首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The differential-pulse polarography (DPP) and the stripping voltametry (SV) are investigated in detail with respect to their suitability for the quantitative detection of individual traces of heavy metals in sewage sludge. The results are checked on the basis of AAS analyses and by the standard-addition method. From the hydrochloric-acid extracts of fused sludge samples down to 1 μg/l can be detected by the SV, whereas the DPP reaches a sensitivity of 100 μg/l. The following basic electrolytes are used: Zn: 2 … 3 mol/l H3PO4; Cu: 0.4 mol/l K2CO3, 0.2 mol/l Na-K-tartrate, 0.1 mol/l HCl; Ni: 1 mol/l NH4OH, 1 mol/l NH4Cl, 25 ml/l triethylamine; Pb and Cd: 0.1 … 0.2 mol/l HCl.  相似文献   

2.
The method after Strickland and Parsons is modified for fresh water as follows: filtration on glass-fibre paper, oxidation with K2Cr2O7 in cone. H2SO4 for 2 h at 130 °C, dilution to 2.5 times the volume by aqua dest., centrifuging-off of the turbidity and extinction measurement at 445 nm against the blank value, the sample solution being balanced to the transmission of 100% (extinction = 0). Here, the following calibration line holds for the concentration C and the quantity of oxidation solution Ox: C = E1cmc · 0.162 · Ox, C in mg filter. The oxidation solution contains 4.8 g K2Cr2O7 as dissolved in 20 ml aqua dest. and made up with conc. H2SO4 to 11. With 5 ml of this solution one is able to determine 0.05 … 1 mg C/filter. Calibration is performed with 125 mg/l glucose solution. Comparative investigations have shown a good agreement with elementary-analytically obtained measured values. The occurring errors have been determined mainly by sampling. In the range of very small values we have to take into account a blank value of the filter due to the adsorption of dissolved organic substances on the filter.  相似文献   

3.
Heavy metal polluted sites are bearing an acute hazardous risk for the groundwater, but also a potential one. While the acute risk can be assessed directly via seepage water measurements, determination of the potential risk is much more complex. It results from the sum of all reactions that are capable to mobilize heavy metals under worst case environ-mental conditions. Using a fourfold sequential extraction (SE4) such a worst case was simulated for four soils highly contaminated with Pb, Zn, and Cu. The resulting potential mobilizable amounts ϕpm have been compared with those derived from 6 single extractions. By means of variance analyses, it is shown that ϕpm of lead can be represented by a single extraction with NH2OH. In contrary, ϕpm of zinc can be represented using the pHstat test or an extraction with aqua regia, while ϕpm of copper can be represented only by aqua regia extraction. The water-soluble amounts deriving from the DEV-S4 test do not correlate with the potential mobilizable amounts of any metal. Therefore, an assessment of contaminated sites should include an aqua regia extraction additionally to the seepage water analysis.  相似文献   

4.
In this study, bench‐scale experiments were conducted to examine the UV/H2O2 oxidation of 17α‐ethynyestradiol (EE2) in water in a batch operation mode. The EE2 degradation exhibited pseudo‐first‐order kinetics, and the removal was ascribed to the production of hydroxyl radicals (?OH) by the UV/H2O2 system. Typically, the EE2 oxidation rate increased with increasing UV intensity and H2O2 dose, and with deceasing initial EE2 levels and solution pH. At EE20 = 650 µg/L, UV intensity = 154 µW/cm2, H2O2 = 5 mg/L, and neutral pH, the UV/H2O2 treatment was able to remove 90% of the EE2 content within 30 min. Four anions commonly present in water were found to inhibit EE2 degradation to varying degrees: > > Cl? > . Our results demonstrate that the described UV/H2O2 process is an effective method to control EE2 pollution in water.  相似文献   

5.
The degradation of two pesticides: atrazine and metazachlor was investigated in aqueous solution under UV-irradiation with and without H2O2. Rate constants of the photochemical degradation were determined applying a first order kinetics and quantum yields of the processes were calculated. This approach leads to an apparent decrease of the quantum yield with increasing initial pesticide concentration. At low H2O2 initial concentrations, the pesticide degradation was shown to be much more efficient than the degradation under UV-irradiation only. However, at high H2O2 concentrations (>2 mmol L?1), the efficiency of the UV/H2O2 system dropped down and the quantum yields of degradation were lower than for the direct photolysis. In the absence of H2O2, no influence of the pH value on the photodegradation of the pesticides could be noticed in a range between pH 3 and pH 11. At low H2O2 initial concentrations, the photochemical degradation of the pesticides was much faster at pH 3 and pH 7 compared with the degradation at pH 11. The results emphasize the potential of optimized reaction conditions in advanced oxidation.  相似文献   

