首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
低纬地区电离层电流的人工调制数值模拟   总被引:6,自引:3,他引:3       下载免费PDF全文
利用高频泵波能对低电离层进行有效的人工扰动.采用ELF/VLF调幅高频电波对电离层进行加热,电子温度会随着调制频率振荡,并引起电导率周期性变化,从而使加热区内电离层电流周期性变化,形成等效的ELF/VLF电离层虚拟天线,辐射调制频率范围内的无线电波.早期的电离层人工调制研究主要集中在高纬和极区,本文讨论低纬地区电离层人工调制的可能性.本文的理论研究和数值模拟结果表明,低纬地区低电离层电导率在周期性加热的条件下能有效地被调制,使加热区域形成ELF/VLF波的电流辐射源,并分析了不同加热参数和入射条件对调制效果的影响.  相似文献   

2.
The plasma dispersion function and the reduced velocity distribution function are calculated numerically for any arbitrary velocity distribution function with cylindrical symmetry along the magnetic field. The electron velocity distribution is separated into two distributions representing the distribution of the ambient electrons and the suprathermal electrons. The velocity distribution function of the ambient electrons is modelled by a near-Maxwellian distribution function in presence of a temperature gradient and a potential electric field. The velocity distribution function of the suprathermal electrons is derived from a numerical model of the angular energy flux spectrum obtained by solving the transport equation of electrons. The numerical method used to calculate the plasma dispersion function and the reduced velocity distribution is described. The numerical code is used with simulated data to evaluate the Doppler frequency asymmetry between the up- and downshifted plasma lines of the incoherent-scatter plasma lines at different wave vectors. It is shown that the observed Doppler asymmetry is more dependent on deviation from the Maxwellian through the thermal part for high-frequency radars, while for low-frequency radars the Doppler asymmetry depends more on the presence of a suprathermal population. It is also seen that the full evaluation of the plasma dispersion function gives larger Doppler asymmetry than the heat flow approximation for Langmuir waves with phase velocity about three to six times the mean thermal velocity. For such waves the moment expansion of the dispersion function is not fully valid and the full calculation of the dispersion function is needed.  相似文献   

3.
The complex geophysical pattern of the development of geomagnetic storm in VLF emissions has been studied based on the satellite data. It has been established that the variations in the LF noise emission intensity (0.1–20.0 kHz) and the energetic electron (E ≥ 40 keV) flux density reflect the processes of magnetospheric plasma reconstruction during geomagnetic disturbances. It has been indicated that a distinct structure of the inner and outer radiation belts is observed under quiet conditions, and the VLF emission maximum was registered at L = 4–5. The inner boundary of the outer radiation belt shifted to lower latitudes, the intensity of the noise VLF emissions increased, and the intensity maximum was displaced to L = 2.5–3.5 during the geomagnetic storm, when the energetic electron flux density increased. The VLF noise spectrum widened toward higher frequencies. The VLF noise level continued increasing, the noise maximum shifted to L = 4–5, and the fluxes of precipitating electrons abruptly increased during the storm recovery phase, when the density of the flux of quasitrapped electrons remained increased for a long time.  相似文献   

4.
A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO) regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2–10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.  相似文献   

5.
基于LWPC和IRI模型的NWC台站信号传播幅度建模分析   总被引:2,自引:0,他引:2       下载免费PDF全文
频率为3~30 kHz的甚低频(VLF,Very Low Frequency)电磁波具有波长长、传播距离远的特点,能够沿地面-低电离层波导进行传播,在通信、导航等许多领域都被广泛应用.基于波导模理论的长波传播模型(LWPC,Long-Wavelength Propagation Capability)能够用于计算甚低频波的传播路径及幅度,进而研究耀斑、磁暴、地震等事件对电离层的扰动.本文利用国际电离层参考模型(IRI,International Reference Ionosphere)对LWPC中电子密度和碰撞频率进行改进,并将模拟结果与武汉大学VLF接收机实际观测到的NWC (North West Cape)台站信号幅度进行比较分析,结果表明改进后LWPC模型得到的幅度及变化趋势与实际值更加接近.LWPC模型给出的电子密度与IRI模型得到的电子密度在日间基本一致,但是在夜间存在差异,造成夜间部分区域NWC台站信号幅度的差异性,验证了电离层电子密度对于VLF信号传播具有的重要影响.传播路径上的晨昏变化也可以引起VLF信号幅度分布的突变,在日出和日落时间段内存在明显的过渡区域.基于IRI模型的LWPC,改善了VLF电波传播过程的预测分析效果,提供了一种长波导航通信质量的评估方法.  相似文献   

