首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Origin of Li-F-rich granite: Evidence from high P-T experiments   总被引:2,自引:0,他引:2  
In South China and some regions around the world, there is a special type of rocks. These rocks are usually ultra-acidic, peraluminous, rich in Na and volatile components, such as H2O, F, B and P, and with higher concentrations of lithophile rare metal elements, including Li, Rb, Cs, Be, Ta, Nb, Sn, W, etc. Rocks of this type are commonly called Li-F-rich, rare-metal bearing granitic rocks, or Li-F granites for short[1]. The economic importance and distinct forma-tion mechanism of Li-…  相似文献   

2.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

3.
Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.  相似文献   

4.
The Jurassic Shir‐Kuh granitoid batholith in Central Iran intrudes Lower Jurassic sandstones and shales. The batholith consists of three main facies: (i) a granodioritic facies to the north; (ii) a monzogranitic facies spread throughout the batholith; and (iii) a leucogranitic facies along the northwestern margin. The granodiorites are composed mainly of plagioclase, quartz, K‐feldspar, biotite, and some muscovite, garnet, cordierite, ilmenite, zircon, apatite, and monazite. This facies contains variable amounts of restite minerals which are mainly defined by calcic plagioclase cores and small aggregates of biotite. The monzogranites, with mineral assemblages similar to those in the granodiorites, range from relatively mafic (cordierite‐bearing) to felsic (muscovite‐rich) rocks. The leucogranites, exposed as small stock and dykes, consist mainly of quartz, K‐feldspar, and sodic plagioclase. The batholith is peraluminous, calc‐alkaline, and typical of S‐type, as indicated by Na2O content (2.74%), molecular Al2O3/(CaO + Na2O + K2O) (A/CNK) ratio (1.17), K2O/Na2O ratio (1.39), and isotopic data ([87Sr/86Sr]i = 0.715). The rocks are characterized by enrichment in large ion lithophile elements such as Rb, Th and K and depletion in high field strength elements such as Nb and Ti. Chondrite‐normalized rare earth element (REE) patterns are characterized by light rare earth element (LREE) enrichment, with values of (La/Yb)N between 4.5 and 19.53, unfractionated heavy rare earth element (HREE) with values of (Gd/Yb)N between 0.98 and 2.88, and a distinct negative Eu. The parental magma of the Shir‐Kuh Granite was derived from a plagioclase‐rich metasedimentary source (local anatexis of metagreywacke) in the crust, with heat input from mantle melt components. The separation of restite crystals from the primary melt followed by the fractional crystallization appears to have been an effective differentiation process in the batholith.  相似文献   

5.
The Mt Somers Volcanics are part of a suite of mid-Cretaceous (89 ± 2 Ma) intermediate to silicic volcanics, erupted onto an eroded surface of Torlesse sediments. Rock types vary from basaltic andesite to high-silica rhyolite. Andesites are medium- to high-K with phenocrysts of plagioclase, orthopyroxene and pigeonite. Dacites are peraluminous and commonly contain granulite facies xenoliths and garnet xenocrysts. Equilibrium mineral assemblages indicate metamorphic pressures of close to 6 kbar at 800°C. Rhyolites are peraluminous with phenocrysts of quartz, sanidine, plagioclase, biotite, garnet and orthopyroxene. The ferromagnesian phases show textural evidence of magmatic crystallization and are chemically distinct from xenocryst phases in dacites. Equilibrium assemblages indicate that early magmatic crystallization occurred at close to 7 kbar (20 km depth) at above 850°C, with melt-water contents of less than 3.5%. Major-element contents, trace-element contents and an initial 87Sr/86Sr ratio of 0.7085 indicate that the rhyolites formed by partial melting of dominantly quartzo-feldspathic Torlesse sediments, leaving a granulite-facies residue. The chemical variation displayed by the rhyolites is best explained by fractional crystallization of the observed high-pressure phenocryst assemblage. Most elements show a compositional gap between rhyolite and dacite. The major-element, trace-element and Sr isotope compositions of the intermediate lavas are best explained by assimilation of lower crustal material combined with fractional crystallization in mantle-derived tholeiitic magmas. Magmatism was the result of heat and magma flux from the mantle, during the change from compressive to extensional tectonics after the culmination of the Rangitata Orogeny.  相似文献   

