首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A physically constrained wavelet-aided statistical model (PCWASM) is presented to analyse and predict monthly groundwater dynamics on multi-decadal or longer time scales. The approach retains the simplicity of regression modelling but is constrained by temporal scales of processes responsible for groundwater level variation, including aquifer recharge and pumping. The methodology integrates statistical correlations enhanced with wavelet analysis into established principles of groundwater hydraulics including convolution, superposition and the Cooper–Jacob solution. The systematic approach includes (1) identification of hydrologic trends and correlations using cross-correlation and multi-time scale wavelet analyses; (2) integrating temperature-based evapotranspiration and groundwater pumping stresses and (3) assessing model prediction performances using fixed-block k-fold cross-validation and split calibration-validation methods. The approach is applied at three hydrogeologicaly distinct sites in North Florida in the United States using over 40 years of monthly groundwater levels. The systematic approach identifies two patterns of cross-correlations between groundwater levels and historical rainfall, indicating low-frequency variabilities are critical for long-term predictions. The models performed well for predicting monthly groundwater levels from 7 to 22 years with less than 2.1 ft (0.7 m) errors. Further evaluation by the moving-block bootstrap regression indicates the PCWASM can be a reliable tool for long-term groundwater level predictions. This study provides a parsimonious approach to predict multi-decadal groundwater dynamics with the ability to discern impacts of pumping and climate change on aquifer levels. The PCWASM is computationally efficient and can be implemented using publicly available datasets. Thus, it should provide a versatile tool for managers and researchers for predicting multi-decadal monthly groundwater levels under changing climatic and pumping impacts over a long time period.  相似文献   

2.
Growing demand on groundwater resources and the semi‐arid climate in the North China Plain (NCP) highlight the need for improved understanding of connections between regional climate change and groundwater recharge. Hydrologic time series of precipitation and groundwater levels were analyzed in three representative geographical zones throughout the NCP for the period of 1960–2008 using trend analysis and spectral analysis methods. A significant change point around 1975 is followed by a long‐term decline trend in precipitation time series, which coincides with the Pacific Decadal Oscillation positive phase. However, the magnitudes of groundwater level variability due to heavy pumping overwhelm the low‐frequency signal of groundwater levels. Nonlinear trends that related to long‐term climatic variability and anthropogenic activities are removed by using the Singular Spectrum Analysis method. Spectral analyses of the detrended residuals demonstrate significant short‐term oscillations at the frequencies of 2–7 years, which have strong correlations with the El Niño–Southern Oscillation modes. This study contributes to improved understanding of dynamic relationship between groundwater and climate variability modes in the NCP and demonstrates the importance of reliable detrending methods for groundwater levels that are affected greatly by pumping. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Groundwater level fluctuations are caused by spatial and temporal superposition of processes within and outside the aquifer system. Most of the subsurface processes are usually observed on a small scale. Upscaling to the regional scale, as required for future climate change scenarios, is difficult due to data scarcity and increasing complexity. In contrast to the limited availability of system characteristics, high-resolution data records of groundwater hydrographs are more generally available. Exploiting the information contained in these records should thus be a priority for analysis of the chronical lack of data describing groundwater system characteristics. This study analyses the applicability of 63 indices derived from daily hydrographs to quantify different dynamics of groundwater levels in unconfined gravel aquifers from three groundwater regions (Bavaria, Germany). Based on the results of two different skill tests, the study aids index selection for different dynamic components of groundwater hydrographs.  相似文献   

4.
Since surface water and groundwater systems are fully coupled and integrated, increased groundwater withdrawal during drought may reduce groundwater discharges into the stream, thereby prolonging both systems’ recovery from drought. To analyze watershed response to basin-level groundwater pumping, we propose a modelling framework to understand the resiliency of surface water and groundwater systems using an integrated hydrologic model under transient pumping. The proposed framework incorporates uncertainties in initial conditions to develop robust estimates of restoration times of both surface water and groundwater and quantifies how pumping impacts state variables such as soil moisture. Groundwater pumping impacts over a watershed were also analyzed under different pumping volumes and different potential climate scenarios. Our analyses show that groundwater restoration time is more sensitive to variability in climate forcings as opposed to changes in pumping volumes. After the cessation of pumping, streamflow recovers quickly in comparison to groundwater, which has higher persistence. Pumping impacts on various hydrologic variables were also discussed. Potential for developing optimal conjunctive management plans using seasonal-to-interannual climate forecasts is also discussed.  相似文献   