6.
For the first time, simultaneous observations of very low frequency (VLF) emissions at auroral latitudes (L = 5.3) are carried out at two points located at close geomagnetic latitudes and spaced in longitude by 400 km: the Finnish Kannuslehto station (Φ = 64.2°) and the Russian Lovozero observatory (Φ = 64.1°). A recording equipment with similar frequency responses was used. The first results of a comparison of simultaneous observations showed that, in the overwhelming majority of cases, bursts of VLF emission appeared at both points synchronously with an identical (more often right-handed) polarization of the magnetic field of VLF waves, which can be evidence in favor of large dimensions of the ionosphere exit region of VLF waves. A simultaneous burst of quasi-periodic VLF emissions that occurred on February 02, 2013, during a substorm at 23–24 UT is discussed in detail. Additionally, VLF bursts were recorded which were observed only at one point, e.g., the appearance of left-hand polarized periodic emissions (PEs) in band 2.5–4.0 kHz with a repetition period of 3–4 s.  相似文献   

7.
Ionospheric heating experiments were done by the EISCAT Heater in Tromsø on 15–19 November, 1993. A low-light TV camera was installed at the VLF receiving station at Porojärvi about 100 km to the south-east of Tromsø. The spectral analysis of the auroral luminosity variations showed that the brightness of the aurora varied at the modulation frequency of the heating wave. The results of this analysis and the numerical simulations of the auroral luminosity variations caused by the HF heating are shown. The variations of the optical emission intensity at the heating frequency occur during the auroral ionosphere modification. The observed intensity variation of the auroral green line during the interval of enhanced electron temperature is explained by a decreasing rate of the O2+ ion dissociative recombination when the electron temperature increases. The brightness variation depends on the characteristic energy and the intensity of the auroral electron flux and the heating wave parameters. The artificial luminosity pulsations caused by HF heating are estimated.  相似文献   

8.
Summary VLF quarter-gyrofrequency emissions, whose experimental characteristics differ from those of discrete plasmaspheric emissions usual during active times, have been observed by low-altitude Intercosmos 24 and Magion 2 satellites within the plasmasphere during periods of quieting geomagnetic activity. A new kind of instability is proposed which could lead to the production of these emissions. It is shown that quasi-electrostatic whistler waves can be generated in the eqquatorial region due to the fan instability, with maximum growth rate and spectral energy density in a frequency band below one half of the equatorial electron gyrofrequency. The observations of low-energy electrons and plasma waves in the equatorial region within or in the vicinity of the plasmapause, which could support our hypothesis experimentally, are discussed.  相似文献   

9.
Data from the BMSW spectrometer, which measures the ion flux value and sometimes plasma parameters with a time resolution of 31 ms, allow the study of the parameters of turbulence of the solar wind and magnetosheath plasma on kinetic scales. In this work, the frequency spectra of the ion flux fluctuations before and after recording the interplanetary shock front in the Earth’s magnetosheath are compared based on these data. It is shown that, in contrast to the solar wind, where the exponential decay of the spectrum often occurs after the shock front on the kinetic scales, no such phenomenon is observed in the magnetosheath: the spectrum on these scales can be approximated by a power function in all the cases considered. In half of these cases, the spectrum slope on the kinetic scales does not change during the interplanetary shock propagation. The results indicate a weak impact of interplanetary shock waves on the parameters of the plasma turbulence. In addition, it is shown that an interplanetary shock does not change the level of intermittency of the ion flux in the magnetosheath at both low and high level before the front.  相似文献   

10.
通过大功率ELF/VLF调幅高频波能有效地扰动低电离层,形成等效的ELF/VLF电离层虚拟天线,用来辐射ELF/VLF波,所辐射出的低频信号可以进入中性大气层形成地球-电离层波导.本文基于调制加热模型,采用全波有限元算法计算由人工调制电离层所形成的电偶极矩所辐射出的ELF波在水平分层电离层中的波场,计算结果将与地面观测结果进行比较.模拟结果表明,所辐射出的ELF波在电离层中形成一个窄的准直波束,海面所能接收到的ELF信号强度为pT量级,并且频率越低,海面所接收到的场强就越小,与HAARP实验数据一致.结果还表明,低纬电离层对低频信号的传播衰减较大,并且所能透射出电离层的角度小,因此高纬地区更适合地球-电离层波导的激发.  相似文献   

11.
Interactions between very/extremely low frequency (VLF/ELF) waves and energetic electrons play a fundamental role in dynamics occurring in the inner magnetosphere. Here, we briefly discuss global properties of VLF/ELF waves, along with the variability of the electron radiation belts associated with wave-particle interactions and radial diffusion. We provide cases of electron loss and acceleration as a result of wave-particle interactions primarily due to such waves, and particularly some preliminary results...  相似文献   

