首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract We present chemical and Sr–Nd–Pb isotopic compositions of three Triassic (226–241 Ma) calc‐alkaline granitoids (the Yeongdeok granite, Yeonghae diorite and Cheongsong granodiorite) and basement rocks in the northern Gyeongsang basin, south‐eastern Korea. These plutons exhibit typical geochemical characteristics of I‐type granitoids generated in a continental magmatic arc. The Yeongdeok and Yeonghae plutons have similar initial Sr, Nd and Pb isotope ratios (87Sr/86Srinitial = 0.7041 ~ 0.7050, ?Nd(t) = 2.3 ~ 4.0, 206Pb/204Pbfeldspar = 18.22 ~ 18.34), but distinct rare earth element patterns, suggesting that the two plutons formed from partial melting of a similar source material at different depths. The Cheongsong pluton has slightly more enriched Sr–Nd–Pb isotopic compositions (87Sr/86Srinitial = 0.7047 ~ 0.7065, ?Nd(t) = 3.9 ~ 2.8, 206Pb/204Pbfeldspar = 18.24 ~ 18.37) than the other two plutons. The Nd model ages of the basement rocks (1.1 ~ 1.4 Ga) are slightly older than those of the plutons (0.6 ~ 1.0 Ga). The initial Sr and Nd isotopic ratios of the plutons can be modeled by the mixing between the mid‐oceanic ridge basalt‐like depleted mantle component and the crustal component represented by basement rocks, which is also supported by Pb isotope data. The Sr and Nd isotope data from granitoids and basement rocks suggest that the Gyeongsang basin, the Hida belt and the inner zone of south‐western Japan share relatively young basement histories (middle Proterozoic), compared with those (early Proterozoic to Archean) of the Gyeonggi and Yeongnam massifs and the Okcheon belt. The Nd isotope data of basement rocks suggest that the Hida belt might be better correlated with the basement of the Gyeongsang basin than the Gyeonggi massif, the Okcheon belt or the Yeongnam massif, although it may represent an older continental margin of East Asia than the Gyeongsang basin considering its slightly older Nd model ages.  相似文献   

2.
The Niyasar plutonic complex, one of the Cenozoic magmatic assemblages in the Urumieh‐Dokhtar magmatic belt, was the subject of detailed petrographic and mineralogical investigations. The Niyasar magmatic complex is composed of Eocene to Oligocene mafic rocks and Miocene granitoids. Eleven samples, representing the major rock units in the Niyasar magmatic complex and contact aureole were chosen for mineral chemical studies and for estimation of the pressure, temperature, and oxygen fugacity conditions of mineral crystallization during emplacement of various magmatic bodies. The analyzed samples are composed of varying proportions of quartz, plagioclase, K‐feldspar, hornblende, biotite, titanite, magnetite, apatite, zircon, garnet, and clinopyroxene. Application of the Al‐in‐hornblende barometer indicates pressures of around 0.2 to 0.4 kbar for the Eocene–Oligocene mafic bodies and around 0.5 to 1.7 kbar for the Miocene granitoids. Hornblende‐plagioclase thermometry yields relatively low temperatures (661–780 °C), which probably reflect late stage re‐equilibration of these minerals. The assemblage titanite–magnetite–quartz as well as hornblende composition were used to constrain the oxygen fugacity and H2O content during the crystallization of the parent magmas in the Miocene plutons. The results show that the Miocene granitoids crystallized from magmas with relatively high oxygen fugacity and high H2O content (~5 wt% H2O). The Miocene granitoids show similar range of oxygen fugacity, H2O contents and mineral chemical compositions, which indicate a common source for their magmas. Although the crystallization pressures of the Miocene plutons discriminate various categories of plutonic bodies emplaced at depths of about 5.7–6.5 km (Marfioun pluton), about 4.2 km (Ghalhar pluton) and 1.9–2.3 km (Poudalg pluton), they were later uplifted to the same level by vertical displacement of faults. The emplacement depths of the Niyasar plutons suggest that the central part of the Urumieh‐Dokhtar magmatic belt has experienced an uplift rate of ca. 0.25–0.4 mm/yr from the Miocene onwards.  相似文献   

