首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper,the earthquake hazard parameters(λm,b and Mmax) from the maximum likelihood method for the raw catalogue and declustered catalogues have been used to discuss the effect of the aftershocks on the earthquake hazard estimation.The declusterd catalogues have been compoiled from the raw catalogues by deleting the aftershocks in different time interval after main shock according to the criteria for the aftershock activity period.As an example,Hebei seismic zone is taken to show the effect of the aftershock on the earthquake hazard assessment because three strong earthquakes with the aftershocks occurred from 1966,to 1976,The results have been shown that the effect of the aftershocks on the parameters λm,b is significant.The difference between the clustered and declustered catalogues has reached in seismic activity rate and recurrence period,at most,45% and 90%,respectively,But the diffeence in Mmax is smaller,Based on this,the suggestion that the aftershocks should be omitted in the estimation of the earthquake hazard could be made,but how long the aftershocks activity duration is still left to the future research.  相似文献   

2.
Two aspects of a new method,which can be used for seismic zoning,are introduced in this paper.On the one hand,the approach to estimate b value and annual activity rate proposed by Kijko and Sellevoll needs to use the earthquake catalogue.The existing earthquake catalogue contains both historical and recent instrumental data sets and it is inadequate to use only one part.Combining the large number of historical events with recent complete records and taking the magnitude uncertainty into account,Kijko's method gives the maximum likelihood estimation of b value and annual activity rate,which might be more realistic.On the other hand,this method considers the source zone boundary uncertainty in seismic hazard analysis,which means the earthquake activity rate across a boundary of a source zone changes smoothly instead of abruptly and avoids too large a gradient in the calculated results.  相似文献   

3.
Influenced by the layout of seismic network and the location of earthquakes, earthquake catalogs are often incomplete; such incompleteness of earthquake catalogue directly affects the analysis of sequence activity characteristics. In this paper, the GPU-acceleration-based g template matching method is used to scan the continuous waveforms of Chang Island earthquake swarm in Shandong Province from February 9 to August 20, 2017. In total, 15,286 earthquakes events were detected, which was more than 6 times compared with those in network catalogue and thus reduced the magnitude of completeness from 1.0 to 0.5. Based on the intergrated catalogue of earthquakes, the characteristics of Chang Island earthquake swarm were then analyzed using the Epidemic Type Aftershock Sequences (ETAS) model. The stochastic components in the ETAS model are used as a proxy for possible earthquake triggered by external forces (fluids). The results show that the proportion of earthquakes triggered by external forces of Chang Island swarm increases gradually (from 31.9% to 63.5%) and then decreases. The latter stage of swarm development is mainly affected by the self-excitation of earthquakes,suggesting that the fluids play an important role in the development of the Chang Island swarm. However, the triggering intensity of fluids to microseismicity is divergent in different periods, which may be related to the process of fluid permeation.  相似文献   

4.
Study on fault activity is a fundamental part of earthquake prediction and earthquake relief in big cities.In the active fault exploration in Zhengzhou,the spatial distribution,geological features and activity of the Huayuankou fault,the Shangjie fault and the Xushui fault were determined using the seismic prospecting method.New understanding about the characteristics of the faults was gained.This provides reliable basic data for future earthquake forecast and earthquake relief work in Zhengzhou.In addition,we proposed some ways to identify fault activity through analyzing the characteristics of the activity of a fault and raised an effective method for exploring active faults in big cities and exploring concealed faults in regions covered with thick overburdens.  相似文献   

5.
We obtained the displacement and deformation caused by the 2015 Nepal MS8.1 earthquake adopting the finite element method, and analyzed the displacement and deformation characteristics and effect of three large earthquakes on seismic activity in the Qinghai-Tibetan block. Our primary results suggest southward movement of the Qinghai-Tibetan block is caused by a large earthquake occurring on thrust fault in the Himalayan zone, the displacement direction is reverse to the background displacement. The occurrence of these large earthquakes will result in stress unloading and earthquake activity will be weakened in stress unloading areas. Through the simulation results, we can detect the distribution area of stress loading and unloading caused by large earthquakes. Simultaneously, it provides a fundamental evidence for determination of earthquake activity trend.  相似文献   

