首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
井下地电阻率观测影响系数分析——以江宁地震台为例   总被引:3,自引:2,他引:1  
樊晓春  解滔  吴帆  袁慎杰 《中国地震》2019,35(2):347-358
采用水平层状均匀介质中点电源位于任意深度时的电位解析表达式,以江宁台3层电性结构为例,分析了井下对称四极地电阻率观测时各层影响系数随深度、极距的变化,并结合探测深度探讨了实施井下观测时影响系数在选择供电极距和电极埋深时的作用。结果表明,对于"K"型电性结构,江宁台井下观测对地表、浅层干扰有较强的抑制作用,其短极距观测对地表、浅层干扰的抑制能力显著优于长极距观测;长极距观测在电极埋深H小于100m时对地表介质季节性的干扰具有放大作用;浅层影响系数一定时,电极埋深和供电极距需同时增加;江宁台井下观测供电极距AB/2取100~150m、电极埋深H为250m较为合理。  相似文献   

2.
赵斐  叶青  解滔  范晔  张远富 《中国地震》2018,34(1):104-111
根据地电阻率影响系数理论,以平凉台4层电性结构为例,分析了井下对称四极地电阻率观测影响系数随深度和极距的变化。结果表明:对于固定的观测极距,影响系数与电极埋深之间的关系复杂;通过计算各层影响系数的大小,认为平凉台井下观测对地表及浅层干扰有较好的抑制作用,其分析结果可为在类似台址电性结构中实施井下地电阻率观测时选择电极埋深和供电极距提供参考。  相似文献   

3.
井下地电阻率观测的探测深度初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
对井下地电阻率观测的探测深度进行了研究,计算了均匀半空间和给定结构参数的水平层状介质模型在不同装置电极埋深下的探测深度,分析了探测深度与装置电极埋深和介质电阻率结构之间的关系,得到如下结果:①与地表观测相比,在供电极距为1 km左右时,探测深度随装置电极埋深的增大而增大,且增大的速度与装置电极埋深密切相关;当装置电极埋深h < 100 m时,探测深度的增大速度远小于装置电极埋深h≥100 m时. ②当装置电极埋深h < 50 m时,与地表观测相比探测深度增加很小,不超过10 m;当装置电极埋深相同时,供电极距越大,与地表观测相比探测深度增加得越小. ③对于水平层状电阻率均匀分层结构,在装置电极埋深相同的情况下,下伏低阻结构的探测深度显著大于下伏高阻结构.本文的研究结果表明,为了观测到深部电阻率的变化情况,首先需要查明测区电性结构,再进行综合分析,以确定井下地电阻率观测的装置电极埋深,其结果为深部电阻率变化研究提供了理论基础.   相似文献   

4.
井下地电阻率观测中地表电流干扰影响计算   总被引:4,自引:0,他引:4  
本文把地电阻率台站地下介质简化为水平三层均匀介质模型,以点电流模拟地表干扰电流,针对对称四极观测装置,计算了在不同电性结构中的不同深度观测时,地表电流干扰源对对称四极装置地电阻率观测的影响,计算得到:地表干扰源对电阻率观测的影响取决于电性结构的类型和层参数、供电电极和测量电极的埋深以及避开干扰源的距离.本文研究结果对实施井下电阻率观测中台址电性结构的选择、电极埋深、干扰源避让距离等有参考意义.  相似文献   

5.
晋冀蒙交界及附近地区小极距井下地电阻率观测装置设计   总被引:1,自引:1,他引:0  
肖武军  解滔  张尧 《中国地震》2019,35(1):134-143
为提升2022年北京冬奥会期间地电阻率测项的震情保障能力,将对晋冀蒙交界及附近区域的宝昌、集宁、阳原、大同、代县、临汾、通州和平谷8个台站在原有观测基础上增加具有全空间性质的小极距井下地电阻率观测。本文根据台站钻孔岩芯剖面和电测深数据反演测区水平层状电性结构,利用介质对地电阻率观测的影响系数方法,计算影响系数随极距和埋深的变化,选择合适的极距和埋深,使浅层介质对地电阻率观测的影响尽可能小,使目标层位对观测的贡献尽可能大,减少浅层介质对观测的影响。由此得出了各台站观测极距及埋深等装置系数,在此基础上完成了8个台站观测装置的方案设计。  相似文献   

6.
为压制地电阻率浅层干扰、突出深部以地震预报为目的的有用信息,选取了小江断裂中段一个场点作为实例,研究了井下地电阻率前兆观测中确定电极埋深、电极间距等布极参数的方法。结果表明:选择井下电阻率观测布极参数时要考虑影响系数和探测深度2个主要因素,即地下潜水位面以上各地层的影响系数应远小于深部各层,探测深度范围内最底层(受孕震影响最大的层)的影响系数应远大于其它各层,观测系统的探测深度最好不小于已有震例指示的地电阻率观测系统的探测深度。按照该方法选择了所给场点的井下电阻率观测布极参数,即电极埋深200 m、供电极距1 050 m、测量极距350 m,按对称四极布置,可获得最佳观测效果。  相似文献   