3.
Mesozoic volcanic rocks are widespread throughout the Great Xing'an Range of northeastern China. However, there has been limited investigation into the age and petrogenesis of the Mesozoic volcanics in the eastern Great Xing'an Range. According to our research, the volcanic rocks of the Dayangshu Basin, eastern Great Xing'an Range are composed mainly of trachybasalt, basaltic andesite, and basaltic trachyandesite, with minor intermediate–basic pyroclastic rocks. In this study, the geochemistry and geochronology of the Mesozoic volcanic rocks are presented in order to discuss the petrogenesis and tectonic setting of the Ganhe Formation in the Dayangshu Basin. Zircon U–Pb dating by laser ablation inductively coupled plasma–mass spectrometry indicates that the Mesozoic lavas formed during the late Early Cretaceous (114.3–108.8 Ma). This suite of rocks exhibits a range of geochemical signatures indicating subduction‐related genesis, including: (i) calc‐alkaline to high‐K calc‐alkaline major element compositions; (ii) enrichment of large ion lithophile elements (e.g. Rb, Ba, K) and light rare earth elements (LREEs/HREEs =7.33–9.85); and (iii) weak depletion in high field strength elements (e.g. Nb, Ta, Ti). Furthermore, Sr–Nd–Pb isotopic data yield initial 87Sr/86Sr values of 0.70450–0.70463, positive εNd(t) values of +1.8 to +3.3, and a mantle‐derived lead isotope composition. Combined with the regional tectonic evolution, the results of this study suggest that the Ganhe Group lavas are derived from decompression melting of a metasomatized (enriched) lithospheric mantle, related to asthenospheric upwelling, which resulted from lithospheric mantle delamination and produced extension of the continental margin following the subduction of the Paleo‐Pacific Plate.  相似文献   

4.
This study presents new major and trace element, mineral, and Sr, Nd, and noble gas isotope geochemical analyses of basalts, gabbro, and clinopyroxenite from the Mariana Arc (Central Islands and Southern Seamount provinces) including the forearc, and the Mariana Trough (Central Graben and Spreading Ridge). Mantle source compositions beneath the Mariana Arc and the Mariana Trough indicate a mantle source that is depleted in high field strength elements relative to MORB (mid‐oceanic ridge basalt). Samples from the Mariana Arc, characterized by high ratios of Ba/Th, U/Th, 84Kr/4He and 132Xe/4He, are explained by addition of fluid from the subducted slab to the mantle wedge. Correlations of noble gas data, as well as large ion lithophile elements, indicate that heavy noble gases (Ar, Kr, and Xe) provide evidence for fluid fluxing into the mantle wedge. On the other hand, major elements and Sr, Nd, He, and Ne isotopic data of basalts from the Mariana Trough are geochemically indistinguishable from MORB. Correlations of 3He/4He and 40Ar/36Ar in the Mariana Trough samples are explained by mixing between MORB and atmosphere. One sample from the Central Graben indicates extreme enrichment in 20Ne/22Ne and 21Ne/22Ne, suggesting incorporation of solar‐type Ne in the magma source. Excess 129Xe is also observed in this sample suggesting primordial noble gases in the mantle source. The Mariana Trough basalts indicate that both fluid and sediment components contributed to the basalts, with slab‐derived fluids dominating beneath the Spreading Ridge, and that sediment melts, characterized by high La/Sm and relatively low U/Th and Zr/Nb, dominate in the source region of basalts from the Central Graben.  相似文献   