6.
Based on the studies of earthquake activity, tectonic movement, crustal shortening rate, fault activity, local stress field and historical characteristics of strong earthquake activities in Xinjiang, we divide the south part of Xinjiang into 4 seismotectonic zones, namely, the eastern segment of south Tianshan seismic belt, the Kalpin block, the Kashi-Wuqia junction zone, and the west Kunlun Mountains seismic belt. Using earthquake catalogues from Xinjiang since 1900, and on the basis of integrity analysis of earthquake records in different magnitude ranges, the seismicity state of different seismotectonic zones is analyzed quantificationally by calculating the mean value of annual strain energy release, annual rate of earthquakes with different lower limits of magnitude, b-value, and the parameter m of accelerating strain release model. The characteristic indexes of seismicity state for each of the seismic tectonic zones are then determined, which provide a quantitative basis for earthquake tendency analysis and judgment.  相似文献   

7.
The distribution of the intensity of the Mojiang M_S5.9 earthquake in Yunnan Province is expounded, and the damage characteristics of buildings and the damage ratio and seismic damage index of various building structures in each intensity area are compared with those of The Chinese Seismic Intensity Scale. The main basis and method of seismic intensity assessment are discussed in this paper. It is concluded that: ① The seismic intensity should be based on the earthquake damage of the housing structure, which takes up a high ratio in the seismic intensity assessment. It is recommended that seismic intensity is estimated by calculating the average seismic damage index. ② The highest intensity of the Mojiang M_S5.9 earthquake is Ⅷ degrees, with the long axis trending in the north-west direction. The area above Ⅶ degrees is 5,180 km~2. ③ The intensity distribution of the Mojiang M_S5.9 earthquake meets the national standard and the distribution law of seismic intensity in Yunnan.  相似文献   

8.
The data of earthquakes with M≥3.0 during the 7 years from September 21, 1993 to September 20, 2000 recorded by the Taiwan Central Weather Bureau (CWB) show that there were 6 types of clear characteristics of seismicity during the Chi-Chi strong earthquake swarm of September 21. These 6 types of characteristics are (1) foreshock types, (2) seismic gaps, (3) seismic bands, (4) clustering activity of foreshocks and signal shock, (5) quiescence before the main shock and (6) secondary aftershocks in the aftershock sequence. Using the procedures for analyzing the yearly strong earthquake tendency, further tracing based on the earthquake sequence characteristics, and taking the Chi-Chi earthquake sequence as an example, tracing analysis of the earthquake tendency was attempted using the shorter time range of monthly rather than in a yearly time scale. An attempt was made to establish the procedures for tracing analysis of shallow-focus earthquakes in the seismic belt of western Taiwan. It is hoped that this can provide an analystical method for approaching the short-imminent time scale of seismometry-based earthquake forecasting.  相似文献   

9.
It is proposed that some possible macroseismic epicenters can be determined quickly from the relationship that the microseismic epicenters located by instruments bear with faults.Based on these so-called macroseismic epicenters,we can make fast seismic hazard estimation after a shock by use of the empirical distribution model of seismic intensity.In comparison with the method that uses the microseismic epicenters directly,this approach can increase the preccision of fast seismic hazard estimation.Statistical analysis of 133 main earthquakes in China was made.The result shows that the deviation distance between the microseismic epicenter and macroseismic epicenter falls within the range of 35km for 88% earthquakes of the total and within the range of 35to 75km for the remaining ones.Then,we can take the area that has the microseismic epicenter as its center and is 35km in radius as the area for emphatic analysis,and take the area within 75km around the microseismic epicenter as the area for general analysis.The relation between the 66 earthquake cases on the N-S Seismic Belt in China and the spatial distribution characteristics of faults and the results of focal mechanism solution were analyzed in detail.We know from the analysis that the error of instrumental epicenter determination is not the only factor that gives effects to the deviation of the macroseismic epicenter.In addiditon to it,the fault size,fault distribution,fault activity,fault intersection types,earthquake magnitude,etc,are also main affecting factors.By sorting out ,processing and analyzing these affecting factors,the principle and procedures for quickly determining the possible position of the macroseismic epicenter were set up.Taking these as a basis and establishing a nationwide database of faults that contains relevant factors,it is possible to apply this method in practical fast estimation of seismic hazard.  相似文献   

