平稳特征,降噪效果明显.  相似文献   

13.
This study investigates the effectiveness of the modal analysis using two‐degree‐of‐freedom (2DOF) modal stick to deal with the seismic analysis of one‐way asymmetric elastic systems with supplemental damping. The 2DOF modal stick possessing the non‐proportional damping property enables the modal translation and rotation to not be proportional even at elastic state. The analytical results of one‐storey and three‐storey buildings obtained by the proposed method are compared with those obtained by direct integration of the equation of motion and conventional approximate method, which neglects the off‐diagonal elements in the transformed damping matrix. It is found that the proposed simplified method, compared to conventional approximate methods, can significantly improve the accuracy of the analytical results and, at the same time, without obviously increasing computational efforts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.

Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the density-based spatial clustering of applications with noise (DBSCAN) algorithm and the stochastic subspace identification (SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams.

  相似文献   

15.
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fi tting procedure. The analytical expressions of modal combination (correlation) coeffi cients of structural response are developed for multi-support seismic excitations. The coeffi cients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coeffi cients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coeff icients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational effi ciency of the analytical solutions of the modal combination coeff icients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coeffi cients is less than 1/20 of that using numerical integral methods.  相似文献   

16.
A scheme is proposed to calculate the effect of torsion on each lateral load resisting element of asymmetrical buildings in the context of the response spectrum technique. The scheme consists of: (i) Obtain the modal shear and torque on the building by the response spectrum technique, (ii) Compute the total modal shear forces on each frame by resolving the modal shear and torque on the building according to principles of structural mechanics. The shears on each frame due to the lateral load effect and torsional effect are combined algebraically, (iii) Obtain the total shear force on each frame by combining the total modal shears on that frame in a root sum square manner. Since the proper phase relationship between the lateral load effect and torsional effect is accounted for on a modal basis, it is believed that the proposed scheme provides a more realistic load estimate on the frames than the conventional approach. An example of a simplified mono-symmetrical frame structure is chosen to illustrate the accuracy of the proposed scheme, using dynamic time-history analysis as a standard for comparison.  相似文献   

17.
The work deals with the identification of modal parameters of a structure from earthquake records when the input ground motion is unknown. This may occur, for example, owing to instrumental malfunctions. The procedure is based on the assumption that at least two responses are available and consists of two main steps. In the first one, modal frequencies are estimated by searching relative minima of a function that involves the ratio of the Fourier amplitudes of the two records, while the second phase is devoted to the identification of other modal quantities (i.e. effective participation factors and modal dampings). Once the identification process has been completed, an estimate of the unknown base input may be performed by means of the IFFT algorithm. The proposed approach has been checked against both finite element simulations of simple structures and field measurements on real buildings.  相似文献   

18.
Damage detection techniques have been proposed to exploit changes in modal parameters and to identify the extent and location of damage in large structures. Most of such techniques, however, generally neglect the environmental effects on modal parameters. Such environmental effects include changes in loads, boundary conditions, temperature, and humidity. In fact, the changes due to environmental effects can often mask more subtle structural changes caused by damage. This paper examines a linear adaptive model to discriminate the changes of modal parameters due to temperature changes from those caused by structural damage or other environmental effects. Data from the Alamosa Canyon Bridge in the state of New Mexico were used to demonstrate the effectiveness of the adaptive filter for this problem. Results indicate that a linear four-input (two time and two spatial dimensions) filter to temperature can reproduce the natural variability of the frequencies with respect to time of day. Using this simple model, we attempt to establish a confidence interval of the frequencies for a new temperature profile in order to discriminate the natural variation due to temperature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
A method, based on the Hilbert–Huang spectral analysis, has been proposed by the authors to identify linear structures in which normal modes exist (i.e., real eigenvalues and eigenvectors). Frequently, all the eigenvalues and eigenvectors of linear structures are complex. In this paper, the method is extended further to identify general linear structures with complex modes using the free vibration response data polluted by noise. Measured response signals are first decomposed into modal responses using the method of Empirical Mode Decomposition with intermittency criteria. Each modal response contains the contribution of a complex conjugate pair of modes with a unique frequency and a damping ratio. Then, each modal response is decomposed in the frequency–time domain to yield instantaneous phase angle and amplitude using the Hilbert transform. Based on a single measurement of the impulse response time history at one appropriate location, the complex eigenvalues of the linear structure can be identified using a simple analysis procedure. When the response time histories are measured at all locations, the proposed methodology is capable of identifying the complex mode shapes as well as the mass, damping and stiffness matrices of the structure. The effectiveness and accuracy of the method presented are illustrated through numerical simulations. It is demonstrated that dynamic characteristics of linear structures with complex modes can be identified effectively using the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A method to calculate the stationary random response of a non-classically damped structure is proposed that features clearly-defined physical meaning and simple expression. The method is developed in the frequency domain, The expression of the proposed method consists of three terms, i.e., modal velocity response, modal displacement response, and coupled (between modal velocity and modal displacement response), Numerical results from the parametric study and three example structures reveal that the modal velocity response term and the coupled term are important to structural response estimates only for a dynamic system with a tuned mass damper. In typical cases, the modal displacement term can provide response estimates with satisfactory accuracy by itself, so that the modal velocity term and coupled term may be ignored without loss of accuracy, This is used to simplify the response computation of non-classically damped structures. For the white noise excitation, three modal correlation coefficients in closed form are derived. To consider the modal velocity response term and the coupled term, a simplified approximation based on white noise excitation is developed for the case when the modal velocity response is important to the structural responses. Numerical results show that the approximate expression based on white noise excitation can provide structural responses with satisfactory accuracy~  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号