12.
2004年8月3日近地TC-1卫星在磁尾XGSM~-12RE的等离子体片内,观测到了伴随着高速流的低于离子回旋频率的波,即超低频波(ULF,Ultra Low Frequency).该波垂直分量的振幅在高速流及其振荡减速期间大致相当;而平行分量振幅在高速流时明显大于其振荡减速时. 利用一个扰动双流模型对完全磁化离子横场漂移驱动的电磁不稳定性计算后,预测结果表明:(1)对于垂直分量来说,横场漂移速度与Alfvén速度的比值影响不稳定性增长率和激发波频率,随其比值增加,增长率变大,激发波频率从负值增加到正值.(2)对于平行分量来说,温度各向异性时等离子体热速度与Alfvén速度比值只影响不稳定性增长率和激发波频率,未改变不稳定性模类别;而温度各向同性时离子横场漂移速度与Alfvén速度比值既影响不稳定性模的种类及其分支,又影响激发波频率.进一步将卫星观测到的等离子体密度、温度、整体流速和磁场代入模型方程,进行数值计算与上述预测结果对比后发现:卫星观测中垂直分量的功率谱密度(PSD,Power Spectrum Density)增强时间和频段与理论模型中由β//、β和v/VA引起不稳定性激发的波一致;卫星观测中平行分量的功率谱密度增强时间与理论模型基本相符,但是前者的频率明显地低于后者.因此,除了需考虑平行磁场的离子整体流速对不稳定性激发波频率的可能影响,还需要统计上进一步核实伴随有高速流的ULF波与不稳定性的相关性.  相似文献   

13.
Unique measurements by a solar submillimeter radio telescope (SST) have been carried out in the sub-THz radiation at 212 and 405 THz over the past decade. The spectrum of RF radiation in this region increased with frequency for the three flares of November 2 and 4, 2003, and December 6, 2006, and the flux value reached 5 × 103?2 × 104 sfu at 405 GHz (Kaufman et al., 2009). In this work, we consider a set of nonlinear equations for an accelerated electrons beam and the Langmuir wave energy density. The distribution functions of the accelerated electron beam and wave energy density are calculated taking into account Coulomb collisions, electron scattering by waves, and wave scattering by plasma ions. In addition, the source of accelerated particles and the heat level of the Langmuir turbulence are specified. The beam and plasma parameters are chosen based on the aims of a problem. The plasma concentration varies from n = 1013 to 1015 cm?3, the electron plasma frequency f p = (3 × 1010?3 × 1011) Hz in this case. The ratio of plasma and beam concentrations, sufficient to explain the value of the radio flux at a frequency of 300 GHz, is n b/n = 10?3. The Langmuir turbulence is excited due to the instability of the accelerated electron beam with an initial distribution function of the ??bump-in-tail?? type. Then, the parameters of radiowaves are calculated in the sub-THz range under the assumption of coalescence of two plasma waves. The calculation results show that a sub-THz radio flux can be obtained under the condition of injection of accelerated electrons. The fine time structure of radio flux observed is easily simulated based on this statement by the pulsed time structure of electron beams and their dynamics in overdense plasma. X-ray and gamma radiation was recorded during the events under study. Hard X-ray radiation is bremsstrahlung radiation from accelerated electron beams.  相似文献   

14.
Space and ground-based experiments have shown evidence of natural short-period VLF emissions in which separate spectral elements are repeated with a periodicity of 2–7 s. Their basic morphological properties are found on the basis of original experimental data. In our opinion, excitation of such emissions is the result of quasi-linear relaxation effects that compensate for natural spectral dispersion. The quasi-linear relaxation of the energetic electron distribution function incrementally changes wave cyclotron instability and hence the VLF emission spectral forms. Some properties of the quasi-linear interaction of whistler waves with magnetospheric radiation belt electrons are studied. It is shown that quasi-linear relaxation can increase the cyclotron instability at the leading edge of an electromagnetic pulse. This effective saturation of absorption facilitates the division of VLF hiss-like emission into separate electromagnetic pulses without spectral modification from one pulse to the next. Some features and manifestations of this effective saturation of absorption are discussed. The results are important for a better understanding of temporal and spatial structures of VLF whistler-mode emissions and energetic electron fluxes.  相似文献   

15.
Physical mechanisms of man-made influences on the magnetosphere   总被引:3,自引:0,他引:3  
Since the discovery of the Luxembourg effect in the 1930s, it is clear that man-made activities can perturb the ionosphere and the magnetosphere. The anthropogenic effects are mainly due to different kinds of waves coming from the Earth's surface. Acoustic-gravity waves are generated by large explosions, spacecraft launches, or flight of supersonic planes. Electromagnetic waves are active in different frequency ranges. Power line harmonic radiation which is radiated in the ELF range by electrical power systems can be observed over industrial areas. At VLF and HF, the ground-based transmitters used for communications or radio-navigation heat the ionosphere and change the natural parameters. A large variety of phenomena is observed: wave-particle interaction, precipitation of radiation belt electrons, parametric coupling of EM whistler waves, triggered emissions, frequency shift, and whistler spectrum broadening. This paper will review the different physical mechanisms which are relevant to such perturbations. The possibility of direct chemical pollution in the ionosphere due to gas releases is also discussed.  相似文献   