5.
How to quantify the impact of climate change and human activities on groundwater is not only a hot topic of current research but also a key point of water resource management in arid irrigated areas. Therefore, this paper analyzes the changes in the trends of land use, climate, and groundwater extraction in the Yanqi Basin in recent years and uses the distributed hydrological model MIKE-SHE to quantitatively analyze the impacts of these three factors on groundwater resources. The results show that: 1. The Nash coefficients of the simulated and observed groundwater levels during the verification period are 0.84, 0.79 and 0.76; the correlation coefficient between the simulated and observed soil moisture is 0.86. Although there are some uncertainties in the simulation, the results prove that the model can be used to simulate arid irrigated areas. 2. The effects of these three factors on groundwater levels are 5, 12.5 and 82.5%, respectively, and have caused the regional average groundwater level to decrease by a maximum of 0.07, 0.23 and 1.79 m, respectively. The effects of these three factors on the interactions between surface water and groundwater were 7.04, 3.63 and 89.33%. Groundwater extraction has become the main influencing factor of regional groundwater resources changes due to its more direct influence. 3. The influence of groundwater extraction has a strong spatial distribution characteristic and 10% of the study area has been greatly impacted by the groundwater extraction. Base on the above results, integrating multidisciplinary knowledge to establish the relationship between ecological environment and groundwater changes can provide strategies for the sustainable development of groundwater.  相似文献   

6.
Anthropogenic activities have altered the climate and led to changes in the water cycle. Understanding the climate change and hydrological responses is critical to derive adaptive strategies for sustainable water resources management. In this study, we diagnosed the trends of primary climate elements and hydrological components during the past half century (1960–2009) for the humid Xiangjiang River Basin in central-south China at multiple temporal and spatial scales. The air temperature trend demonstrated an overall warming climate but with a quicker pace in recent years; however, the wind speed reduced significantly in the early period, and this downtrend had largely disappeared after the mid-1990s. Under such a shifting climate, the hydrological responses were not monotonic during the past 50 years: the evapotranspiration behaved in a decreasing trend in the early 35 years (1960–1994), followed by an uptrend in the later period (1995–2009). The stepwise analysis of soil water content and baseflow demonstrated a wetting trend followed by a drying one but with a steeper slope, indicating an accelerated drying trend which may cause a concern in stream water availability especially in the dry season. Spatial trend analysis showed that some areas experienced a downtrend (drying) in the dry season, but most areas had an uptrend (wetting) in the wet season for the whole study period. Overall, the analyses of temporal and spatial changes are useful for decision makers to deal with the continuing changes in climate and hydrology. This study also highlighted the necessity of climate change studies at multiple temporal and spatial scales.  相似文献   

7.
The purpose of this study was to develop an interpretive groundwater‐flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi‐arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge‐change factors to these zones. Over a 10‐year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub‐basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi‐arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.  相似文献   