6.
40Ar/39Ar dating experiments on several coexisting minerals from two close-by leucogranite outcrops near Lhotse Nup glacier (Nepal Himalaya) reveal a complex behaviour. Four biotite and muscovite ages cluster around 15.5 Ma, a lower value than literature Rb/Sr ages on splits of the same four micas, suggesting a discrepancy with the ideal cooling age sequence observed in the Alps.A strongly discordant Ar-Ar spectrum on tourmaline does not allow a chronological interpretation.A potassium feldspar shows a slow-cooling staircase spectrum with a superimposed saddle diagnostic of excess Ar. HF leaching removed excess Ar but caused great perturbations to the minimum step ages, isochron plots, and the release of reactor-produced Ar isotopes. The present data require that the currently fashionable interpretations of feldspar systematics be radically changed.The main chronological conclusions rely on the eight mica ages. Their decrease from 18.2 to 15.3 Ma dates the cooling of the Lhotse Nup leucogranite.  相似文献   

7.
The Himalayan leucogranite occurs as two extensive (>1000 km) E-W trending belts on the Tibetan Plateau with the unique features. The leucogranite comprised biotite granite, two-mica/muscovite granite, tourmaline granite and garnet granite, which have been identified in previous studies, as well as albite granite and granitic pegmatite that were identified in this investigation. Fifteen leucogranite plutons were studied and 12 were found to contain rare-metal bearing minerals such as beryl (the representative of Be mineralization), columbite-group minerals, tapiolite, pyrochlore-microlite, fergusonite, Nb-Ta rutile (the representative of Nb-Ta mineralization), and cassiterite (the representative of Sn mineralization) mainly based on the field trip, microscope observation and microprobe analysis. The preliminary result shows that the Himalayan leucogranite is commonly related to the rare-metal mineralization and warrants future investigation. Further exploration and intensive research work is important in determining the rare-metal resource potential of this area.  相似文献   

8.
The annular (6–8 km diameter) Golda Zuelva and Mboutou anorogenic complexes of North Cameroun are composed of a suite of alkaline plutonic rocks ranging from olivine gabbro to amphibole and biotite granite. For the Mboutou complex there are two overlapping centres. In the Golda Zuelva complex the plutonic rocks are associated with a later hawaiite to rhyolite volcanic suite. A Rb/Sr whole rock isochron gives an age of 66±3 Ma for the Golda Zuelva granites, with initial87Sr/86Sr ratio of 0.7020, and demonstrates that plutonism and volcanism were essentially contemporaneous and probably cogenetic. For Golda Zuelva and the north Mboutou centre18O/16O (5.6–6.2),87Sr/86Sr (0.7030–0.7045) and Pb isotopic ratios (207Pb/204Pb: 15.60–15.64) support a mantle origin for the initial magmas. Unlike Sr isotopes, the O isotopic ratios of the granitic end members at Golda Zuelva (~7.5) indicate crustal contamination. Post-magmatic alteration was not significant.For the younger south Mboutou centre the O-, Sr- and Pb-isotopic data indicate more extensive magma-crust interaction and in a different (higher level?) crustal environment with δ18O granite=3.3‰,87Sr/86Sr ratios up to 0.706 and Pb isotopic ratios more markedly displaced from the oceanic volcanic field. The low-18O granites probably record, at least in part, a magmatic process with subsequent minor post-magmatic alteration effects. The major and trace element systematics between the north and south Mboutou centres are directly comparable. The evolution of the magmas were dominated by fractional crystallisation and progressive crustal contamination processes.  相似文献   

