首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张佩  刘文义  袁艺  李君 《中国地震》2018,34(1):1-13
旋转地震学是研究由天然地震、爆破和周围环境振动引起的地面旋转运动的新兴学科。对于它的研究不仅有助于对质点运动(平移运动、旋转运动和形变)进行完整的描述,而且对广义地球物理学,如强地面运动地震学、地震工程学、地震物理学、地震仪器等的研究也有重要指导意义。本文系统介绍了旋转运动在地震学中4个方面的应用。首先,介绍基于平移运动和旋转运动的共同测量,得出了计算远震瑞利波和勒夫波相速度的理论公式,并以西伯利亚地震为例,得出台站附近的相速度结构;其次,利用环形激光仪仅对地震SH波敏感的特性,分离P波和S波,分辨海洋噪声和面波,确定海洋噪声的反方位角;然后,介绍利用旋转传感器对自由振荡的长周期环形模式的观测;最后,对包含旋转观测量的多参数反演问题的重要性和实用性进行了阐述,并分析了旋转地震学研究现存的问题。  相似文献   

2.
地震面波产生的地震动转动分量研究   总被引:7,自引:0,他引:7  
本文利用弹性波动理论对地面转动分量,即瑞利(Rayleigh)波和乐夫(Love)波产生的转动分量进行了研究,给出了相应的计算公式和计算方法,特别注意到面波的散射效应对转动分量的影响,并将这一特性引入到转动分量的求取中,使问题的解决更切合于实际,最后选取实际地震记录,利用得到的公式计算出地震面波产生的转动分量。  相似文献   

3.
By exploiting the capability of identifying and extracting surface waves existing in a seismic signal, we can proceed to estimate the angular displacement (rotation about the horizontal axis normal to the direction of propagation of the wave; rocking) associated with Rayleigh waves as well as the angular displacement (rotation about the vertical axis; torsion) associated with Love waves.For a harmonic Rayleigh (Love) wave, rocking (torsion) would be proportional to the harmonic vertical (transverse horizontal) velocity component and inversely proportional to the phase velocity corresponding to the particular frequency of the harmonic wave (a fact that was originally exploited by Newmark (1969) [15] to estimate torsional excitation). Evidently, a reliable estimate of the phase velocity (as a function of frequency) is necessary. As pointed out by Stockwell (2007) [17], because of its absolutely referenced phase information, the S-Transform can be employed in a cross-spectrum analysis in a local manner. Following this suggestion a very reliable estimate of the phase velocity may be obtained from the recordings at two nearby stations, after the dispersed waves have been identified and extracted. Synthesis of the abovementioned harmonic components can provide a reliable estimate of the rocking (torsional) motion induced by an (extracted) Rayleigh (Love) wave.We apply the proposed angular displacement estimation procedure for two well recorded data sets: (1) the strong motion data generated by an aftershock of the 1999 Chi-Chi, Taiwan earthquake and recorded over the Western Coastal Plain (WCP) of Taiwan, and (2) the strong motion data generated by the 2010 Darfield, New Zealand earthquake and recorded over the Canterbury basin. The former data set is dominated by basin-induced Rayleigh waves while the latter contains primarily Love waves.  相似文献   

4.
By now, it is well known that long‐period surface waves can induce resonant response in high‐rise buildings, in particular those located in sedimentary basins. Rayleigh wave passage has been reported to induce rocking motion at the base of the buildings which can increase displacement demands significantly. However, the building behavior to base rocking has not been extensively studied because commercially available instruments do not record rotational components of ground motion, and thus, rocking time histories have not been available to the analysts. In a recent study, we proposed an effective method for estimating the rocking associated with Rayleigh waves, which takes into account their frequency‐dependent phase velocities. In the present work, we select a number of recorded seismic motions which include surface waves on sedimentary basins from recent well‐recorded earthquake events. Then, we proceed to identify and extract the recorded surface waves by using the technique mentioned above. Using realistic soil‐structure analytical models that have been proposed in the published literature for high‐rise buildings, we study their response to Rayleigh waves as they respond to both translational and rocking motions. Of particular interest is to compare the response of such structures with and without the presence of rotational motions due to surface waves. Using the roof displacement and the building interstory drift as response quantities, our results indicate that demands are controlled by rotational (rocking) motions associated with Rayleigh waves.  相似文献   