10.
The regional seismotectonic environment for the Zhangbei- Shangyi earthquake is described, and in combination with the distribution of macroscopic seismic intensity, source mechanism solution, and interpretation of lineaments on satellite images, the seismogenic structure for the earthquake and possible seismogenic fault are discussed in this paper. It is suggested that the Zhangbei-Shangyi earthquake is a result of the latest movement along the northwestern termination of the Zhangjiakou-Penglai fault zone and we should pay serious attention to the future trend of seismic activity along this fault zone.  相似文献   

11.
本研究采用基于库仑破裂准则的地震活动性准静态模型,模拟计算了川西地区长达10000年的理论地震目录,通过对理论地震目录的分析发现川西地区Ms≥7.0强震在时间上表现出很强的随机性,与平均地震发生率为1/22.0年-1(≈0.0454年-1)的Poisson过程很相近, Poisson模型可能是川西地区开展长期(数10年)地震危险性计算中较为合适的模型.而单一断层Ms≥7.0强震的时间间隔分布与Poisson过程存在很大的差异,用Poisson模型估计单一构造上长期地震危险性可能是不合适的.通过分析模拟产生的长时间理论地震目录,逐一给出了川西地区主要断层的Ms≥7.0强震的时间间隔分布与平均Ms≥7.0强震的复现时间,并讨论了主要断层间强震活动的相互关联,计算出了强震在各断层间的转移概率.定量计算了研究区一断层的破裂产生的库仑应力在研究区其他断层面上的投影.从而为研究断层间的相互作用,研究一断层发生强震对其他断层发生强震危险性的影响提供了依据.本文为开展区域地震危险性分析研究提出了新的思想和途径.  相似文献   

12.
人工地震目录模拟是改进现有地震目录不完备性、弥补大地震记录稀缺,以及完善地震学相关研究的有效途径之一。本文基于地震活动的泊松分布模型、古登堡-里克特震级-频度关系,利用能较逼真描述具有随机性质事物特点及物理实验过程的蒙特卡洛方法,模拟汾渭地震带未来30、50、100年等不同时长的地震目录,并对其进行统计检验。分析表明,模拟地震目录符合设定的地震活动性参数和泊松分布假设特征。依据模拟地震目录,对未来该区域地震趋势进行了分析,以期为地震危险性分析提供参考。  相似文献   

13.
Up to now, the search for increased reliability in probabilistic seismic hazard analysis (PSHA) has concentrated on ways of assessing expert opinion and subjective judgement. Although in some areas of PSHA subjective opinion is unavoidable, there is a danger that assessment procedures and review methods contribute further subjective judgements on top of those already elicited. It is helpful to find techniques for objectively assessing seismic source models that show what the interpretations physically mean in terms of seismicity. Experience shows that well-meaning but flawed design decisions can lead to source models that are incompatible with the seismic history that was used as input. In this paper a method is demonstrated in which large numbers of synthetic earthquake catalogues, that match the completeness thresholds of the historical catalogue, are generated. The study area can be divided into a grid of uniform cells, and the number of earthquakes in each cell in both the historical catalogue and each simulated catalogue are then counted. Comparison of the historical pattern and a set of 1,000 simulated patterns, using a X2 test, shows if the historical pattern is credibly a member of the set of outcomes obtainable from the seismic source model. A second method is to chart the distribution of a large sample of simulated catalogues in terms of magnitude frequency, and observe whether the historical catalogue is comfortably within this distribution, or an outlier. If it proves impossible to replicate the historical catalogue using the model, it casts doubt on whether the model is a valid depiction of the seismicity rates that will govern the future hazard. At the very least, the disparity needs careful investigation to ensure the model is error-free. A worked example is presented here for the UK, using a source model that was used in Global Seismic Hazard Map (GSHAP), compared to one that was artificially constructed to be credible but flawed. Two tests find the GSHAP model to be an acceptable representation of the pattern of seismicity in the UK, while the artificial model is conclusively rejected.  相似文献   