16.
Different types of natural electromagnetic emissions are generated in the Earth’s electronic radiation belts. The conditions for generation of these emissions depend on the plasma parameters, geometry of the system, wave transfer processes, and regularities of particle accumulation and precipitation from the magnetic trap. Effective interaction between waves and particles can often be described by the plasma magnetospheric maser theory. A plasma magnetospheric maser actually operates in several main regimes. These regimes are responsible for the generation of VLF emissions with different frequency spectrum dynamics. The regimes replace each other as a result of variations in the local and global characteristics of the magnetosphere. For example, the cyclotron generation dynamics largely depends on the the source power of energetic particles. Several new methods for diagnosing the near-Earth plasma can be implemented if the plasma magnetospheric maser theory is known.  相似文献   

17.
一、引言 哨声波是一种在空间等离子体中传播的色散电磁波,一般以自然界中的闪电作为激励源。利用地面哨声资料可推算出赤道面内哨声路径顶点处的电子浓度N_(eq)和管电子含量N_T等电离层参数。要准确提取这些信息就需知道哨声传播的路径参数,即入口点和出口点位置。由于部分哨声透出电离层后,在地一电离层波导中传播了相当长的距离才被  相似文献   

18.
利用DEMETER卫星数据分析强震前后的电离层异常   总被引:1,自引:0,他引:1  
基于法国DEMETER卫星观测的离子温度(Ti)、 VLF电磁场单频点频谱数据探索了2008年5月12日汶川MS8.0、 2010年1月12日海地MS7.3和2010年2月27日智利MS8.8等3次强震前后与地震有关的电离层异常现象. 结果发现, 汶川地震前3天(5月9日)震中北偏西方向离子温度明显升高, 震前4天(5月8日)VLF磁场低于200 Hz的频段范围频谱在震中2°以内有明显突升; 智利地震前9天(2月18日)震中北东方向离子温度有剧烈扰动, 震前4天(2月23日)VLF磁场100—160 Hz频段范围内出现突升; 海地地震震前没有观测到明显的异常现象, 但地震发生当天(震后约4—5小时)的Ti, 40—160 Hz频段电场频谱, 以及120—480 Hz磁场频谱均有明显突升, 应为地震发生后能量释放所引起. 分析认为, 不同地震由于发震机制等各种情况的不同, 其地震前后的表现也各不相同. 虽然目前没有直接的证据表明本文研究的异常变化是由地震的孕育和发生引起的, 但在数据处理中已尽可能排除了太阳、 地磁等因素的影响, 并且研究结果与前人的研究经验吻合, 因此本文发现的异常可能与地震发生的关系较大.   相似文献   

19.
It is well known that the ionospheric plasma response to high-power HF radio waves changes drastically as the heater frequency approaches harmonics of the electron gyrofrequency. These include changes in the spectrum of the stimulated electromagnetic emission, reduction in the anomalous absorption of low-power diagnostic waves propagating through the heated volume, and reduction in the large scale F-region heating. Theoretical models as well as previous experimental evidence point towards the absence of small-scale field-aligned plasma density irregularities at pump frequencies close to electron gyroharmonics as the main cause of these changes. Results presented in this paper are the first direct observations of the reduced striations at the 3rd gyroharmonic made by the CUTLASS radar. In addition, simultaneous EISCAT observations have revealed that the “enhanced ion-line” usually present in the EISCAT ion-line spectrum during the first few seconds after heater switch on, persisted at varying strengths while the heater was transmitting at frequencies close to the 3rd electron gyroharmonics.  相似文献   

20.
The strong increase in the flux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced significantly due to injection of 10–100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic field generate the rising tones of VLF whistler chorus. The seed population of relativistic electrons which bounce along the inhomogeneous magnetic field, interacts resonantly with the whistler waves. Whistler wave propagating obliquely to the magnetic field can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. Because the gyroradius of a relativistic electron may be the order of or greater than the perpendicular wavelength, numerous cyclotron, harmonics can contribute to the resonant interaction which breaks down the adiabatic invariant. A similar process diffuses the pitch angle leading to electron precipitation. The irreversible changes in the adiabatic invariant depend on the relative phase between the wave and the electron, and successive resonant interactions result in electrons undergoing a random walk in energy and pitch angle. This resonant process may contribute to the 10–100 fold increase of the relativistic electron flux in the outer radiation belt, and constitute an interesting relation between substorm-generated waves and enhancements in fluxes of relativistic electrons during geomagnetic storms and other active periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号