首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
汶川地震中极震区砌体结构教学楼典型震害分析   总被引:5,自引:3,他引:2  
汶川8.0级大地震造成了巨大的损失,大量学校建筑遭受严重破坏,其中大部分是砌体结构教学楼。在此次地震中,极震区北川县擂鼓镇城区内的初中、小学和幼儿园等砌体结构教学楼的破坏极其严重,结构特征和震害现象十分典型。本文详细地介绍了擂鼓镇城区内5栋砌体结构教学楼的结构构造特点和震害现象特征,同时,总结归纳了砌体结构教学楼的典型震害并分析了震害原因;讨论并分析了建筑含墙率、开间大小、高宽比等因素对建筑的抗震能力的影响;通过结构易损性分析方法对教学楼在不同烈度下的破坏状态进行了计算,并与实际震害进行了对比分析;最后,为灾后教学楼的重建工作提出了建议。  相似文献   

2.
应用简便、可靠的震害预测方法对我国大量存在的砌体结构进行抗震性能评估,是防震减灾工作的重要举措。基于支持向量机(support vector machine, SVM)理论提出了砌体结构震害预测新方法。首先,详细阐述了基于SVM的砌体结构震害预测新方法的基本原理及步骤;其次,确定了砌体结构的震害影响因子及量化值,建立了震害样本数据库及预测模型;最后,将SVM预测结果分别与实际震害结果和BP神经网络预测结果进行对比分析。结果表明,基于SVM模型的砌体结构震害预测方法步骤简单。结果可靠,在样本数据有限的情况下相对BP神经网络算法有较大的优势,可以用于砌体结构的震害预测。  相似文献   

3.
利用汶川8.0级地震特大发生后作者在极重灾区——四川省广元市青川县参加首批房屋应急评估工作期间收集的房屋震害资料,分析了砌体结构的震害特点和震害原因,对提高中小学砌体建筑抗震能力进行研究,从概念设计与计算分析两个方面对现行抗震设计规范的若干条文进行了讨论,提出了验算砌体结构抗倒塌能力的建议。  相似文献   

4.
砌体结构房屋是存在于我国的一种量大面广的结构.针对一个地区砌体结构开展结构地震易损性分析,有利于把握该地区砌体结构整体抗震性能,对于该地区防震减灾工作的开展有着重要的指导意义.该研究收集整理了2001年到2010年10年间发生于云南地区地震的震后砌体结构震害资料,并对震后统计得到的震害矩阵进行分析,发现云南农村地区砌体结构的抗震性能与所在地区的抗震设防标准相关性小,而城区砌体结构与所在地区抗震设防标准相关性较强;由于所收集的资料中缺乏Ⅸ、Ⅹ烈度区的震害资料,从而给出了云南农村和城区不完备的砌体结构经验震害矩阵;进一步采用贝塔概率密度分布函数来拟合震害指数的分布,并根据标准震害矩阵和某一烈度下建筑物已知的震害分布得出其他烈度下的震害分布,最后给出了云南农村和城区砌体结构震害矩阵和易损性曲线.该研究可为云南地区的防震减灾规划、地震灾害预测提供参考.  相似文献   

5.
<正>我国地震多发且震害严重,震害的主要表现是人员伤亡,而导致人员伤亡的最重要因素是房屋倒塌。汶川地震显示,在我国中小城镇,地震破坏严重的建筑结构类型主要有底商多层砌体结构、多层RC框架结构、多层砖混结构,其中极震区底商多层砌体结构倒塌比率达85%。分析这类房屋倒塌机理,提出相应的抗倒塌设计方法及对既有建筑抗倒塌加固方法十分必要。本文通过对汶川地震极震区中底商多层砌体结构好、坏两种典型代表进行深入剖析,通  相似文献   