5.
Ian Metcalfe 《Island Arc》2016,25(2):126-136
Limestones exposed north of Raub, Pahang, Malaysia, and sandwiched between the Bentong‐Raub Suture Zone and the westernmost margin of the Sukhothai Arc terrane, yield a late Dienerian (late Induan) conodont fauna. The co‐occurrence of Neospathodus dieneri Sweet (morphotypes 1, 2 and 3) and Neospathodus pakistanensis Sweet represents the Neospathodus dieneri morphotype 3 sub‐zone of the Neospathodus dieneri Zone. The sampled limestones are interpreted as the northwards extension of the Jerus Limestone which crops out near Cheroh and Jerus villages, significantly extending the known outcrop of the Jerus Limestone northwards. The Jerus Limestone is interpreted as hemipelagic and formed in a foredeep or forearc setting on top of the accretionary complex formed by eastwards subduction of the Palaeo‐Tethys during the Lower to Middle Triassic.  相似文献   

6.
The Hakusan volcano, central Japan, is located in a region where two subducting plates (the Pacific Plate and the Philippine Sea Plate) overlap near the junction of four plates adjacent to the Japanese Islands (the Pacific Plate, the Philippine Sea Plate, the Eurasia Plate, and the North American Plate). The Hakusan volcano consists of products from four major volcanic episodes: Kagamuro, Ko‐hakusan, and Shin‐Hakusan I and II. To date the eruption events of the Hakusan volcano we applied thermoluminescence and fission track methods. 238U(234U)–230Th disequilibrium and 206Pb/238U methods were applied to date the zircon crystallization ages for estimating the magma residence time before the eruptions. The eruption ages we obtained are ca 250 ka for Kagamuro, ca 100 ka and ca 60 ka for Ko‐Hakusan, ca 50 ka for Shin‐Hakusan I, and <10 ka for Shin‐Hakusan II. They are concordant with previous reports based on K–Ar dating. Some of the pyroclastic rocks, possibly originating from Shin‐Hakusan II activities, are dated to be ca 36 ka or 50 ka, and belong to the Shin‐Hakusan I activity. The zircon crystallization ages show several clusters prior to eruption. The magma residence time was estimated for each volcanic activity by comparing the major crystallization events and eruption ages, and we found a gradual decrease from ca. 500 ky for the Kagamuro activity to ca. 5 ky for the Shin‐Hakusan II activity. This decrease in residence time may be responsible for the decrease in volume of erupted material estimated from the current topography of the region. The scale of volcanic activity, which was deduced from the number of crystallized zircons, is more or less constant throughout the Hakusan volcanic activity. Therefore, the decrease in magma residence time is most likely the result of stress field change.  相似文献   

7.
Basement rocks that occur along the northern margin of the South Kitakami Terrane in Japan consist of Ordovician ultramafic rocks (Hayachine ultramafic complex), gneissose amphibolite (Kuromoriyama amphibolite), and mafic rocks (Kagura igneous rocks, KIR). The KIR are composed of metagabbro, metadolerite, metabasalt, and minor felsic–intermediate dikes. Although the KIR contain green hornblende due to metamorphism of greenschist to epidote–amphibolite facies, they rarely retain primary brown hornblende. Approximately 30% of the metabasalt shows porphyritic textures, with phenocrysts of saussuritized plagioclase and/or altered mafic minerals. The geochemistry of the common metadolerite and metabasalt of the KIR shows a tholeiite trend, a low TiO2 content, and high Th/Nb and Ti/V ratios. The KIR are therefore indicative of a supra‐subduction zone tectonic setting, which implies a backarc origin (as also indicated by discrimination diagrams). Trace element patterns of the KIR resemble those of the backarc‐basin basalt of the Japan and Yamato basins in the Japan Sea. We propose that the KIR formed during backarc spreading from the Ordovician to Early Silurian. This view is supported by the geochemical data, the tectonic setting of the Hayachine ultramafic rocks, and the provenance of clastics within Silurian sedimentary rocks.  相似文献   