8.
Given the importance of groundwater temperature to the biogeochemical health of aquatic ecosystems, a floodplain study was implemented to improve understanding of rural land use impacts on shallow groundwater (SGW) temperature. Study sites included a historic agricultural field (Ag) and bottomland hardwood forest (BHF), each with nine piezometers in an 80 × 80 m grid. Piezometers were equipped with pressure transducers to monitor SGW temperature and level at 30 min intervals during the 2011, 2012, 2013, and 2014 water years. The study is one of the first to utilize long‐term, continuous, automated, in situ monitoring to investigate rural land use impacts on shallow groundwater temperatures. Average SGW temperature during the study period was 11.1 and 11.2 °C at the Ag and BHF sites, respectively. However, temperature range at the Ag site was 72% greater than at the BHF site. Results indicate a greater responsiveness to seasonal climate fluctuations in Ag site SGW temperature related to absence of forest canopy. Patterns of intra‐site groundwater temperature differences at both study sites illustrate the influence of stream–aquifer thermal conduction and occasional baseflow reversals. Considering similar surface soil temperature amplitudes and low average groundwater flow values at both sites, results suggest that contrasting rates of plant water use, groundwater recharge, and subsurface hydraulic conductivity are likely mechanistic causes for the observed SGW temperature differences. Results highlight the long‐term impact of forest removal on subsurface hydrology and groundwater temperature regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The effect of potential climate change on groundwater‐dependent vegetation largely depends on the nature of the climate change (drying or wetting) and the level of current ecosystem dependence on groundwater resources. In south‐western Australia, climate projections suggest a high likelihood of a warmer and drier climate. The paper examines the potential environmental impacts by 2030 at the regional scale on groundwater‐dependent terrestrial vegetation (GDTV) adapted to various watertable depths, on the basis of the combined consideration of groundwater modelling results and the framework for GDTV risk assessment. The methodology was tested for the historical period from 1984 to 2007, allowing validation of the groundwater model results' applicability to such an assessment. Climate change effects on GDTV were evaluated using nine global climate models under three greenhouse gas emission scenarios by applying the climate projections to groundwater models. It was estimated that under dry climate scenarios, GDTV is likely to be under high and severe risk over more than 20% of its current habitat area. The risk is also likely to be higher under an increase in groundwater abstraction above current volumes. The significance of climate change risk varied across the region, depending on both the intensity of the change in water regime and the sensitivity of the GDTV to such change. Greater effects were projected for terrestrial vegetation dependent on deeper groundwater (6–10 m). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Globally, the number of people experiencing water stress is expected to increase by millions by the end of the century. The Great Lakes region, representing 20% of the world's surface freshwater, is not immune to stresses on water supply due to uncertainties on the impacts of climate and land use change. It is imperative for researchers and policy makers to assess the changing state of water resources, even if the region is water rich. This research developed the integrated surface water-groundwater GSFLOW model and investigated the effects of climate change and anthropogenic activities on water resources in the lower Great Lakes region of Western New York. To capture a range of scenarios, two climate emission pathways and three land development projections were used, specifically RCP 4.5, RCP 8.5, increased urbanization by 50%, decreased urbanization by 50%, and current land cover, respectively. Model outputs of surface water and groundwater discharge into the Great Lakes and groundwater storage for mid- and late century were compared to historical to determine the direction and amplitude of changes. Both surface water and groundwater systems show no statistically significant changes under RCP 4.5 but substantial and worrisome losses with RCP 8.5 by mid-century and end of century. Under RCP 8.5, streamflow decreased by 22% for mid-century and 42% for late century. Adjusting impervious surfaces revealed complex land use effects, resulting in spatially varying groundwater head fluctuations. For instance, increasing impervious surfaces lowered groundwater levels from 0.5 to 3.8 m under Buffalo, the largest city in the model domain, due to reduced recharge in surrounding suburban areas. Ultimately, results of this study highlight the necessity of integrated modelling in assessing temporal changes to water resources. This research has implications for other water-rich areas, which may not be immune to effects of climate change and human activities.  相似文献   

11.
Multi‐decadal groundwater level records, which provide information about long‐term variability and trends, are relatively rare. Whilst a number of studies have sought to reconstruct river flow records, there have been few attempts to reconstruct groundwater level time‐series over a number of decades. Using long rainfall and temperature records, we developed and applied a methodology to do this using a lumped conceptual model. We applied the model to six sites in the UK, in four different aquifers: Chalk, limestone, sandstone and Greensand. Acceptable models of observed monthly groundwater levels were generated at four of the sites, with maximum Nash–Sutcliffe Efficiency scores of between 0.84 and 0.93 over the calibration and evaluation periods, respectively. These four models were then used to reconstruct the monthly groundwater level time‐series over approximately 60 years back to 1910. Uncertainty in the simulated levels associated with model parameters was assessed using the Generalized Likelihood Uncertainty Estimation method. Known historical droughts and wet period in the UK are clearly identifiable in the reconstructed levels, which were compared using the Standardized Groundwater Level Index. Such reconstructed records provide additional information with which to improve estimates of the frequency, severity and duration of groundwater level extremes and their spatial coherence, which for example is important for the assessment of the yield of boreholes during drought periods. Copyright © 2016 British Geological Survey. Hydrological Processes © 2016 John Wiley & Sons Ltd  相似文献   

12.
Abstract

Groundwater, possibly of fossil origin, is used for water supply in some arid regions where the replenishment of groundwater by precipitation is low. Numerical modelling is a helpful tool in the assessment of groundwater resources and analysis of future exploitation scenarios. To quantify the groundwater resources of the East Owienat area in the southwest of the Western Desert, Egypt, the present study assesses the groundwater resources management of the Nubian aquifer. Groundwater withdrawals have increased in this area, resulting in a disturbance of the aquifer’s natural equilibrium, and the large-scale and ongoing depletion of this critical water reserve. Negative impacts, such as a decline in water levels and increase in salinity, have been experienced. The methodology includes application of numerical groundwater modelling in steady and transient states under different measured and abstraction scenarios. The numerical simulation model developed was applied to assess the responses of the Nubian aquifer water level under different pumping scenarios during the next 30 years. Groundwater management scenarios are evaluated to find an optimal management solution to satisfy future needs. Based on analysis of three different development schemes that were formulated to predict the future response of the aquifer under long-term water stress, a gradual increase in groundwater pumping to 150% of present levels should be adopted for protection and better management of the aquifer. Similar techniques could be used to improve groundwater management in other parts of the country, as well as other similar arid regions.
Editor D. Koutsoyiannis; Associate editor X. Chen  相似文献   