7.
以平凉井下地电观测装置为例,采用有限元数值模拟的方法分析地电阻率观测装置布设与金属管线类干扰的关系。结果表明:(1)垂直于测线方向的金属管线对地电阻率观测的影响明显小于平行于测线方向的影响,最有效的抑制方法是增大金属管线的避让距离。(2)金属管线位于布极中心区域时,加深电极埋深并不一定能有效抑制干扰;对于金属管线垂直于测线方向的情况效果是显著的,但对于平行于测线方向的情况效果并不理想。(3)金属管线对井下地电阻率观测的影响是相对复杂的,它与装置系统(观测极距、电极埋深)、分层介质电性结构、金属管线自身的属性(电导率、横截面积、长度、距离)等因素有关。本研究方法可以快速判定资料异常变化的性质,对异常跟踪工作具有一定的参考意义,还可以为新建井下地电观测装置提供理论依据,从而提高台站的观测效能。  相似文献   

8.
在点电源水平两层均匀介质模型下计算了在不同地电断面中观测时地表干扰电流源对观测的影响。得到:地表干扰电流源对地电阻率观测电势差的影响取决于地电断面类型和参数、供电电极和测量电极的埋深以及避开干扰源的距离。本文研究结果对实施井下电阻率观测中台址电性结构选择、电极埋深、干扰源避让有参考意义。  相似文献   

9.
深埋电极的地电阻率观测研究   总被引:12,自引:3,他引:9       下载免费PDF全文
首先研究了四极观测系统装置系数与电极埋深的关系;然后给出了点电流源在3层地壳模型的地表和第二层时,电源所在层的电位的解析表达式;最后将天津宝坻地区的电性结构简化成一个3层模型,计算给出了当地表层和基岩中的电阻率出现变化时,在地表和基岩上层开展四极地电阻率观测结果与供电极距和深度的关系.  相似文献   

10.
以新城子观测站地电阻率为研究对象,结合新城子观测站电测深资料通过影响系数理论用水平层状介质模型对比分析地表、井下地电阻率两种手段的观测效果,对新城子地电阻率观测各层影响系数随深度和极距的变化分析新城子井下地电阻率观测布极的合理性。其结果反应为新城子地电阻率井下观测设计较为合理,减少场地资源的同时对地表和浅层干扰有更好的抑制作用,对深层的映震能力优于地表观测,分析结果可为类似台址电性结构中实施井下地电阻率观测提供参考。  相似文献   

11.
讨论了地电阻率观测装置系统深埋条件下的影响系数特征. 采用这类装置的目的在于减小甚至消除来自表层产生的干扰,以提取深部可能的地震信息. 采用水平层状介质模型,应用边界积分方程法计算了不同装置埋深、不同装置参数下的影响系数及其与结构参数间的关系. 结果表明,不同地层影响系数的大小与电阻率结构、电极埋深、供电极距有密切且复杂的关系. 这表明为了有效地压制表层干扰并观测到底层变化,首先需要精细地探查测区电性结构,然后在此基础上,通过理论分析确认装置埋深及选定装置参数.   相似文献   

12.
2020年7月12日唐山古冶 MS5.1地震发生前,井下小极距地电阻率出现快速下降-折返的变化,变化形态、异常时长符合地电阻率孕震机理变化,但下降幅度远远小于地表大极距地电阻率孕震过程的变化幅度.因此,文章基于通州台地下电性结构和装置系统,采用数值分析方法,分析地表和井下小极距地电阻率的探测深度.结果表明,当底层电性变化区域介质电阻率发生某种减小时,通州台地表和井下小极距地电阻率装置系统地电阻率观测值会下降,下降的幅度随着深部介质电阻率变化区域上界面向上的扩展而增大.相比地表观测,井下小极距电阻率观测能更显著地接收到深部电阻率变化信号,对孕震有更强的反映能力.  相似文献   

13.
基于对昌黎地电台地下介质的一维电性结构模型,分析了不同深层介质的响应系数、多极距布设方式及理论探测深度。结果表明:当MN分别取1/3 AB、1/4 AB、1/5 AB时,各层的响应系数变化趋势非常一致;据初始电性结构模型分析,4个不同深层中第3层的电阻率测值贡献率最高,达到70%,因此,在设计多极距观测布极时主要考虑第3层的贡献,该层的供电极距对取300~500m较合适,第3层最大贡献率为60%,当供电极距对不超过1 000m时,第4层贡献率仅为20%;根据不同深层介质响应系数分布情况和台站实际观测条件限制,多极距布设方式为5种,分别为1 000m、500(或400)m、400(或300)m、125m、30m。5种布极的理论探测深度在14~96m,此结果由昌黎台介质的电性结构所决定。  相似文献   