6.
The relative ability of Coriolus versicolor to grow on coir fiber as a ligninocellulosic material was examined. Addition of yeast extract to the culture increased laccase activity, which was further enhanced to the level of 1976 U/L by addition of 1 mM copper sulfate. Laccase thus produced was used without further purification for the decolorization of various dye solutions. Decolorization efficiency was compared with the conventional environment friendly oxidation technique using hydrogen peroxide in the presence of UV radiations. Laccase showed good decolorization in most of the cases. Excellent results were achieved when the dye solution was treated successively with laccase and UV/H2O2 wherein more than 80% decolorization was achieved. This value is remarkably higher than that attained either by the enzyme or UV/H2O2 photolysis alone.  相似文献   

7.
The decomposition of dichloroacetic acid (DCAA) in water using a UV/H2O2/micro‐aeration process was investigated in this paper. DCAA cannot be removed by UV radiation, H2O2 oxidation or micro‐aeration alone, while UV/H2O2/micro‐aeration combination processes have proved effective and can degrade this compound completely. With initial concentrations of about 110 μg/L, more than 95.1% of DCAA can be removed in 180 min under UV intensity of 1048.7 μW/cm2, H2O2 dosage of 30 mg/L and micro‐aeration flow rate of 2 L/min. However, more than 30 μg/L of DCAA was left after 180 min by UV/H2O2 combination process without micro‐aeration with the same UV intensity and H2O2 dosage. The effects of applied UV radiation intensity, H2O2 dose, initial DCAA concentration and pH on the degradation of DCAA have been examined in this study. Degradation mechanisms of DCAA with hydroxyl radical oxidation have been discussed. The removal rate of DCAA was sensitive to operational parameters. There was a linear relationship between rate constant k and UV intensity and initial H2O2 concentration, which indicated that a higher removal capacity can be achieved by improvement of both factors. A newly found nitrogenous disinfection by‐product (N‐DBP)‐DCAcAm, which has the potential to form DCAA, was easier to remove than DCAA by UV/H2O2 and UV/H2O2/micro‐aeration processes. Finally, a preliminary cost comparison revealed that the UV/H2O2/micro‐aeration process was more cost‐effective than the UV/H2O2 process in the removal of DCAA from drinking water.  相似文献   

8.
Five‐step sequential extractions were employed to fractionation of Ni, Cr and Cu in soil polluted by anthropogenic activities and determine the mobility of the metals. Twelve samples were collected on an agricultural area that was located near an airport and intercity roads in Elazig‐Turkey. Exchangeable, organically bounded, carbonate bounded, adsorbed species on Fe and Mn oxides and residual species (except silicates) of Ni, Cr and Cu were extracted into solution by using CaCl2, Na4P2O7, Na2EDTA, NH2OH–HCl and HNO3–H2O2, respectively. Mobile metal concentrations in fractions and total recoverable in soils were determined by using inductively coupled plasma‐optical emission spectrometry (ICP‐OES). Total recoverable Ni, Cr and Cu concentrations were in the range of 40–119, 45–126 and 23–72 mg kg?1, respectively. It was observed that total concentrations of metals in some of the samples were higher than the permitted values. The sum of the mobile percentages of metals was found to be lower than 50%. The Ni, Cr and Cu percentages for exchangeable species are in the ranges of 0.18–1.64, 0.03–0.59 and 0.42–2.53%, respectively.  相似文献   

9.
Fenton process was investigated for the purpose of biological sludge disintegration. The Box–Wilson experimental design was employed to evaluate the effects of major process variables (Fe(II) and H2O2 concentrations) on both disintegration and dewatering performance of sludge. Results showed that 4 g Fe(II)/kg total solids (TSs) and 60 g H2O2/kg TS are efficient for floc disintegration. Fenton pre‐treatment enhanced the biodegradability of sludge. For 4 g Fe(II)/kg TS and 60 g H2O2/kg TS, 19.4% higher methane production was achieved compared to raw sludge in biochemical methane potential assay. Fenton pre‐treatment resulted in the release of organic sludge components into the liquid phase. For 4 g Fe(II)/kg TS and 60 g H2O2/kg TS, dissolved organic carbon and total nitrogen in sludge's supernatant increased by 75.74 and 60.60%, respectively. Fenton pre‐treatment enhanced the filterability of sludge and it can be applied for conditioning purpose before mechanical dewatering units.  相似文献   