8.
The tectonic setting of the late mesozoic of South China is in a debate between two schools of thought: an intra‐continental rift zone along a passive continental margin or active rifting associated with subduction of the paleo‐Pacific Plate. In this study, we present new sensitive high‐resolution ion microprobe (SHRIMP) U‐Pb zircon ages, along with geochemical data of three basic dikes that cross‐cut the Dexing porphyry copper deposit. The deposit is the largest of its kind in eastern China and part of large scale mineralization associated with Mesozoic magmatic activity in the area. Our results indicate that the dikes were emplaced in the Late Jurassic with an average U‐Pb age of 153.5 ± 2.4 Ma. The intrusions have bulk εNd(t) of ca +0.7 and zircon εHf(t) value of +1.54 to +6.92. Based on relatively enriched light rare earth elements (LREE) and depleted high‐field‐strength elements (HFSE) abundances with pronounced negative Ta–Nb, Hf–Zr and Ti anomalies in multi‐element diagrams, we propose that these dikes were derived from a subduction‐modified lithospheric mantle source. The variability in Hf isotopes identifies some degree of crustal contaminations. Our data support a scenario with a back‐arc extensional setting or an intra‐arc rift environment associated with the westward subduction of the paleo‐Pacific Plate at or prior to the late Jurassic as the most likely cause for these subduction signatures.  相似文献   

9.
The Yongchun pluton is a Late Cretaceous adakitic intrusion in South Fujian Province, Southeast China, with associated metal mineralization. An understanding of the Yongchun pluton is helpful in tectono‐magmatic evolutionary processes, and is important in explaining the origin of related porphyry‐type deposits. Zircons from three samples of the pluton were analyzed by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS), yielding U–Pb ages of 99.50 ±0.87 Ma, 97.74 ±0.59 Ma, and 99.65 ±0.92 Ma. These ages are similar to those of the Sifang, Luoboling, and Sukeng plutons, all of which are related to Cu–Pb–Zn–Mo mineralization within the study area. The Yongchun pluton comprises high‐potassium, calc‐alkaline, metaluminous rocks, with average A/CNK values of 0.91, 87Sr/86Sr ratios of 0.705 51 to 0.706 83, εNd(t) values of ?4.63 to ?5.90, and two‐stage Nd model (T2DM) ages of 1.49–1.39 Ga, indicating the magmas were generated by partial melting of Mesoproterozoic continental crust mixed with mantle‐derived magmas. The pluton has geochemical characteristics typical of adakites, such as a high Sr content (average 553 ppm), and low Y (average 15.2 ppm) and Yb (average 1.61 ppm) contents, indicating that the parental magma was formed under high‐pressure conditions. The magmatism was associated with thickening of the lower crust during a change in subduction angle and convergence rate of the paleo‐Pacific Plate at 100 Ma. The compression was limited to South Fujian Province.  相似文献   

10.
The new result of SHRIMP U–Pb zircon dating of the Kinshozan Quartz Diorite from the Kanto Mountains, Japan, provides 281.5 ± 1.8 Ma. The age is 30 m.y. older than the available age of the Kinshozan Quartz Diorite obtained by hornblende K–Ar method. The new U–Pb zircon age represents the time of crystallization of the Kinshozan Quartz Diorite. The hornblende K–Ar age indicates the time that the Kinshozan Quartz Diorite cooled down to 500 °C which is the closure temperature of the systematics. Permian granites are found in small exposures in Japan, and frequently referred to as 250 Ma granites. The Kinshozan Quartz Diorite is considered as a type of the 250 Ma granites, and the age was influential in establishing a model of Paleozoic tectonic evolution for the Japanese Islands. The new age of the Kinshozan Quartz Diorite provides the opportunity to re‐examine the model. The Kinshozan Quartz Diorite and other Permian granites in the south of the Median Tectonic Line of Japan were constituents of the Paleo‐Ryoke Belt. The geochemical characteristics of the granitic rocks in the Paleo‐Ryoke Belt indicated that the granitic rocks were formed in a primitive island arc environment, and the new trace element data also support this interpretation. Examination of the available data and results of the present study suggests the late Paleozoic granitic activity in Japan as follows. At about 310–290 Ma, arc magmatism generated adakitic granites and other granites in the South Kitakami Belt. Quartz diorite and tonalites of primitive characteristic, such as the Kinshozan Quartz Diorite and granites in the Maizuru Belt appear to have been formed at the immature island arc, and accreted to the Japanese Islands at the end of Paleozoic or early Mesozoic era. During 260–240 Ma, granitic activity took place in the Hida and Maizuru Belts as a part of the Asian continent.  相似文献   