9.
 This work presents the results of a microthermometric and EPMA-SIMS study of melt inclusions in phenocrysts of rocks of the shoshonitic eruptive complex of Vulcano (Aeolian Islands, Italy). Different primitive magmas related to two different evolutionary series, an older one (50–25 ka) and a younger one (15 ka to 1890 A.D.), were identified as melt inclusions in olivine Fo88–91 crystals. Both are characterized by high Ca/Al ratio and present very similar Rb/Sr, B/Be and patterns of trace elements, with Nb and Ti anomalies typical of a subduction zone. The two basalts present the same temperature of crystallization (1180±20  °C) and similar volatile abundances. The H2O, S and Cl contents are relatively high, whereas magmatic CO2 concentrations are very low, probably due to CO2 loss before low-pressure crystallization and entrapment of melt inclusions. The mineral chemistry of the basaltic assemblages and the high Ca/Al ratio of melt inclusions indicate an origin from a depleted, metasomatized clinopyroxene-rich peridotitic mantle. The younger primitive melt is characterized with respect to the older one by higher K2O and incompatible element abundances, by lower Zr/Nb and La/Nb, and by higher Ba/Rb and LREE enrichment. A different degree of partial melting of the same source can explain the chemical differences between the two magmas. However, some anomalies in Sr, Rb and K contents suggest either a slightly different source for the two magmas or differing extents of crustal contamination. Low-pressure degassing and cooling of the basaltic magmas produce shoshonitic liquids. The melt inclusions indicate evolutionary paths via fractional crystallization, leading to trachytic compositions during the older activity and to rhyolitic compositions during the recent one. The bulk-rock compositions record a more complex history than do the melt inclusions, due to the syneruptive mixing processes commonly affecting the magmas erupted at Vulcano. The composition and temperature data on melt inclusions suggest that in the older period of activity several shallow magmatic reservoirs existed; in the younger one a relatively homogeneous feeding system is active. The shallow magmatic reservoir feeding the recent eruptive activity probably has a vertical configuration, with basaltic magma in the deeper zones and differentiated magmas in shallower, low-volume, dike-like reservoirs. Received: 11 March 1998 / Accepted: 14 July 1998  相似文献   

10.
The U-Th-~(40)K concentrations of granite are on 1―2 orders of magnitude greater than those of basal- tic-ultrabasic rocks. Radiogenic heat of a granitic melt has significant influence on the cool- ing-crystallization period of the melt. In this paper we derived a formula to calculate prolongation period (tA) of cooling-crystallization of a granitic melt caused by radiogenic heat. Calculation using this for- mula and radioactive element concentrations (U=5.31×10-6; Th=23.1×10-6; K=4.55%) for the biotite adamellite of the Jinjiling batholith shows that the tA of the adamellite is 1.4 times of the cooling period of the granitic melt without considering radiogenic heat from the initial temperature (Tm=960℃) to crystallization temperature (Tc=600℃) of the melt. It has been demonstrated that the radiogenic heat produced in a granitic melt is a key factor influencing the cooling-crystallization process of the granitic melt, and is likely one of the reasons for inconsistence between emplacement ages and crystallization ages of many Meso-Cenozoic granitoids.  相似文献   

11.
The Tiefosi granitic pluton is located 5 km northwest of Xinyang City,northern Dabie Orogen,and was emplaced in the Proterozoic Qinling Group. SHRIMP zircon U-Pb dating suggests its crystallization at 436 ± 11 Ma. It is composed of monzogranite and syenogranite containing some amounts of muscovite and few mafic minerals. The rocks are characterized by high and restricted SiO2 content,low FeO,Fe2O3 and MgO contents,high K2O/Na2O ratio,and display high-K calc-alkaline and peraluminous (ACNK>1.1) characteristics. They are generally enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). They can be divided into three groups in light of rare earth elements (REE) and trace elements. Group I is moderate in ΣREE and characterized by the absence of Eu anom-aly,high (La/Yb)N ratio,and moderate Rb/Sr and Rb/Ba ratios. Group Ⅱ has moderately negative Eu anomaly,low (La/Yb)N ratio and high ΣREE contents,Rb/Sr and Rb/Ba ratios. Group Ⅲ displays positive Eu anomaly,moderate (La/Yb)N ratio,and low ΣREE,Rb/Sr and Rb/Ba ratios. The calculated εNd(440Ma) values of the rocks vary from 8.8 to 9.9 and Nd depleted mantle model ages are about 2.0 Ga,which resemble those of the paragneisses from the Qinling Group. The results indicate that the Tiefosi granite is crust-derived,syn-collisional S-type granite. Generation of Group I was related to low degree melting of the Qinling Group,while Group Ⅱ was formed by fractionational crystallization of plagioclase from Group I magmas,and Group Ⅲ resulted possibly from magma mingling with plagioclase cumulates. The Tiefosi granite was formed within crustal level related to the collision between the North China and South China blocks in the Early Paleozoic time.  相似文献   