5.
The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phasevelocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequencytime analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at8–35 s periods and the Love wave at 9–32 s periods,respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps,respectively, were inverted simultaneously to determine the3 D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and theTangshan region are mainly clustered in the transition zone between the low-and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.  相似文献   

6.
High-frequency rotational motions of P-waves and coda waves were analysed using rotation rate sensors and strong motion array data from the 4 March 2008 TAiwan Integrated GEodynamics Research (TAIGER) explosion experiment in northeastern Taiwan. Theoretical and observational investigations focussed on the effects of this experiment on the free surface. The main goal of this study was to explore possible applications of combined measurements of artificial explosion-derived translational and rotational motions. Also investigated was the consistent ground rotation observed directly by rotation rate sensors and derived using translational seismic arrays. Common near-source high-frequency rotational motion observations and array-recorded translational motions from one shallow borehole explosion are analysed in this study. Using a half-space assumption of plane P-wave propagation across the recording site, we conclude that: (1) rotational motions induced by direct P-waves interacting with a free surface in theory can be used to estimate wave radial direction, velocity and anisotropic properties; (2) rotational motions derived from scattering are predominant among the observed rotations during the TAIGER explosion experiments and allow us to image the heterogeneous structure of the medium at the investigated site; and (3) rotation sensor measurements undertaken during TAIGER explosion experiments may be affected by cross-axis sensitivities, which need to be considered when using the data obtained during these experiments.  相似文献   

7.
We estimate Love wave empirical Green's functions from cross-correlations of ambient seismic noise to study the crust and uppermost mantle structure in Italy.Transverse-component ambient noise data from October 2005 through March 2007 recorded at 114 seismic stations from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) national broadband network,the Mediterranean Very Broadband Seismographic Network (MedNet) and the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) yield more than 2 000 Love wave group velocity measurements using the multiple-filter analysis technique.In the short period band (5-20 s),the cross-correlations show clearly one-sided asymmetric feature due to non-uniform noise distribution and high local activities,and in the long period band (20 s) this feature becomes weak owing to more diffusive noise distribution.Based on these measurements,Love wave group velocity dispersion maps in the 8-34 s period band are constructed,then the SH wave velocity structures from the Love wave dispersions are inverted.The final results obtained from Love wave data are overall in good agreement with those from Rayleigh waves.Both Love and Rayleigh wave inversions all reveal that the Po plain basin is resolved with low velocity at shallow depth,and the Tyrrhenian sea is characterized with higher velocity below 8 km due to its thin oceanic crust.  相似文献   

8.
采用与作者2014年发表的“大别-苏鲁及其邻近地区基于背景噪声的勒夫波群速度成像”文章相同的资料,用频时分析提取5 000余条瑞雷波和4 000余条勒夫波相速度频散曲线,反演得到了8—32 s的瑞雷波和勒夫波相速度分布图像.结果显示,瑞雷波与勒夫波相速度分布具有很好的一致性.8 s的相速度分布与地表构造特征相吻合,造山带与隆起区均表现为高速,盆地因其规模不同而显示不同程度的低速.随着周期的增大,大别 苏鲁的高速带由强变弱,但始终存在.16—24 s的高速可能主要受到中地壳高速的控制,而32 s的高速则可能与上地幔顶部的高速有关.比较大别造山带与苏鲁造山带的平均频散曲线,发现大别造山带和苏鲁造山带的勒夫波频散曲线均高于AK135模型计算的理论频散曲线,而瑞雷波则没有这一现象. 这可能意味着两个地区有比较强烈的径向各向异性.   相似文献   