11.
The Indosinian Orogeny plays a significant role in tectonic background and magmatic evolution in Indochina and surrounding regions. Being a part product of the Indosinian magmatism in northwest Vietnam during late Permian–middle Triassic period, Muong Luan granitoid pluton dominantly consists of granodiorite, less diorite and granite. This pluton is located in the Song Ma suture and assigned to the Dien Bien complex. Geochemically, the Muong Luan granitoid rocks are characterized by a wide range of SiO2 contents (59.9–75.1 wt%) and high K2O contents. They display typical features of I‐type granites. The presence of hornblende and no muscovite and cordierite in the rocks further supports for I‐type character of granitoids. The emplacement age of the Muong Luan pluton obtained by LA–ICP–MS U–Pb zircon is at 242–235 Ma, corresponding to Indosinian time. Zircon εHf values of –5.6 to –10.4, in combination with moderate Mg values of 34–45 suggested that the Muong Luan granitoid was derived from partial melting of mafic crustal source rocks, which are probably Paleoproterozoic in age as revealed by Hf model ages (TDM2 = 1624–1923 Ma).  相似文献   

12.
Late Quaternary foraminifera assemblages have been examined in two sediment cores (MD179‐3296 and MD179‐3317) from cold seep areas in the eastern margin of the Japan Sea, off Joetsu, Niigata Prefecture. Foraminifera assemblages in core MD179‐3296, which was located at the center of a pockmark on the Umitake Spur, show no evidence of methane flux and, especially in its upper portion, share the same paleo‐environmental history as other free gas hydrate areas of the Japan Sea. In comparison, in the core MD179‐3317 at the center of a pockmark at Joetsu Knoll, foraminiferal distributions were strongly affected by methane activities and, in the main part of the core, were deposited under local conditions. Three horizons were identified in this core, which are characterized by the high abundance value of Thalmannammina parkerae and might be related to methane flux due to sea level fall especially through late marine isotope stage (MIS) 3 and MIS 2.  相似文献   

13.
Zircons from two samples of the Sukeng pluton in the southwest Fujian Province, China, were analyzed by LA–ICP–MS with the aim of determining the timing of formation. The zircons from the two samples yield similar U–Pb ages of 100.47 ± 0.42 and 102.46 ± 0.69 Ma, indicating that the Sufeng pluton is contemporaneous with the Sifang and Luoboling plutons, all of which are also related to Cu–Au–Pb–Zn–Mo mineralization within the study area. All three plutons have geochemical features of I‐type granites, are high‐ to mid‐K calc‐alkaline metaluminous rocks, and have average molar Al2O3/ (CaO+Na2O+K2O) values of 0.95, initial 87Sr/86Sr ratios of 0.70465–0.70841, εNd(t) values at 101 Ma from –1.72 to –7.26, and two‐stage Nd model ages (T2DM) from 1.16 to 1.60 Ga. Zircons within these plutons have εHf(t) values at 101 Ma from –3.5 to 6.25 and T2DM ages from 0.74 to 1.46 Ga, suggesting these I‐type granites formed from magmas generated by partial melting of Mesoproterozoic to Neoproterozoic continental crust that mixed with mantle‐derived magmas. The magmatism was associated with thickening of the lower crust caused by collisions between microcontinents in the Cathaysian Block, which were driven by Early Cretaceous subduction of the Pacific Plate.  相似文献   