6.
不同烈度区农村自建砖砌体房屋震害特征研究   总被引:2,自引:0,他引:2  
农村自建砖砌体房屋通常没有正规的设计和施工导致该类房屋抗震性能较差。文中以汶川8.0级地震为例,在不同烈度区选择具有代表性地区的农村自建砖砌体房屋为研究对象,分析了该类型房屋不同烈度区的震害特征。通过使用数量化术语的震害描述,对在不同烈度区的农村自建砖砌体房屋的墙体、楼板屋盖、附属结构的破坏进行了震害分析,得到了地震作用下仅考虑结构振动破坏时该类型房屋的破坏特征。最后也给出了降低农村自建砖砌体房屋震害的一些建议。  相似文献   

7.
针对基于人工检测方法存在效率低、实时性差等问题,提出了一种空间通道注意力机制改进的Faster RCNN的砌体结构震损图片快速识别算法。基于湖北省应城M4.9级地震现场调查获取的砌体结构震害图片,制作砌体结构门窗洞口和震损类型的数据集;通过Mosaic方法对数据集进行数据增强后,构建空间通道注意力机制改进的Faster RCNN模型提取震害图片高级语义特征;使用湖北应城M4.9级地震砌体结构震害调查数据集对模型进行训练及验证并确定最终的模型超参;最后基于改进的Faster RCNN对砌体结构门窗洞口和震损类型进行快速检测。实验结果表明,该改进的算法可以有效的识别出门、窗、剥落、裂缝,其检测精确分别为:93.1%、97.6%、74.8%、62.3%。此外,单张震害照片检测时间为60 ms,为砌体结构震害快速检测提供了新的思路。  相似文献   

8.
砌体结构在2008汶川大地震中的震害经验   总被引:4,自引:2,他引:2  
本文首先列举了砌体结构在2008汶川大地震中的典型震害现象,通过这些现象分析了此次地震中砌体结构的震害特点,归纳了其震害规律和教训,总结了必须坚持的抗震原则及对今后砌体结构抗震设计的启示,同时,探讨了几个应该注意的重点抗震问题,提出了进一步加强砌体结构抗震性能的建议。文中指出,砌体结构只要坚持正确的抗震理念,加强构造措施,落实抗震规范的设计要求,保证施工质量,就能达到相应的抗震设防目标。  相似文献   

9.
以往对砌体结构的抗震鉴定或震害预测方法没有考虑构造柱、圈梁等抗震措施对增强砌体结构抗倒能力的影响,使得在高烈度下的鉴定或震害预测结果多为倒塌,这与震害实际不符合。实际在高烈度区,有一些砌体结构并没有倒塌。本文按照杨玉成等[1]提出的用抗倒增强系数修正楼层综合抗震能力指数方法,将抗倒增强系数的取值推广到不同工况;提出地震烈度为Ⅹ度时烈度影响系数为4.0;推演了杨玉成等提出的用综合抗震能力指数表示的震害预测判别标准。按此法进行了24栋建筑的分析,震害预测结果显示考虑抗倒能力的方法适用于高烈度下的砌体结构震害预测,简单易用,符合震害实际。  相似文献   

10.
介绍了汶川8级地震中砌体结构房屋的震害情况,归纳分析了砌体结构房屋在地震中的震害特征及其原因,总结出了砌体结构抗震“选材合理、整体设计、注重细节、确保质量”的总体原则,提出了采用“高宽比”来设计窗间墙的宽度、房屋底层中部加设圈梁的建议,讨论了采用隔震技术、墙体开缝耗能、“隐形构造柱”和“捆绑”抗震、设置减震缝及耗能砂浆抗震技术来改进砌体结构抗震性能的新途径和新方法,最后对砌体结构的发展提出了建议。  相似文献   