9.
东北地区背景噪声的Rayleigh和Love波相速度层析成像   总被引:5,自引:2,他引:3       下载免费PDF全文
本文利用中国数字地震台网位于东北地区的122个宽频地震台站的18个月记录的三分量连续地震噪声数据,采用互相关方法提取了Rayleigh和Love波经验格林函数,并利用时频自动分析技术获取了相应的相速度频散曲线.通过反演频散曲线,获得了Rayleigh和Love波周期为8~35s的二维相速度分布.结果表明,东北地区相速度的分布存在横向和垂向的不均匀性.短周期的相速度分布同地表地质构造密切相关,松辽盆地及山间沉积盆地呈现低速异常,而大兴安岭、小兴安岭及东部的一些山岭显示高速异常.随着周期的增加,位于中间的松辽盆地变为高低速相间,两侧的造山带呈现低速异常.这种异常的转变,可能是受构造活动或者莫霍面深度的影响.另外,在周期为20~35s频段内,Rayleigh和Love波同一周期的相速度在松辽盆地和位于吉林地区的郯庐断裂带表现不一致,表明可能存在径向各向异性.  相似文献   

10.
In the past decade, a number of studies have reported the observation of rotational motion associated with seismic events. We report a first observation of rotational motion in the microseismic ambient noise band. A striking feature of rotational motion measurements is that the information about the seismic phase velocity and source back azimuth is contained in the amplitude ratio of a point measurement of rotation rate and transverse acceleration. We investigate the possibility of applying this method to ambient noise measured with a ring laser and a broadband seismometer at the Wettzell Geodetic Observatory in Germany. Using data in the secondary microseismic band, we recover local phase velocities as well as the back azimuth of the strongest noise source for two different time periods. In order to confirm these findings, we additionally compare the results with classical array processing techniques of the Gr?fenberg array located nearby.  相似文献   

11.
Two-month continuous waveforms of 108 broadband seismic stations in Fujian Province and its adjacent areas are used to compute noise cross-correlation function (NCF). The signal quality of NCF is improved via the application of time-frequency phase weighted stacking. The Rayleigh and Love waves group velocities between 1s-20s are measured on the symmetrical component of the NCF with the multiple filter method. More than 5,000 Rayleigh wave dispersion curves and about 4,000 Love wave dispersion curves are obtained and used to invert for group velocity maps. This data set provides about 50km resolution that is demonstrated with checkerboard tests. Considering the off great circle effect in inhomogeneous medium, the ray path is traced based on the travel time field computed with a finite difference method. The inverted group velocity maps show good correlation with the geological features in the upper and middle crust. The Fuzhou basin and Zhangzhou basin showed low velocity on the short period group velocity maps. On the long period group velocity maps, the low velocity anomaly in the high heat flow region near Zhangzhou and clear velocity contrast across the Zhenghe-Dapu faults, which suggests that the Zhenghe-Dapu fault might be a deep fault.  相似文献   

12.
基于青藏高原东北缘及邻区流动密集地震台阵——喜马拉雅二期2013年12月至2015年8月期间的三分量连续波形数据,采用背景噪声成像方法获得了Rayleigh波周期为6~30 s和Love波6~25 s的二维相速度.6~12 s Rayleigh和Love波相速度在鄂尔多斯盆地及银川—河套地堑呈现明显的低速异常,而在西秦岭造山带和中亚造山带则显示高速异常.16~25 s的相速度同时受中下地壳及上地幔顶部速度结构和地壳厚度影响.此周期范围内,位于青藏高原的祁连地块和松潘甘孜地块北部呈现大范围相速度低速异常,青藏高原周边的鄂尔多斯和西秦岭造山带表现为高速异常.青藏高原与周边块体相速度的横向不均匀性,可能反映了构造活动或者地壳厚度的差异.此外,中亚造山带在周期16~20 s时,Rayleigh波相速度高低相间,但Love波大范围高速异常,两者差异可能反映了径向各向异性的影响.  相似文献   