14.
The Chilas Complex is a major lower crustal component of the Cretaceous Kohistan island arc and one of the largest exposed slices of arc magma chamber in the world. Covering more than 8000 km2, it reaches a current tectonic width of around 40 km. It was emplaced at 85 Ma during rifting of the arc soon after the collision of the arc with the Karakoram plate. Over 85% of the Complex comprises homogeneous, olivine‐free gabbronorite and subordinate orthopyroxene–quartz diorite association (MGNA), which contains bodies of up to 30 km2 of ultramafic–mafic–anorthositic association (UMAA) rocks. Primary cumulate textures, igneous layering, and sedimentary structures are well preserved in layered parts of the UMAA in spite of pervasive granulite facies metamorphism. Mineral analyses show that the UMAA is characterized by more magnesian and more aluminous pyroxene and more calcic plagioclase than those in the MGNA. High modal abundances of orthopyroxene, magnetite and ilmenite (in MGNA), general Mg–Fe–Al spatial variations, and an MFA plot of whole‐rock analyses suggest a calc‐alkaline origin for the Complex. Projection of the pyroxene compositions on the Wo–En–Fs face is akin to those of pyroxenes from island arcs gabbros. The presence of highly calcic plagioclase and hornblende in UMAA is indicative of hydrous parental arc magma. The complex may be a product of two‐stage partial melting of a rising mantle diaper. The MGNA rocks represent the earlier phase melting, whereas the UMAA magma resulted from the melting of the same source depleted by the extraction of the earlier melt phase. Some of the massive peridotites in the UMAA may either be cumulates or represent metasomatized and remobilized upper mantle. The Chilas Complex shows similarities with many other (supra)subduction‐related mafic–ultramafic complexes worldwide.  相似文献   

15.
Baotoudong syenite pluton is located to the east of Baotou City, Inner Mongolia, the westernmost part of the Triassic alkaline magmatic belt along the northern margin of the North China Craton(NCC). Zircon U-Pb age, petrological, mineralogical and geochemical data of the pluton were obtained in this paper, to constrain its origin and mantle source characteristics. The pluton is composed of nepheline-clinopyroxene syenite and alkali-feldspar syenite, with zircon U-Pb age of 214.7±1.1 Ma. Diopside(cores)-aegirine-augite(rims), biotite, orthoclase and nepheline are the major minerals. The Baotoudong syenites have high contents of rare earth elements(REE), and are characterized by enrichment in light rare earth elements(LREE) and large ion lithophile elements(LILE; e.g., Rb, Ba, Sr), depletion in heavy rare earth elements(HREE) and high field strength elements(HFSE). They show enriched Sr-Nd isotopic compositions with initial ~87Sr/~86Sr ranging from 0.7061 to 0.7067 and ε_Nd(t) values from –9.0 to –11.2. Mineralogy, petrology and geochemical studies show that the parental magma of the syenites is SiO_2-undersaturated potassic-ultrapotassic, and is characterized by high contents of Ca O, Fe_2O_3, K_2O, Na_2O and fluid compositions(H_2O), and by high temperature and high oxygen fugacity. The syenites were originated from a phlogopite-rich, enriched lithospheric mantle source in garnet-stable area(80 km). The occurrence of the Baotoudong syenites, together with many other ultrapotassic, alkaline complexes of similar ages on the northern margin of the NCC in Late Triassic implies that the lithospheric mantle beneath the northern margin of the NCC was previously metasomatized by melts/fluids from the subducted, altered paleo-Mongolian oceanic crust, and the northern margin of the craton has entered into an extensively extensional regime as a destructive continental margin in Late Triassic.  相似文献   