14.
A novel generalized probabilistic formulation is proposed to assess seismicity using earthquake catalogues with uncertain and incomplete data. The seismicity, described by the complete exceedance rate of magnitudes, is estimated starting from a consistent incomplete exceedance rate which is rationally linked to the catalogue data. Complete and incomplete exceedance rates are represented by similar functional forms and they are related by a completeness function, which expresses the probability that an event is included in a data set. Completeness is considered uncertain and it is defined by a suitable, continuous, analytical, magnitude dependent function. The importance of this work lies on its applicability because it can be useful in seismic zones where information about seismic activity is scarce or simply when the catalogue is incomplete in a range of magnitudes that can have a significant influence on the seismic hazard analysis and on the resulting seismic risk assessment. Moreover, it can also be applied in the common case when the catalogue is considered complete above a given magnitude threshold. Numerical examples are presented to illustrate the influence of catalogue incompleteness on the complete exceedance rate estimations. In companion papers, attention is focused on the estimation of completeness probabilities of available catalogues and on parameter estimation of the exceedance rate functions.  相似文献   

15.
Seismic hazard analysis requires knowledge of the recurrence rates of large magnitude earthquakes that drive the hazard at low probabilities of interest for seismic design. Earthquake recurrence is usually determined through studies of the historic earthquake catalogue for a given region. Reliable historic catalogues generally span time periods of 100–200 years in North America, while large magnitude events (M?≥?7) have recurrence rates on the order of hundreds or thousands of years in many areas, resulting in large uncertainty in recurrence rates for large events. Using Monte Carlo techniques and assuming typical recurrence parameters, we simulate earthquake catalogues that span long periods of time. We then split these catalogues into smaller catalogues spanning 100–200 years that mimic the length of historic catalogues. For each of these simulated “historic” catalogues, a recurrence rate for large magnitude events is determined. By comparing recurrence rates from one historic-length catalogue to another, we quantify the uncertainty associated with determining recurrence rates from short historic catalogues. The use of simulations to explore the uncertainty (rather than analytical solutions) allows us flexibility to consider issues such as the relative contributions of aleatory versus epistemic uncertainty, and the influence of fitting method, as well as lending insight into extreme-event statistics. The uncertainty in recurrence rates of large (M?>?7) events is about a factor of two in regions of high seismicity, due to the shortness of historic catalogues. This uncertainty increases greatly with decreasing seismic activity. Uncertainty is dependent on the length of the catalogue as well as the fitting method used (least squares vs. maximum likelihood). Examination of 90th percentile recurrence rates reveals that epistemic uncertainty in the true parameters may cause recurrence rates determined from historic catalogues to be uncertain by a factor greater than 50.  相似文献   

16.
《Journal of Geodynamics》2010,49(3-5):269-278
The project “Seismic Hazard Assessment for Almaty” has a main objective to improve existing seismic hazard maps for the region of northern Tien Shan and especially for the surroundings of Almaty and to generate a new geodynamic model of the region.In the first step a composite seismic catalogue for the northern Tien Shan region was created, which contains about 20,000 events and is representative for strong earthquakes for the period back to the year 500. For the period of instrumental observation 1911–2006 the catalogue contains data for earthquakes with a body wave magnitude larger than 4. For smaller events with magnitudes up to 2.2 the data are only available since 1980. The composite catalogue was created on the basis of several catalogues from the United States Geologic Survey (USGS), local catalogues from the Kazakh National Data Centre (KNDC) and the USSR earthquake catalogue. Due to the different magnitudes used in several catalogues a magnitude conversion was necessary.Event density maps were created to rate the seismicity in the region and to identify seismic sources. Subsurface fault geometries were constructed using tectonic model which uses fault parallel material flow and is constrained by GPS data. The fault geometry should improve the estimation of the expected seismic sources from seismic density maps.First analysis of the earthquake catalogue and the density maps has shown that nearly all large events are related to fault systems. Annual seismicity distribution maps suggest different processes as the cause for the seismic events. Apart from tectonics, also fluids play a major part in triggering of the earthquakes.Beneath the Issyk-Kul basin the absence of strong seismic activity suggests aseismic sliding at the flat ramp in a ductile crust part and low deformation within the stable Issyk-Kul micro-continent which underthrust the northern ranges of Tien Shan. First results suggest a new partition of the region in tectonic units, whose bounding faults are responsible for most of the seismic activity.  相似文献   