13.
The development of large ring lasers made it possible for accurate detection of rotational seismic waves over a wide range of amplitudes and frequencies. Due to their insensitivity to translational motion the optical angular rate sensors are very attractive for application in seismology, geodesy, and even fundamental physics. However, the operation of the large ring lasers in the near-field is difficult due to their mass, size and, environmental requirements. Hence, the fiber-optic gyros may be used for seismic applications, where the mobility is more important and where the high rotation rates are expected. This kind of sensors also can be used for correction of standard seismometers subjected to tilt. In this paper we present the current state of experimental research dedicated to application of fiber-optic gyros for seismology. The test results demonstrate that the tactical grade optical sensors are capable of successfully measuring small rotation fluctuations down to 10?5 rad/s. However, the seismometer correction seems only feasible in the range of rotation rates about 10?3 rad/s and higher. This limitation is caused by the excessive noise in the output of the fiber-optic gyro. The possible measures to overcome this problem are discussed as well as advantages of optical gyros for strong motion seismology.  相似文献   

14.
Phase and group velocities and Q of mantle Love and Rayleigh waves from the 1963 Kurile Islands earthquake (Mw = 8.5) were determined over 37 great circle paths by a time variable filtering technique, in a period range 100–500 s for the fundamental modes and 100–275 s for the first higher modes. The preliminary reference Earth model (PREM) explains reasonably well the average dispersion results for the fundamental Love and Rayleigh waves. There exists a small, but significant inconsistency between the observation and the model for the first higher Love and Rayleigh waves. The Q structure of PREM is inconsistent with the observation for the fundamental Love waves, but explains other observations reasonably well. The dispersion of each mode shows a clear azimuthal dependence from which the four azimuthal windows were established. The phase and group velocity measurements for each window were, in general, shown to be mutually consistent. The azimuthal variations are largest for the first higher Rayleigh waves, indicating strong lateral heterogeneity in the structure of the low velocity zone. The first of the four windows is characterized by the largest fraction of Precambrian shields and the second window by the largest fraction of normal oceans. A comparison of these two windows may give some insight into deep lateral heterogeneity between continents and oceans. The observed phase and group velocities of the first window are systematically higher than those of the second window for the fundamental Love and Rayleigh waves at periods up to 400 s, and for the first higher Love and Rayleigh waves up to 175 s. Their differences are greatest for the first higher Rayleigh waves and least for the fundamental Rayleigh waves. Although the fundamental Rayleigh waves show the least velocity differences, their persistence up to a period of longer than 300 s is in striking contrast with some of the pure path phase velocities derived earlier for continents and oceans. A set of models for continents and oceans. PEM-C and PEM-O are not consistent with our observation. The third azimuthal window is characterized by trench-marginal seas and the fourth window by mountainous areas, typically the Asian high plateaus from northern China to the Middle East through Tibet. A comparison of these two windows gives some information about deep structural differences between subduction zones and continental collision zones, both belonging to plate convergence zones. For the fundamental and the first higher Love waves, the phase and group velocities for the third window are markedly low, whereas those for the fourth window are somewhat comparable to those for the second window. Slow Rayleigh waves are evident for two windows, with the fourth window apparently being the slowest for the fundamental Rayleigh above 200 s and for the first higher Rayleigh. For the fundamental Rayleigh waves, the third window is very slow below 200 s, but becomes progressively fast as the period increases and tends to be the fastest window around 400 s, suggesting a deep seated high velocity anomaly beneath trench-marginal seas. The dispersion characteristics of the fourth window indicate a thick high velocity lid with an extensive low velocity zone beneath it. The shield-like lithosphere, coupled with an extensive low velocity zone, may be a characteristic feature of continental collision zones. The particle motion of the fundamental Love waves was found not to be purely transverse to a great-circle connecting the epicenter to a station. The departure from the purely transverse motion is systematic among different periods, different G arrivals (G2, G3,…) and different stations, which may be interpreted as being due to lateral refraction.  相似文献   