10.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

11.
(Fe4Cr4Ni)9C4 is a metal carbide mineral formed by combination of Fe, Cr and Ni with C. It occurs in a chromite deposit in the Luobusha ophiolite, Tibet. Based on the determination of its crystal structure, the empirical formula is (Fe4.12Cr3.84Ni0.96)8.92C3.70 and the simplified formula is (Fe4Cr4Ni)4C9. The mineral is hexagonal with a = 1.38392(2) nm, c = 0.44690(9) nm, pace group P63 m c, Z=6 and the calculated specific gravity Dx = 7.089 g/cm3. Fe, Cr and Ni occupy different crystallographic sites and their coordination numbers are approximately 12, forming an alternate stacking sequence of flat and puckered layers along the c axis. Some metallic atoms have a defect structure. The interatomic distances of Fe, Cr and Ni are 0.2525-0.2666 nm, and the distances between Fe, Cr, Ni and C are 0.1893-0.2169 nm. The coordination number of carbon is 6. It occurs in interstices of the metallic atoms Fe, Cr and Ni to form trigonalprismatically coordinated polyhedra. These coordination polyhedra are linked with each other via shared corners or shared edges into a new type of metal carbide structure.  相似文献   

12.
In the present study, effects of operational parameters on the electrical energy consumption for photooxidative process (UV/H2O2) for the decolorization of C. I. Acid Red 88 (AR88) have been investigated. In a series of experiments, 20 mg L?1 of AR88 solution were irradiated in the presence of different concentrations of H2O2 (to find out optimum amount of H2O2) by UV light intensity of 30 W m?2 for certain irradiation times. The decolorization of the dye followed pseudo first‐order kinetics, and hence, the figure‐of‐merit electrical energy per order (EEO) is appropriate for estimating the electrical energy efficiency. The electrical energy consumption was determined during the variation of some parameters such as initial H2O2 concentration, initial dye concentration, UV light intensity, pH, and the gap size of solution. Results showed that electrical energy could be reduced by optimizing operational parameters.  相似文献   

13.
The UV/H2O2 is one of the popular techniques in the advanced oxidation processes (AOPs) and has been applied in the wastewater treatment during recent two decades. UV exposure on the H2O2 generate highly reactive hydroxyl radicals (OH?), which are used to degrade organic contaminants through oxidation processes in wastewater. This present study involves the estimation of hydroxyl radical rate constants of methyldiethanolamine (MDEA) mineralization at different temperatures by using UV/H2O2 in aqueous solution. Laboratory experiments have been conducted and the profile of MDEA mineralization has been established. The hydroxyl radical rate constants and the activation energy of mineralization process have been calculated. The estimated hydroxyl rate constants and the activation energy are in good agreement with those reported in the literature.  相似文献   

14.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

15.
The oxidation of organophosphorus pesticides (OPPs), such as malathion and parathion, in aqueous solution was studied using conventional ozonation (O3), photolytic ozonation (O3/UV, O3/UV/H2O2), and heterogeneous catalytic ozonation (O3/TiO2/UV) processes. Experiments were performed in batch mode at laboratory scale and processes were compared in terms of disappearance kinetics. The best results of pesticide mineralization were obtained when TiO2 particles in combination with ozone (O3) and UV photolysis (λ = 254 nm) were applied. Decomposition of 99% of parent compounds were achieved in 10 min and oxon derivatives were completely removed in 30 min. The initial reaction rate increases linearly with increasing catalyst amount. Toxicity measurements of the treated solutions were carried out in order to evaluate the efficiency of the treatment methods. No detoxification was achieved for O3 and O3/UV applications. Heterogeneous photocatalytic ozonation was shown to be feasible for achieving complete decomposition of OPPs and their oxon intermediates.  相似文献   

16.
In the present study, the effects of initial COD (chemical oxygen demand), initial pH, Fe2+/H2O2 molar ratio and UV contact time on COD removal from medium density fiberboard (MDF) wastewater using photo‐assisted Fenton oxidation treatment were investigated. In order to optimize the removal efficiency, batch operations were carried out. The influence of the aforementioned parameters on COD removal efficiency was studied using response surface methodology (RSM). The optimal conditions for maximum COD removal efficiency from MDF wastewater under experimental conditions were obtained at initial COD of 4000 mg/L, Fe2+/H2O2 molar ratio of 0.11, initial solution pH of 6.5 and UV contact time of 70 min. The obtained results for maximum COD removal efficiency of 96% revealed that photo‐assisted Fenton oxidation is very effective for treating MDF wastewater.  相似文献   