11.
Past earthquake experiences indicate that most buildings designed in accordance with modern seismic design codes could survive moderate‐to‐strong earthquakes; however, the financial loss due to repairing cost and the subsequent business interruption can be unacceptable. Designing building structures to meet desired performance targets has become a clear direction in future seismic design practice. As a matter of fact, the performance of buildings is affected by structural as well as non‐structural components, and involves numerous uncertainties. Therefore, appropriate probabilistic approach taking into account structural and non‐structural damages is required. This paper presents a fuzzy–random model for the performance reliability analysis of RC framed structures considering both structural and non‐structural damages. The limit state for each performance level is defined as an interval of inter‐storey drift ratios concerning, respectively, the non‐structural and structural damage with a membership function, while the relative importance of the two aspects is reflected through the use of an appropriate cost function. To illustrate the methodology, herein the non‐structural damage is represented by infill masonry walls. The probabilistic drift limits for RC components and masonry walls from the associated studies are employed to facilitate the demonstration of the proposed model in an example case study. The results are compared with those obtained using classical reliability model based on single‐threshold performance definition. The proposed model provides a good basis for incorporating different aspects into the performance assessment of a building system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
An earthquake with a magnitude of 5.7 $(\text{ M}_{\mathrm{L}})$ has struck Simav, Kutahya located in the western part of Turkey on May 19, 2011. The ground motion caused observable damage within 25 km radius from the epicenter. Although the earthquake is moderate, its effects on the structures are serious. This paper presents the observations on seismic damages of reinforced concrete (RC) and masonry structures. Common reasons of damage in RC buildings are: low quality of concrete, detailing mistakes of reinforcement, short column, pounding, overhangs and misconstructed gable and outer infill wall parts. Interesting cases related to these deficiencies are reported. Damages in the masonry buildings are due to lack of connection between orthogonal walls and unsuitable location and dimension of openings. The damages at structures are more noticeable at regions with unfavorable soil conditions like plain regions or foothills. However, on stiffer soils at hilly sides, the damages seem to be more limited and masonry structures are observed to be less affected compared to the RC ones. The damages in RC buildings found to be increasing with story number for light damage states. However, for heavier damage states, 4–5 story buildings are observed to be the most damaged.  相似文献   

13.
砌体结构是一种脆性结构,变形能力和承载力均较低,因取材方便、施工简单和造价低等优势在中国被广泛应用。为了评估砌体结构的抗震性能,本文基于增量动力分析(Incremental Dynamic Analysis,IDA)方法研究了多层砌体结构的地震易损性,分析了影响砌体结构地震易损性的主要因素以及群体多层砌体结构地震易损性。研究结果表明:在相同场地条件情况下,砌体结构的房屋层数、砌筑砂浆强度、设防烈度和墙体面积率对结构的地震易损性影响较明显;当结构层高在2.8~3.3 m之间时,层高对结构地震易损性的影响不大。抗震设防砌体结构抗震能力比不设防结构有明显提高,说明构造柱和圈梁等构造措施能显著提高砌体结构的抗倒塌能力,这与目前的基本认识相同,也证明了增量动力分析方法的有效性。  相似文献   

14.
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls.Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks.These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs.Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored,their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed.As a consequence,nonstructural elements,as for wall enclosures,are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements,however they do not specifically indicate how to prevent collapse and severe cracking,and how to enhance the overall stability in the case of moderate to high seismic loading.Furthermore,a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.  相似文献   