15.
Rotation motion and its effects on strong-motion data, in most cases, are much smaller than that of translational motion and have been ignored in most analyses of strong-motion data. However, recent observations from near-fault and/or extreme large ground motions suggest that these effects might be underestimated and quantitative analyses seem to be necessary for improving our understating of these effects. Rotation motion-related effects include centrifugal acceleration, the effects of gravity and effects of the rotation frame. Detailed analyses of these effects based on the observed data are unavailable in the literature. In this study, we develop a numerical algorithm for estimating the effects of rotational motion on the strong-motion data using a set of six-component ground motions and apply it to a set of rotation rate-strong motion velocity data. The data were recorded during a magnitude 6.9 earthquake. The peak value of the derived acceleration and rotation rate of this dataset are about 186 cm/s/s and 0.0026 rad/s. Numerical analyses of data gives time histories of these rotational motion-related effects. Our results show that all the rotation angles are less than 0.01°. The maximum centrifugal acceleration, effect from gravity and effect of the rotation frame are about 0.03 and 0.14 cm/s/s, respectively. Both these two effects are much smaller than the peak acceleration 186 cm/s/s. This result might have been expected because our data are not near-field and wave motions are expected to be nearly plane waves. However, it is worth noticing that the centrifugal acceleration is underestimated and a small rotational effect can cause large waveform difference in acceleration data. The waveform difference before and after the correction for rotational motion can reach 16 cm/s/s (about 10 %).  相似文献   

16.
Love and Rayleigh wave phase velocities are analyzed with the goal of retrieving information about the anisotropic structure of the Iberian lithosphere. The cross-correlation method is used to measure the interstation phase velocities between diverse stations of the ILIHA network at periods between 20 and 120 s. Despite the 2-D structure of the network, the Love wave data are too few to enable an analysis of phase velocity azimuthal variations. Azimuthal averages of Love and Rayleigh wave phase velocities are calculated and inverted both in terms of isotropic and anisotropic structures. Realistic isotropic models explain the Rayleigh wave and short-period Love wave phase velocities. Therefore no significant anisotropy needs to be introduced in the crust and down to 100 km depth in the upper mantle to explain our data. A discrepancy is observed only at long periods, where the data are less reliable. Love wave data at periods between 80 and 120 s remain 0.15 km/s faster than predicted by isotropic models explaining the long-period Rayleigh wave data. Possibilities of biases in the measurements due to interferences with higher modes are examined but seem unlikely. A transversely isotropic model with 8% of S-wave velocity anisotropy in the upper mantle at depths larger than 100 km can explain the whole set of data. In terms of a classical model of mantle anisotropy, this corresponds to 100% of the crystals perfectly oriented in the horizontal plane in a pyrolitic mantle. This is a rather extreme model, which predicts at time delay between 0 and 2 seconds for split SKS.  相似文献   