17.
Bezafibrate (BZF), a widely used lipid regulator, is a potential threat to ecosystems and human health in water, and the recent research showed that advanced oxidation processes (AOPs) are much more effective for BZF degradation. In this study, we investigated the photochemical decomposition of BZF in surface water and effluent from waste water treatment plants (WWTP) by UV/H2O2 process. The results showed that the UV/H2O2 process was a promising method to remove BZF at low concentration, generally at µg L?1 level. When initial concentrations reach 100 µg L?1 in the deionized water, >99.8% of BZF could be removed in 16 min under UV intensity of 61.4 µm cm?2, at the H2O2 concentration of 0.1 mg L?1, and neutral pH condition. Moreover, BZF degradation was inhibited in this process when humic acid (HA) and inorganic solution anions were added to the deionized water solutions, including chloride, nitrate, bicarbonate, and sulfate, significantly. In the surface water and effluent of WWTP, however, the removal efficiency of BZF was lower than that in the deionized water because of the interference of complex constituents in the surface water and effluent. Some main intermediates at the m/z range of 100–400 were observed by high performance LC‐MS (HPLC/MS) and a simple pathway of BZF degradation by UV/H2O2 was proposed.  相似文献   

18.
The X-ray fluorescence analysis is an important means for the determination of the heavy metal concentrations in sewage sludges and for the evaluation of their usability in agriculture. Analysis devices from the GDR were used for that. For the investigations there was used as the zero sample a sludge which was not loaded with heavy metals, homogeneous and constantly dried at 105 °C. The drying bed sludge samples were treated with different heavy metal solutions with different concentrations. Preparation of samples, measuring conditions and general spectra are described. The measuring results of tests up to 100 g heavy metal in 1 kg dry substance are critically evaluated. The analysis of a sewer sludge sample takes only about ten minutes. There are determined: Cr, Ni, Cu, Zn, Mo, Cd, Hg and Pb.  相似文献   

19.
This study examined the UV/H2O2 decolorization efficiency under high UV photon flux (intensity normalized by photon energy) irradiation; the incident UV was ranging from 3.13 × 10?8 to 3.13 × 10?6 einstein cm?2 s?1. The experimental results showed that complete decolorization of 20 mg L?1 methylene blue (MB) can be achieved within 5 s and 99% decolorization of 1000 mg L?1 MB can be achieved in 180 s under the best condition of high UV intensity UV/H2O2 process. To the best of our knowledge, UV/H2O2 decolorization process in such a short time has not been reported. The electrical energy per order of the process was 16.21 kWh m?3 order?1 and it is relatively economical compared with other advanced oxidation processes. The kinetics of decolorization follows pseudo‐first order. There is a linear relationship between rate constant and UV intensity, which indicates that increasing UV intensity does not cause decline in light utilization efficiency. The experiment related to initial substrate concentration shows decolorization rate of different substrate concentration (20–1000 mg L?1) are closed to each other. Besides, optimal H2O2 concentration, comparative study with low photon flux light, decolorization of other types of dyes and TOC removal were also studied.  相似文献   

20.
Toxic effects of five commonly used pesticides on the biomass of a municipal activated sludge system were determined on the basis of the reduction in the oxygen uptake rate (OUR) and specific oxygen uptake rate (SOUR). Toxicity levels of the selected pesticides were determined by employing a modified OECD 209 (Organisation for Economic Cooperation and Development) method which was performed as batch experiments using a respirometer. Copper sulphate (CuSO4 · 5 H2O), copper oxychloride (Cu2Cl(OH)3), copper calcium oxychloride (CaCu3Cl2(OH)6) as copper‐based pesticides and chlorsulphuron (C12H12ClN5O4S), 2,4‐dichlorophenoxyacetic acid (2,4‐D) (C8H6Cl2O3) as synthetic organic pesticides were selected for the experiments. The EC50 values were determined to be 78, 249 and 281 mg/L for CuSO4 · 5 H2O, Cu2Cl(OH)3 and CaCu3Cl2(OH)6, respectively. Corresponding values for C12H12ClN5O4S and 2,4‐D were 860 and 3664 mg/L, respectively. Results indicated that toxicity effects of copper‐based pesticides were higher than that of synthetic organic pesticides. CuSO4 · 5 H2O was found to exert the highest toxicity among the copper‐based pesticides, whereas, C12H12ClN5O4S was determined to be the most toxic among the organic pesticides on activated sludge biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号