12.
The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian (224.8±1.6 Ma). The granite is enriched in SiO2 and K2O and low in CaO and Na2O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies (δEu =0.08–0.17). All samples show enrichment of LILEs (Cs, Rb and K) and HFSEs (U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures (T zr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite (764°C). The granite has negative ? Nd(t) and ? Hf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The T DM C (Nd) and T DM C (Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the ? Hf(t) values of ?6.7–?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the ? Hf(t) and T DM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic arc magmatic rocks in the eastern Jiangnan orogenic belt. Therefore we inferred that Neoproterozoic arc magma might have been involved in the formation of the Daqiling granite, and that the Neoproterozoic arc magma belt and continent-arc collision belt between the Yangtze and Cathaysia Blocks might have extended westsouthward to Limu region. It is proposed that the underplating of mantle materials triggered by crustal extension and thinning resulted in partial melting of crustal materials to form the Daqiling granite in the late Indosinian under post-collisional tectonic setting.  相似文献   

13.
The Sr isotopic systematics in the weathering profiles of biotite granite and granite porphyry in southern Jiangxi Province were investigated. The results showed that during the chemical weathering of granites, remarked fractionation occurred between Rb and Sr. During the early stages of chemical weathering of granites, the released Sr/Si and Sr/Ca ratios are larger than those of the parent rocks, and the leaching rate of Sr is higher than those of Si, Ca, K, Rb, etc. Dynamic variations in relative weathering rates of the main Sr-contributing minerals led to fluctuation with time in87Sr/86Sr ratios of inherent and released Sr in the weathering crust of granite. Successive weathering of biotite, plagioclase and K-feldspar made87Sr/86Sr ratios in the weathering residues show such a fluctuation trend as to decrease first, increase, and then decrease again till they maintain stable. This work further indicates that when Sr isotopes are used to trace biogeochemical processes on both the catchment and global scales, one must seriously take account of the preferential release of Sr from dissolving solid phase and the fluctuation of87Sr/86Sr ratios caused by the variations of relative weathering rates of Sr-contributing minerals.  相似文献   

14.
The Mawat ophiolite is part of the Mesozoic Neo‐Tethyan ophiolite belt of the Middle East and is located in the Zagros Imbricate Zone of Iraq. It represents fossil fragments of the Neo‐Tethyan oceanic lithosphere within the Alpine collisional system between the Arabian and Eurasia Plates. The first U–Pb zircon dating of the Daraban leucogranite from the Mawat ophiolite provides a 207Pb–206Pb age of 96.8 ± 6.0 Ma. The age is 59.0 ± 6.0 m.y. older than the previously published age of the Daraban leucogranite obtained by 40Ar–39Ar muscovite dating method. The U–Pb dating of magmatic zircons collected from the Daraban leucogranite, which intrudes into the Mawat ophiolite, reveals that melting of the pelagic sediment beneath the hot Zagros proto‐ophiolite in an intra‐oceanic arc environment led to anatexis at the subduction front and the generation of granitic melts at 96.8 ± 6.0 Ma, which were emplaced in the overlaying mantle wedge. This process was a response to the initial formation of the Neo‐Tethys ophiolite above a northeast‐dipping intra‐oceanic subduction zone at 96.8 ± 6.0 Ma. Published 40Ar–39Ar muscovite dating from the same leucogranite dike yields plateau ages of 37.7 ± 0.3 Ma, reflecting that the age was reset during the Arabia–Eurasia continental collision. Therefore, the bimodal age populations from the granitic intrusion in the Mawat ophiolite preserve a record of the subduction to the collision cycle of the Zagros Orogenic Belt. The 59.0 ± 6.0 m.y. age difference from the Daraban leucogranite represents the duration of the subduction‐collision cycle of the Zagros Orogenic Belt in the Kurdistan region of Iraq and the time span for the closure of the Neo‐Tethys Ocean along the northern margin of the Arabian plate.  相似文献   