16.
Yasuhiko Ohara 《Island Arc》2016,25(3):193-208
The Godzilla Megamullion is the largest known oceanic core complex (OCC) on the Earth, located in the Parece Vela Basin in the Philippine Sea. In this article, the history of Godzilla Megamullion study is reviewed for the first time, dividing it into three major phases: (i) the early studies done before Japan's extended continental shelf survey program; (ii) the studies during Japan's extended continental shelf survey program that discovered the OCC; and (iii) the studies by the post‐discovery cruises. The early studies included an interpretation of US nautical chart of the southwestern Pacific and the site surveys for Deep Sea Drilling Project cruises (DSDP Legs 6, 31 and 59). The early studies recognized the presence of the Parece Vela Rift, the extinct spreading axis of the Parece Vela Basin, and established the currently accepted model that the Philippine Sea evolved with eastward progression of backarc spreading and arc migration. The modern understanding of the Parece Vela Basin comes from Japan's extended continental shelf survey program. The program revealed the ultramafic petrology as well as a two‐stage evolution model of the basin. Following these results, the discovery of the Godzilla Megamullion was made in 2001. The studies by the post‐discovery cruises further revealed important characteristics of the OCC, such as the presence of abundant plagioclase‐bearing peridotite and the systematic temporal changes in both deformation microstructures and composition of plagioclase and amphibole in gabbroic mylonites and ultramylonites. Zircon U–Pb ages of gabboric and leucocratic rocks indicate that the terminal phase of Parece Vela Basin spreading was with a significant decline in spreading rate and asymmetry accompanying formation of the Godzilla Megamullion. The estimated denudation rate of the OCC was approximately 2.5 cm/yr; significantly slower than the previous estimate based on poorly constrained magnetic data.  相似文献   

17.
Recent field prospecting in the Cretaceous sequences of the lower Narmada valley has led to the discovery of three isolated archosaur teeth from the upper part of marine Cretaceous rocks of the Bagh Group. The specimens were recovered by surface prospecting from an oyster‐bearing green sandstone bed occurring at the top of the Coralline Limestone (Coniacian) from a site near Phutibawri village, Dhar District, Madhya Pradesh, India. Of the three teeth recovered from this horizon, two are identified with abelisaurid dinosaurs and the third one with an indeterminate crocodile. The abelisaurid teeth conform to the premaxillary and maxillary tooth morphology of Majungasaurus and Indosuchus. Earlier reports of abelisaurid dinosaurs from India are from the Upper Cretaceous (Maastrichtian) Lameta Group of Jabalpur, Pisdura (Central India) and Balasinor (Western India) and Upper Cretaceous (Late Maastrichtian) Kallamedu Formation (South India). As no associated age diagnostic fossils are found, the specimens described here are considered to represent pre‐Late to Late Maastrichtian age based on the known ages of the underlying and overlying formations. The new finds, therefore, document stratigraphically the oldest occurrence of abelisaurid dinosaurs known from the Indian subcontinent.  相似文献   

18.
The origin of active faults in the Inner zone of the western part of Southwest Japan was explained by a decrease of the minimum principal stress and reactivation of ancient geologic structures. Although the E–W maximum principal stress in Southwest Japan due to the collision of the Southwest and Northeast Japan arcs along the Itoigawa–Shizuoka Tectonic Line is assumed to decrease westward, the density of active strike‐slip faults increases in the western margin of the Southwest Japan Arc (western Chugoku and northern Kyushu) where the subducting Philippine Sea Plate dips steeply. The E–W maximum compressional stress is predominant throughout Southwest Japan, while the N–S minimum principal stress that is presumably caused by coupling between Southwest Japan arc and Philippine Sea Plate decreases due to the weak plate coupling as the plate inclination increases under the western margin of Southwest Japan. The increase of the fault density in the western margin of the arc is attributed to a decrease of the minimum principal stress and consequent increase of shear stress. Low slip rates of the active faults in this region support the view that the westward increase of fault density is not a response to increasing maximum stress. These faults of onshore and offshore lie in three distinct domains defined on the basis of fault strike. They are defined domains I, II, and III which are composed of active faults striking ENE–WSW, NW–SE, and NE–SW, respectively. Faulting in domains I, II, and III is related to Miocene rift basins, Eocene normal faults, and Mesozoic strike‐slip faults, respectively. Although these active faults are strike‐slip faults due to E–W maximum stress, it is unclear whether their fault planes are the same as those of pre‐Quaternary dip‐slip faults.  相似文献   