13.
The objective of this article is to analyze the influence of clay zones on subsidence from groundwater pumping. Finite element analyses were conducted on a sand‐only aquifer and a sand aquifer with two clay zones located at different distances from the well face. A model that accounts for recoverable and nonrecoverable strains was used to simulate the sand and clay. This model couples the groundwater flow with the stress‐deformation response of the aquifer materials. Each aquifer was pumped from a single well for a period of 6 months, and then the groundwater level was lowered gradually to an elevation below the elevation of the clay zones and kept there for 10 years. The groundwater level was then raised gradually back to the original elevation over a period of 10 years. The results of the analyses show that the ground surface subsidence profile is strongly influenced by the presence of the clays zones. The ground surface sags where these clay zones are present resulting in a wavy ground surface profile. Subsidence continued when pumping is stopped, albeit at a much slower rate than during pumping, and when the groundwater level is below the elevation of the clay zones. Clay zones further away from the well face lag the subsidence of clay zones nearer the well face because of lower changes in hydrostatic head. Sags in ground surface subsidence profile from groundwater pumping are indicators of the presence of low hydraulic conductive geological materials.  相似文献   

14.
On the basis of one-dimensional theoretical water flow model, we demonstrate that the groundwater level variation follows a pattern similar to recharge fluctuation, with a time delay that depends on the characteristics of aquifer, recharge pattern as well as the distance between the recharge and observation locations. On the basis of a water budget model and the groundwater flow model, we propose an empirical model that links climatic variables to groundwater level. The empirical model is tested using a partial data set from historical records of water levels from more than 80 wells in a monitoring network for the carbonate rock aquifer, southern Manitoba, Canada. The testing results show that the predicted groundwater levels are very close to the observed ones in most cases. The overall average correlation coefficient between the predicted and observed water levels is 0.92. This proposed empirical statistical model could be used to predict variations in groundwater level in response to different climate scenarios in a climate change impact assessment.  相似文献   

15.
索旗  陈光杰  孔令阳  徐会明  李静  张涛  王露  周起  郑昕 《湖泊科学》2022,34(5):1735-1750
从1950s开始, 云南地区部分湖泊受到了水文调控(如筑坝)和鱼类引入等流域开发活动的直接影响, 湖泊水环境与生态系统结构已出现明显改变. 开展浮游动物群落的长期生态响应评价有助于认识气候波动和人为胁迫的影响模式. 本文选取云龙天池进行了沉积物记录分析, 在重建过去100年环境变化历史的基础上开展了枝角类群落的多指标分析(物种组成、个体大小、生物量等), 进一步结合多变量分析识别了枝角类群落构建的关键驱动因子. 结果显示, 云龙天池在过去100年间经历了明显的水位波动, 约1962年以前水位较低, 1950s起的水文调控(筑坝)导致湖泊水位波动上升, 2006年以来略有下降. 枝角类群落随水位波动呈现由底栖种向浮游种占优转变的模式, 并在2006年以来底栖种略有增加. 总体上, 低水位时期底栖枝角类占优, 高水位时期浮游枝角类占优. 水体营养水平也对枝角类群落产生了较为显著的影响. 在沉积物总氮和有机质通量上升时, 长额象鼻溞(Bosmina longirostris)相对丰度和枝角类浓度都明显上升. 枝角类象鼻溞个体大小表明, 1969年鱼类引入后象鼻溞的壳长、壳刺长度、触角长度显著减小, 反映了鱼类捕食压力上升的影响. 本研究进一步揭示了水文调控和鱼类引入对湖泊环境和生物群落结构的驱动影响. 其中, 1960s以前云龙天池处于自然波动的状态, 湖泊环境和枝角类群落变化主要受气候(如降水、气温)的影响; 1960s以来人类活动的影响强度已经掩盖了气候变化的信号, 成为影响湖泊生态演化轨迹的主要因素. 为了开展有效的湖泊保护与生态治理, 有必要综合评估水文调控、鱼类引入等人类活动对湖泊生态健康的长期影响.  相似文献   