15.
The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al2O3/(CaO + Na2O + K2O)] ~ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu)N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.  相似文献   

16.
Examples of positive correlations between initial 87Sr/86Sr and δ18O have now been shown to be very common in igneous rock series. These data in general require some type of mixing of mantle-derived igneous rocks with high-18O, high-87Sr crustal metamorphic rocks that once resided on or near the Earth's surface, such as sedimentary rocks or hydrothermally altered volcanic rocks. Mixing that involves assimilation of country rocks by magmas, however, is not a simple two-end-member process; heat balance requires appreciable crystallization of cumulates. In such cases, the isotopic compositions may strongly reflect this open-system behavior and indicate the process of assimilation, whereas the major element chemical compositions of the contaminated magmas will be largely controlled by crystal-melt equilibria and crystallization paths fixed by multicomponent cotectics. A variety of oxygen and strontium isotope “mixing” curves were therefore calculated for this process of combined assimilation-fractional crystallization. The positions and characteristics of the resultant curves on δ18O-87Sr/86Sr diagrams markedly diverge from simple two end-member mixing relationships. Based on the above, model calculations can be crudely fitted to two igneous rock suites (Adamello and Roccamonfina in Italy), but the shapes of the calculated curves appear to rule out magmatic assimilation as an explanation for most δ18O-87Sr/86Sr correlations discovered so far, including all of those involving calc-alkaline granitic batholiths and andesitic volcanic rocks. The isotopic relationships in such magma types must be inherited from their source regions, presumably reflecting patterns that existed in the parent rocks (or magmas) prior to or during melting.  相似文献   

17.
The onset of double diffusion convection (DDC) is modeled in a two-dimensional case in respect to magma chambers. The viscosity model for the melt takes into account the effects of temperature and concentration of the dissolved component (H2O). The upper boundary of the convecting magma chamber is assumed to be anhydrous and at constant temperature, whereas the lower boundary is treated as being hydrous permeable with a temperature greater than that within the upper boundary. The case of positive compositional and thermal buoyancy of melt is studied assuming a H2O diffusion coefficient small in comparison with thermal diffusivity. The DDC has been modeled using a system of equations solved by the finite difference method on a square grid. The convective pattern evolution has been studied for fixed boundary conditions as well as for cooling and degassing. Due to the higher viscosity in the upper zone, the upper boundary layer is thicker than the lower one. The variation of water concentration in this zone of the convective cell can be significant. In nature, the high gradient of water concentration can be responsible for the observed variations of water content in minerals crystallized from a granite melt (e.g., biotite). Because of a high Lewis number (= 100), temperature variations in the magma chamber decay much faster than the water concentration. In this case the intensive convection can continue at a constant temperature due to the non-zero water content in the chamber. In principle, the effect can be applied to the formation of magmatic bodies. If the cooling and degassing system reaches a uniform temperature distribution prior to the crystallization temperature, water content throughout the body may still remain variable.  相似文献   