19.
The troctolites and olivine‐gabbros from the Dive 6 K‐1147 represent the most primitive gabbroic rocks collected at the Godzilla Megamullion, a giant oceanic core complex formed at an extinct spreading segment of the Parece Vela back‐arc basin (Philippine Sea). Previous investigations have shown that these rocks have textural and major elements mineral compositions consistent with a formation through multistage interaction between mantle‐derived melts and a pre‐existing ultramafic matrix. New investigations on trace element mineral compositions basically agree with this hypothesis. Clinopyroxenes and plagioclase have incompatible element signatures similar to that of typical‐MORB. However, the clinopyroxenes show very high Cr contents (similar to those of mantle clinopyroxene) and rim having sharply higher Zr/REE ratios with respect to the core. These features are in contrast with an evolution constrained by fractional crystallization processes, and suggest that the clinopyroxene compositions are controlled by melt‐rock interaction processes. The plagioclase anorthite versus clinopyroxene Mg#[Mg/(Mg + FeTot)] correlation of the Dive 6 K‐1147 rocks shows a trend much steeper than those depicted by other oceanic gabbroic sections. Using a thermodynamic model, we show that this trend is reproducible by fractionation of melts assimilating 1 g of mantle peridotite per 1 °C of cooling. This model predicts the early crystallization of high Mg# clinopyroxene, consistent with our petrological observation. The melt‐peridotite interaction process produces Na‐rich melts causing the crystallization of plagioclase with low anorthite component, typically characterizing the evolved gabbros from Godzilla Megamullion.  相似文献   

20.
Geochemical and isotopic analyses (Sr–Nd–Pb) of late Miocene to Quaternary plateau lavas from the Pali Aike and Morro Chico areas (52°S) were undertaken to constrain the melting processes and mantle sources that contributed to magma generation and the geodynamic evolution of southernmost Patagonia, South America. The Pali Aike and Morro Chico lavas are alkaline (Pali Aike, 45–49 wt.% SiO2; 4.3–5.9 wt.% Na2O+K2O) and subalkaline (Morro Chico, 50.5–50.8 wt.% SiO2; 4.0–4.4 wt.% Na2O+K2O), relatively primitive (Pali Aike, 9.5–13.7 wt.% MgO; Morro Chico, 7.6–8.8 wt.% MgO) mafic volcanic rocks that have typical intraplate ocean island basalt‐like signatures. Incompatible trace element ratios and isotopic ratios of the Pali Aike and Morro Chico lavas differ from those of the majority of Neogene southern Patagonian slab window lavas in showing more enriched characteristics and are similar to high‐μ (HIMU)‐like basalts. The rare earth element (REE) modeling to constrain mantle melting percentages suggests that these lavas were produced by low degrees of partial melting (1.0–2.0% for Pali Aike lavas and about 2.6–2.7% for Morro Chico lavas) of a garnet lherzolite mantle source. The major systematic variations of Sr–Nd–Pb isotopes in southern Patagonian lavas are related to geographic location. The Pali Aike and Morro Chico lavas from the southernmost part of Patagonia have lower 87Sr/86Sr and higher 143Nd/144Nd and 206Pb/204Pb ratios, relative to most of the southern Patagonian lavas erupted north of 49.5°S, pointing to a HIMU‐like signature. An isotopically depleted and HIMU‐like asthenospheric domain may have been the main source of magmas in the southernmost part of Patagonia (e.g. Pali Aike, Morro Chico, and Camusu Aike volcanic field), suggesting the presence of a major discontinuity in the isotopic composition of the asthenosphere in southern Patagonia. On the basis of geochemical and isotope data and the available geological and geotectonic reconstructions, a link between the HIMU asthenospheric mantle domain beneath southernmost Patagonia and the HIMU mega‐province of the southwestern Pacific Ocean is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号