16.
A simple conceptual semi‐distributed modelling approach for assessing the impacts of climate change on direct groundwater recharge in a humid tropical river basin is investigated. The study area is the Chaliyar river basin in the state of Kerala, India. Many factors affecting future groundwater recharge include decrease or increase in precipitation and temperature regimes, coastal flooding, urbanization and changes in land use. The model is based on the water‐balance concept and links the atmospheric and hydrogeologic parameters to different hydrologic processes. It estimates daily water‐table fluctuation and is calibrated and validated using 10 years of data. Data for the first 6 years (2000 to 2005) is used for model calibration, and data for the remaining four years (2006 to 2009) is used for validation. For assessing the impact of predicted climate change on groundwater recharge during the period 2071–2100, temperature and precipitation data in two post climate change scenarios, A2 and B2, were predicted using the Regional Climate Model (RCM), PRECIS (Providing Regional Climates for Impact Studies). These data were then corrected for biases and used in a hydrologic model to predict groundwater recharge in the post climate change scenario. Due to lack of reliable data and proper knowledge as to the magnitude and extent of future climatic changes, it may not be possible to include all the possible effects quantitatively in groundwater recharge modelling. However, the study presents a scientific method to assess the impact of predicted climate change on groundwater recharge and would help engineers, hydrologists, administrators and planners to devise strategies for the efficient use as well as conservation of freshwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The predicted increase in mean global temperature due to climate change is expected to affect water availability and, in turn, cause both environmental and societal impacts. To understand the potential impact of climate change on future sustainable water resources, this paper outlines a methodology to quantify the effects of climate change on potential groundwater recharge (or hydrological excess water) for three locations in the north and south of Great Britain. Using results from a stochastic weather generator, actual evapotranspiration and potential groundwater recharge time‐series for the historic baseline 1961–1990 and for a future ‘high’ greenhouse gas emissions scenario for the 2020s, 2050s and 2080s time periods were simulated for Coltishall in East Anglia, Gatwick in southeast England and Paisley in west Scotland. Under the ‘high’ gas emissions scenario, results showed a decrease of 20% in potential groundwater recharge for Coltishall, 40% for Gatwick and 7% for Paisley by the end of this century. The persistence of dry periods is shown to increase for the three sites during the 2050s and 2080s. Gatwick presents the driest conditions, Coltishall the largest variability of wet and dry periods and Paisley little variability. For Paisley, the main effect of climate change is evident during the dry season (April–September), when the potential amount of hydrological excess water decreases by 88% during the 2080s. Overall, it is concluded that future climate may present a decrease in potential groundwater recharge that will increase stress on local and regional groundwater resources that are already under ecosystem and water supply pressures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Risk assessment of contaminated sites is crucial for quantifying adverse impacts on human health and the environment. It also provides effective decision support for remediation and management of such sites. This study presents an integrated approach for environmental and health risk assessment of subsurface contamination through the incorporation of a multiphase multicomponent modeling system within a general risk assessment framework. The method is applied to a petroleum-contaminated site in western Canada. Three remediation scenarios with different efficiencies (0, 60, and 90%) and planning periods (10, 20, 40, 60, and 80 years later) are examined for each of the five potential land-use plans of the study site. Then three risky zones with different temporal and spatial distributions are identified based on the local environmental guidelines and the excess lifetime cancer risk criteria. The obtained results are useful for assessing potential human health effects when the groundwater is used for drinking water supply. They are also critical for evaluating environmental impacts when the groundwater is used for irrigation, stockbreeding, fish culture, or when the site remains the status quo. Moreover, the results indicate that the proposed method can effectively identify risky zones with different risk levels under various remediation actions, planning periods, and land-use patterns.  相似文献   

19.
An analytic approach is presented for the simulation of variations in the groundwater level due to temporal variations of recharge in surficial aquifers. Such variations, called groundwater dynamics, are computed through convolution of the response function due to an impulse of recharge with a measured time series of recharge. It is proposed to approximate the impulse response function with an exponential function of time which has two parameters that are functions of space only. These parameters are computed by setting the zeroth and first temporal moments of the approximate impulse response function equal to the corresponding moments of the true impulse response function. The zeroth and first moments are modeled with the analytic element method. The zeroth moment may be modeled with existing analytic elements, while new analytic elements are derived for the modeling of the first moment. Moment matching may be applied in the same fashion with other approximate impulse response functions. It is shown that the proposed approach gives accurate results for a circular island through comparison with an exact solution; both a step recharge function and a measured series of 10 years of recharge were used. The presented approach is specifically useful for modeling groundwater dynamics in aquifers with shallow groundwater tables as is demonstrated in a practical application. The analytic element method is a gridless method that allows for the precise placement of ditches and streams that regulate groundwater levels in such aquifers; heads may be computed analytically at any point and at any time. The presented approach may be extended to simulate the effect of other transient stresses (such as fluctuating surface water levels or pumping rates), and to simulate transient effects in multi-aquifer systems.  相似文献   

20.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号