17.
A method for generating a suite of synthetic ground motion time‐histories for specified earthquake and site characteristics defining a design scenario is presented. The method employs a parameterized stochastic model that is based on a modulated, filtered white‐noise process. The model parameters characterize the evolving intensity, predominant frequency, and bandwidth of the acceleration time‐history, and can be identified by matching the statistics of the model to the statistics of a target‐recorded accelerogram. Sample ‘observations’ of the parameters are obtained by fitting the model to a subset of the NGA database for far‐field strong ground motion records on firm ground. Using this sample, predictive equations are developed for the model parameters in terms of the faulting mechanism, earthquake magnitude, source‐to‐site distance, and the site shear‐wave velocity. For any specified set of these earthquake and site characteristics, sets of the model parameters are generated, which are in turn used in the stochastic model to generate the ensemble of synthetic ground motions. The resulting synthetic acceleration as well as corresponding velocity and displacement time‐histories capture the main features of real earthquake ground motions, including the intensity, duration, spectral content, and peak values. Furthermore, the statistics of their resulting elastic response spectra closely agree with both the median and the variability of response spectra of recorded ground motions, as reflected in the existing prediction equations based on the NGA database. The proposed method can be used in seismic design and analysis in conjunction with or instead of recorded ground motions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We report the observation of the ground rotation induced by the M w = 9.0, 11th of March 2011, Japan earthquake. The rotation measurements have been conducted with a ring laser gyroscope operating in a vertical plane, thus detecting rotations around the horizontal axis. Comparison of ground rotations with vertical accelerations from a co-located force balance accelerometer shows excellent ring laser coupling at periods longer than 100?s. Under the plane wave assumption, we derive a theoretical relationship between horizontal rotation and vertical acceleration for Rayleigh waves. Due to the oblique mounting of the gyroscope with respect to the wave direction of arrival, apparent velocities derived from the acceleration/rotation rate ratio are expected to be always larger than or equal to the true wave propagation velocity. This hypothesis is confirmed through comparison with fundamental mode, Rayleigh-wave phase velocities predicted for a standard Earth model.  相似文献   

19.
四川盆地中部浅层地壳一维剪切波速度结构初步研究   总被引:2,自引:0,他引:2  
2010年1月31日四川盆地中部的遂宁发生了M5.0地震,四川盆地内部的台站观测到了很强的短周期面波波形数据。本文对地震数据的Rayleigh波和Love波提取基阶群速度频散曲线并反演得到四川盆地中部浅层地壳一维剪切波波速度结构。研究结果表明,四川盆地中部近地表剪切波平均速度约为2km/s,并且随深度逐渐增加,地壳深度在10km左右时,剪切波速度达到了3.5km/s。此结果适用于四川盆地中部以西,从遂宁到龙泉山附近,而四川盆地东部,从遂宁到华蓥山断裂不适用。该结果可为龙门山断裂附近的三维结构研究提供参考,并对强地面运动计算和区域内地震定位的研究有一定参考价值。  相似文献   

20.
To investigate the relationship between velocity structure and earthquake activity on the southeastern front of the Tibetan Plateau, we make use of continuous observations of seismic ambient noise data obtained at 55 broadband stations from the regional Yunnan Seismic Network. These data are used to compute Rayleigh wave Green's Functions by cross-correlating between two stations, extracting phase velocity dispersion curves, and finally inverting to image Rayleigh wave phase velocity with periods between 5 and 34 s by ambient noise tomography. The results show significant lateral variations in crustal and uppermost mantle structures in the studied region. Phase velocity anomalies at short periods(5–12 s) are closely related to regional tectonic features such as sediment thickness and the depth of the crystalline basement. The Sichuan-Yunnan rhombic block, enclosed by the Honghe, Xiaojiang and Jianchuan faults, emerges as a large range of low-velocity anomalies at periods of 16–26 s, that inverts to high-velocity anomalies at periods of 30–34 s. The phase velocity variation in the vicinity of the Sichuan-Yunnan rhombic block suggests that the low-velocity anomaly area in the middle-lower crust may correspond to lower crustal channelized flow of the Tibetan Plateau. The spatial distribution of strong earthquakes since 1970 reveals that the Yunnan region is inhomogeneous and shows prominent characteristics of block motion. However, earthquakes mostly occur in the upper crust, with the exception of the middle-Yunnan block where earthquakes occur at the interface zone between high and low velocity as well as in the low-velocity zones, with magnitudes being generally less than 7. There are few earthquakes of magnitude 5 at the depths of 15–30 km, where gather earthquakes of magnitude 7 or higher ones which mainly occur in the interface zone between high and low velocities with others extending to the high-velocity abnormal zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号