首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
地球物理   2篇
地质学   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
This paper focuses on the suitability of spring water for drinking and irrigation purposes in a part of eastern Himalaya, south Sikkim. There are many anthropogenic and geogenic factors contributing as a source of major cations and anions in the spring water. The spring water chemistry show a variation in EC, pH, TDS, Temperature, Na+, K+, Mg2+, Ca2+, Fe2+, Pb, Mn, Cu, HCO3-, Cl-, PO43-, NO3-, F- and SO42-. Mainly two types of water quality indexing has been used, one for suitability of spring water for drinking purposes and the other for irrigation purposes. For drinking purposes, Piper diagram used for determination of water type, water quality index (WQI) for quality monitoring and saturation index for mineral dissolution in water. % Na, RSC (Residual Sodium Carbon) and SAR (sodium absorption ratio) have been used for irrigation suitability. Piper diagram shows that CaHCO3 type of water was dominant in the study area. The WQI depicted excellent category and SAR, percent sodium and RSC (Residual Sodium Carbon) depict excellent, good and permissible category for irrigation purposes. Principle component analysis (PCA) was used to determine the major influencing factor responsible for the variability in the parameters analysed of spring water.  相似文献   
2.
Recent field prospecting in the Cretaceous sequences of the lower Narmada valley has led to the discovery of three isolated archosaur teeth from the upper part of marine Cretaceous rocks of the Bagh Group. The specimens were recovered by surface prospecting from an oyster‐bearing green sandstone bed occurring at the top of the Coralline Limestone (Coniacian) from a site near Phutibawri village, Dhar District, Madhya Pradesh, India. Of the three teeth recovered from this horizon, two are identified with abelisaurid dinosaurs and the third one with an indeterminate crocodile. The abelisaurid teeth conform to the premaxillary and maxillary tooth morphology of Majungasaurus and Indosuchus. Earlier reports of abelisaurid dinosaurs from India are from the Upper Cretaceous (Maastrichtian) Lameta Group of Jabalpur, Pisdura (Central India) and Balasinor (Western India) and Upper Cretaceous (Late Maastrichtian) Kallamedu Formation (South India). As no associated age diagnostic fossils are found, the specimens described here are considered to represent pre‐Late to Late Maastrichtian age based on the known ages of the underlying and overlying formations. The new finds, therefore, document stratigraphically the oldest occurrence of abelisaurid dinosaurs known from the Indian subcontinent.  相似文献   
3.
Rock–water interaction along with mineral dissolution/ precipitation plays a profound role in the control of fluoride ion concentration within the alluvial groundwater in a part of semi-arid northern India. In the premonsoon season, the alluvial region experiences evaporative processes leading to increase in Na+ ions which through reverse ion exchange processes are adsorbed onto suitable sites within the aquifer matrix in exchange for Ca2+ ion in solution. Increase in Ca2+ ions in solution inhibits fluorite mineral dissolution, thereby controlling premonsoon fluoride ion concentration within alluvial groundwaters (1.40?±?0.5 mg/l). In the postmonsoon season, however, higher average fluoride ion concentration within the alluvial aquifer samples (2.33?±?0.80 mg/l) is observed mainly due to increase in silicate weathering of fluoride-bearing rocks and direct ion exchange processes enabling Ca2+ ion uptake from solution accompanied with the release of fluoride ions. Combined effect of these processes results in average fluoride ion concentration falling above the WHO drinking water permissible limit (1.5 mg/l). Alternatively, the hard rock aquifer samples within the study area have an average fluoride ion concentration falling below the permissible limit in both the seasons.  相似文献   
4.
5.
Potential chromite ore deposits of India are situated in Sukinda, Odisha, which may also be considered as a potential resource for platinum group elements (PGEs). This paper reports on PGE geochemistry in twenty six samples covering chromite ores, chromitites and associated ultramafic rocks of the Sukinda ultramafic complex. Platinum group element contents range from 213 to 487 ppb in the chromite ore body, from 63 to 538 ppb in rocks that have chromite dendrites or dissemination and from 38 to 389 ppb in associated olivine–peridotite, serpentinite, pyroxenite and brecciated rocks. The PGEs are divided into two sub‐groups: IPGE (Ir, Os, and Ru) and PPGE (Pd, Pt, and Rh) based on their chemical behaviour. The IPGE and PPGE in these three litho‐members show a contrasting relationship e.g. average IPGE content decreases from chromite to chromitite and associated rocks while PPGE increases in the same order. Appreciable Ag in chromitite (270–842 ppb) is recorded. Positive correlation between IPGE with Cr2O3 and with Al2O3 is observed while these are negatively correlated with MgO. Covariant relationships between Au and Mg in rocks devoid of chromite and between Ag and Fe in chromitite sample are observed. Chromite in all seams and some chromitite samples exhibit an IPGE‐enriched chondrite normalized pattern while PPGE are highly fractionated and show a steep negative slope, thereby indicating that PGE in the parental melt fractionates and IPGE‐compatible elements prefer to settle with chromite. The rocks devoid of chromite and rocks containing accessory chromite exhibit a nearly flat pattern in chondrite‐normalized PGE plots and this suggests a limited fractionation of PGE in these rocks. Variation in the distribution pattern of PGE and Ag in three typical litho‐members of the Sukinda Valley may be related to multiple intrusion of ultramafic magma, containing variable volume percentage of chromite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号