17.
地震活动性模拟方法及太原地区地震活动性模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
金欣  周仕勇  杨婷 《地球物理学报》2017,60(4):1433-1445
本文改进了地震活动性模拟方法,使模型可以使用GPS反演得到的断层滑动速率的结果作为应力加载,进行区域的地震活动性模拟.选取太原地区作为研究区域,模拟并分析太原地区地震活动性.计算太原地区长达20000年的理论地震目录,通过对理论地震目录进行分析发现模拟结果的震级频度关系与实际观测资料具有相似性.太原地区的震级大于6级的模拟地震在时间上表现出很强的随机性,与年平均发生率为0.0129a~(-1)的Poisson过程对比,当采用卡方检验进行检验时,置信水平达到99.0%;然而,单一断层的强震的时间分布与相应年平均发生率的Poisson分布并不完全相近,部分断层拟合置信水平为90%左右,部分断层置信水平接近为0.这一结果表明,用Poisson过程估计太原地区长期地震发生率是比较合理的,估计单一断层上的地震危险性不是十分合理.地震危险性模拟结果显示,太原盆地地区7级以上地震的复现周期为4000年.  相似文献   

18.
Seismotectonic zonation studies in the Tell Atlas of Algeria, a branch of the Africa-Eurasia plate boundary, provide a valuable input for deterministic seismic hazard calculations. We delineate a number of seismogenic zones from causal relationships established between geological structures and earthquakes and compile a working seismic catalogue mainly from readily available sources. To this catalogue, for a most rational and best-justified hazard analysis, we add estimates of earthquake size translated from active faulting characteristics. We assess the regional seismic hazard using a deterministic procedure based on the computation of complete synthetic seismograms (up to 1 Hz) by the modal summation technique. As a result, we generate seismic hazard maps of maximum velocity, maximum displacement, and design ground acceleration that blend information from geology, historical seismicity and observational seismology, leading to better estimates of the earthquake hazard throughout northern Algeria. Our analysis and the resulting maps illustrate how different the estimate of seismic hazard is based primarily on combined geologic and seismological data with respect to the one for which only information from earthquake catalogues has been used.  相似文献   

19.
用于中短期地震预报的一些地震活动性参量相关性讨论   总被引:18,自引:2,他引:16  
陆远忠  阎利军  郭若眉 《地震》1999,19(1):11-18
在利用地震活动性图像预报地震的研究中,发展了众多定量描述活动图像特征的参量,用它们综合进行短期预报,其相互间的相关性是十分重要的。利用计算机产生地震发生的时间、位置和强度分别符合均匀分布,泊松分布,负指数分布,韦泊尔分布5个随机地震目录,以及华北地区无强震时段的天然地震目录,分别计算了b,C,D,Mf,N值随时间的变化,统计分析了其相关关系,结果认为,D值与N值呈显相关;b值与Mf值呈显性负相  相似文献   

20.
IntroductionSeismicity analysis is an important branch of seismology, which focuses statistically on the study of time, space and magnitude distribution of a group of earthquakes (FU, 1997). Earthquakes as instability phenomena of the lithosphere, however, involve very complicated mechanics. The seismic activity level is not steady, but fluctuating time by time, which shows the alternative change of periods of quiescence and activity (FU, 1986; Mogi, 1984; ZHANG, 1987). Because of such com…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号