15.
When dealing with structural damages, under the effect of natural hazards such as earthquakes, it is still a scientific challenge to predict the potential damages, before occurrence of a given hazard, as well as to evaluate the damages once the earthquake has occurred. In the present study, two distinct methods addressing these topics are developed. Thousands (~54,000) of existing buildings damaged during the Boumerdes earthquake that occurred in Algeria (Mw?=?6.8, May 21, 2003) are considered in order to study their accuracy and sensitivity. Once an earthquake has occurred, quick evaluations of the damages are required in order to distinguish which structures should be demolished or evacuated immediately from those which can be kept in service without evacuation of its inhabitants. For this purpose, visual inspections are performed by trained and qualified engineers. For the case of Algeria, an evaluation form has been developed and is still in use since the early 80s: Five categories of damages are considered (no damage or very slight, slight, moderate, major, and very severe/collapse). This paper develops a theoretical methodology that processes the observed damages caused to the structural and nonstructural components (foundations, roofs, slabs, walls, beams, columns, fillings, partition walls, stairways, balconies, etc.), in order to help the evaluator to derive the global damage evaluation. This theoretical methodology transforms the damage category into a corresponding “residual” risk of failure ranging from zero (no damage) to one (complete damage). The global failure risk, in fact its corresponding damage category, is then derived according to given combinations of probabilistic events in order to express the influence of any component on the global damage and behavior. The method is calibrated on a set of ~54,000 buildings inspected after Boumerdes earthquake. Almost 80 % of accordance (same damage category) is obtained, when comparing the theoretical results to the observed damages. For pre-earthquake analysis, the methodology widely used around the world relies on the prior calibration of the seismic response of the structures under given expected scenarios. As the structural response is governed by the constitutive materials and structural typology as well as the seismic input and soil conditions, the damage prediction depends intimately on the accuracy of the so-called fragility curve and response spectrum established for each type of structure (RC framed structures, confined or unconfined masonry, etc.) and soil (hard rock, soft soil, etc.). In the present study, the adaptation to Algerian buildings concerns the specific soil conditions as well as the structural dynamic response. The theoretical prediction of the expected damages is helpful for the calibration of the methodology. Thousands (~3,700) of real structures and the damages caused by the earthquake (Algeria, Boumerdes: Mw?=?6.8, May 21, 2003) are considered for the a posteriori calibration and validation process. The theoretical predictions show the importance of the elastic response spectrum, the local soil conditions, and the structural typology. Although the observed and predicted categories of damage are close, it appears that the existing form used for the visual damage inspection would still require further improvements, in order to allow easy evaluation and identification of the damage level. These methods coupled to databases, and GIS tools could be helpful for the local and technical authorities during the post-earthquake evaluation process: real time information on the damage extent at urban or regional scales as well as the extent of losses and the required resources for reconstruction, evacuation, strengthening, etc.  相似文献   

16.
针对低烈度区砌体结构房屋抗震的需要,本文提出利用纤维砂浆带加固砌体墙的一种廉价抗震方案。运用有限元分析软件Ansys10.0进行数值模拟分析,探讨这种加固方案的可行性,并在此基础上进行试验研究。通过纤维砂浆带加固砌体墙片在低周反复荷载作用下的试验,对墙片的破坏特征、裂缝的发展过程、滞回特性、结构延性等技术指标进行对比分析,结果表明,采用纤维砂浆带加固砌体墙有助于提高墙体的开裂荷载,增加结构的延性,改善墙体的抗震性能。  相似文献   

17.
由于古建筑具有与现代建筑不同的特点,所以基于传统抗震理论的单体建筑物抗震能力评估方法对古建筑往往难以适用;在脉动测试的基础上,对一砖石古塔抗震能力做了评估;结果表明,采用结合结构物脉动试验的抗震能力评估方法,可以对没有原始资料且已有一定损伤的砖石古塔的抗震能力做出较为合理的评估。  相似文献   

18.
Reinforced concrete (RC) buildings in Nepal are constructed with RC frames and masonry infill panels. These structures exhibit a highly non-linear inelastic behavior resulting from the interaction between the panels and frames. This paper presents an extensive case study of existing RC buildings in Nepal. Non-linear analyses were performed on structural models of the buildings considered as a bare frame and with masonry infill, in order to evaluate the influence of infill walls on the failure mechanisms. Five three-storey buildings with different structural configurations and detailing were selected. The effect of masonry infill panels on structural response was delineated by comparing the bare-framed response with the infill response. Seismic performance is evaluated with regard to global strength, stiffness, energy dissipation, inter-storey drift, and total deflection of the structure. A parametric analysis of structures with masonry infill is also performed. For this, the influence of different material properties is studied, namely diagonal compressive stress, modulus of elasticity and tensile stress of masonry infill panels. Study results show that masonry infill increases the global strength and stiffness of the structures; it decreases the inter-storey drift and hence the total displacement of the structure. The results quantify the influence of the infill panels on structural response and, in particular, the effect of the diagonal compressive strength of the masonry wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号