14.
偶极接地线对地电阻率影响的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
石富强  邵辉成  张国强  方炜 《地震学报》2014,36(6):1101-1112
针对我国地震监测预报中地电阻率定点连续观测中存在的偶极接地线的干扰问题, 本文将台站区域地层简化为3层均匀介质模型, 将接地线等效为偶极接地的电阻体, 建立了接地线干扰地电阻率观测的耦合物理模型. 通过有限元分析软件ANSYS模拟分析不同电性断面情况下接地线对地电阻率观测的影响, 同时分析这种干扰的产生机理, 并结合实际观测中存在的干扰问题作了对比验证分析. 结果表明: ① 接地线使得供电电极产生的地下对称性电场分布发生局部调整, 从而影响地电阻率观测; ② 接地线对地电阻率观测的影响主要取决于线缆的位置及方位角的大小; ③ 适当增大电极埋深可以减小其对地电阻率观测的影响; ④ 电性结构的差异性决定干扰变化幅度的大小. 本文结果对相关台站地电阻率观测异常分析落实及干扰源避让和观测系统改造具有参考意义.   相似文献   

15.
对平凉台井下地电阻率近几年的观测数据进行处理,通过测值的均方差和年变,对比不同深度地电阻率观测数据的特征,分析其变化规律。结果表明:井下地电阻率深层观测的抗干扰能力优于地表;地表观测和井下观测之间、不同深度的井下观测之间有一定的对应关系;随着电极埋深的变化,数据年变幅度有所不同。  相似文献   

16.
<正>近年由于城市化进程的加快和地表人为干扰的增多,部分大极距的地面地电观测受到了严重的影响,数据质量下降,中国地震局在部分有干扰的地电台站开展井下地电观测。主要解决:1井下多深可以避开地表的干扰和潜水的变化,观测数值主要反映地是探测目标层地电阻率变化;2当测量目标层介质的电性发生变化时,设计的观测系统能否记录下地电阻率变化。井下地电观测系统的建设主要思路:非均匀各向  相似文献   

17.
唐宝琳  朱涛  胡哲  周建国 《地震学报》2018,40(4):481-490
为了探究地表和井下观测的地电阻率值存在的明显差异,本文首先对江宁地电台电性结构进行了探测,并建立了水平层状电性结构模型;然后基于该模型计算了地表和井下观测装置的理论视电阻率值;最后对比分析计算值与观测值。结果表明,地表大供电极距观测装置和井下观测装置的观测值均可以由地下电性结构进行合理解释,即地表与井下观测值的差异是合理的,是由地下电性结构所决定的。   相似文献   

18.
开展小极距井下地电阻率观测的可行性分析   总被引:2,自引:2,他引:0  
解滔  于晨  卢军 《中国地震》2019,35(1):14-24
目前,我国用于地震监测的地电阻率观测面临着两个难题:①测区范围较大导致台网稀疏且分布不均匀;②易受环境干扰。本文结合台站实际的地下电性结构,采用地电阻率解析表达式和有限元数值分析方法,对开展小极距井下地电阻率观测的可行性进行了讨论。结果表明:小极距井下观测方式能有效抑制地表电性异常体类干扰和年变化的影响,也能记录到地表大极距观测和井下大极距观测所能记录到的震前异常变化。小极距井下观测能大幅减小布极区范围,有助于地电阻率的足密度组网成场观测,可为解决目前地电阻率观测面临的难题提供一种可选方案。  相似文献   

19.
采用有限元数值方法,计算了对称四极装置观测时测区介质对地电阻率观测的三维影响系数分布。计算结果表明,表层介质整体影响系数为正和为负时,表层介质各区域影响系数的分布形态相近,不同层状电性结构三维影响系数分布形态也相似。在地表二维平面,影响系数在供电电极和测量电极之间存在近似椭圆的负区域,其余区域影响系数为正。沿测线垂直剖面,影响系数在供电电极和测量电极之间存在近似半椭圆的负区域,其余区域影响系数为正。在三维空间上,观测系统布设于地表时影响系数为负的区域位于供电电极和测量电极间的近似半椭球区域,影响系数在靠近电极附近显著大于其余区域。在测区地表局部介质电阻率发生变化时,可依据影响系数分布定性地分析其对地电阻率观测的影响,为进一步实验和数值模型定量分析提供参考。  相似文献   

20.
随着经济建设的发展, 地电阻率定点观测区环境被干扰严重影响观测质量, 装置系统在地表布设的工作方式难以取得有效观测和持续发展, 因此装置系统向井下深部布设受到人们关注。 同时, 地表大极距观测方式难以持续发展, 也促使地电阻率定点观测向井下小极距观测方式发展。 井下小极距观测相比地表大极距观测占地面积小, 能较好地排除或减弱地表测区环境干扰对观测结果的影响, 既能适应经济发展的需要, 又能较好地为地震监测服务。 2018年, 在总结已建井下地电阻率台站布极方式和建设工艺的基础上, 新建延庆台井下小极距地电阻率观测。 本文重点分析了延庆台井下小极距地电阻率观测装置系统建设中的几个关键问题, 如水平向和垂直向观测相结合、 布极方式、 电极制作和埋设深度等装置系统技术过程, 以及水平向和垂直向观测装置系数的计算等。 延庆台建设较好地获得了近全空间观测布设, 从理论上解决了井下小极距地电阻率建设的难点, 为将来要进行井下小极距地电阻率观测装置系统建设的台站提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号