18.
The Permian–Triassic high pressure metamorphism and potassic magmatism in central Korea attest to the extension of the Dabie‐Sulu collision belt in central‐eastern China towards the Korean Peninsula and possibly the Japanese Islands. We present major and trace element and Sr–Nd isotope data for a ca. 230 Ma monzodiorite pluton emplaced in the Goesan area, central Okcheon belt, Korea. This pluton shows geochemical features comparable with those of the coeval monzonite–syenite–gabbro–mangerite suite documented recently in the Gyeonggi massif. The metaluminous and alkali–calcic signatures of the Goesan intrusives correspond to the Caledonian‐type post‐orogenic granitoids. The K2O/Na2O ratios of all analyzed samples are greater than 1, and are not correlative with their SiO2 contents. The enrichment of both large‐ion‐lithophile elements and highly compatible elements in the Goesan pluton is probably indicative of metasomatized mantle origin. The elemental fractionation in the source region must have occurred in the distant past, possibly the Paleoproterozoic, to generate significantly negative εNd(t) values (< –16). Chondrite‐normalized rare earth element patterns as well as Rb/Sr and Ba/Rb ranges suggest that the source consists of amphibole‐bearing rocks. Progressive decreases in negative Eu anomaly and Ba, Sr, Ni, Cr and V contents with increasing SiO2 contents reflect an important role of plagioclase, biotite and hornblende for the fractionation process. Zr is undersaturated in the potassic, metaluminous melt. The initial Sr–Nd isotopic compositions of the samples are correlated with their SiO2 contents, substantiating a role of crustal assimilation during the magmatic differentiation. The Sr–Nd elemental and isotopic modeling suggests that the Goesan pluton was initially slightly heterogeneous in its isotopic composition, and underwent concurrent assimilation and fractional crystallization. The occurrence of the Goesan pluton provides further evidence corroborating the amalgamation of allochthonous terranes within the Okcheon belt during the Permian–Triassic collisional orogeny.  相似文献   

19.
Many granitic batholiths occur in the form of com-plexes, presented principally by a temporal-spacial association between two stages of intrusion, in the Nanling region. Compared with main intrusive gran-ites, late intrusive granites are characterized by fine- grained texture, Si- and Al-enriched composition, and small occurrence as stock or apophysis. On the basis of its rock chemistry (e.g., increasing aluminium saturation index) and geochemistry (e.g., Eu depletion, decreasing concentratio…  相似文献   

20.
The magmatic system feeding the last eruption of the volcano La Fossa, Vulcano Island, Italy was studied. The petrogenetic mechanisms controlling the differentiation of erupted rocks were investigated through petrography, mineral chemistry, major, trace and rare earth element and Sr, Nd and Pb isotopic geochemistry. In addition, melt inclusion and fluid inclusion data were collected on both juvenile material and xenolithic partially melted metamorphic clasts to quantify the P-T conditions of the magma chamber feeding the eruption. A regular and continuous chemical zoning has been highlighted: rhyolites are the first erupted products, followed by trachytes and latites, whereas rhyolitic compositions were also found in the upper part of the sequence. The chemical and isotopic composition of the rhyolites indicates that they originated by fractional crystallization from latitic magmas plus the assimilation of crustal material; the trachytes represent hybrid magmas resulting from the mixing of latites and rhyolites, contaminated in the shallow magmatic system. The erupted products, primarily compositionally zoned from latites to rhyolites, are heterogeneous due to syn-eruptive mingling. The occurrence of magmacrust interaction processes, evidenced by isotopic variations (87Sr/86Sr=0.70474±3 to 0.70511±3; 143Nd/144Nd=0.512550±6 to 0.512614±8; 206Pb/204Pb=19.318–19.489; 207Pb/204Pb=15.642–15.782; 208Pb/204Pb=39.175–39.613), is confirmed by the presence of partially melted metamorphic xenoliths, with 87Sr/86Sr=0.71633±6 to 0.72505±2 and 143Nd/144Nd=0.51229±7, in rhyolites and trachytes. AFC calculations indicate a few percentage contribution of crustal material to the differentiating magmas. Thermometric measurements on melt inclusions indicate that the crystallization temperatures of the latites and trachytes were in the range of 1050–1100° C, whereas the temperature of the rhyolites appears to have been around 1000°C at the time of the eruption. Compositional data on melt inclusions reveal that the magmas involved in the eruption contained about 1–1.5 wt.% dissolved H2O in pre-eruptive conditions. Secondary fluid inclusions found in metamorphic xenoliths give low equilibration pressure data (30–60 MPa), giving the location of the higher portions of the chamber at around 1500–2000 m of depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号