首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
童冰星  姚成  李致家  黄小祥 《湖泊科学》2017,29(5):1238-1244
对于分布式水文模型而言,如何获得参数的空间分布是模型应用的重点和难点问题.本文将分水源参数中的敏感参数——自由水蓄水容量为研究对象.建立地形指数与自由水蓄水容量的函数关系,以此提取流域内的自由水蓄水容量空间分布.最后利用本方法提取了陕西省陈河流域的自由水蓄水容量空间分布,并将之作为栅格型新安江模型的参数进行洪水模拟演算.应用结果表明本文提出的方法得到了理想的模拟结果.该方法以物理规律为基础能较为准确地计算出流域内自由水蓄水容量的空间分布,为分布式模型的发展奠定了坚实的基础.  相似文献   

2.
基于改进型SIMTOP参数化径流方案和新安江模型的三层土壤水量平衡计算方法,本文构建了一个输入数据和率定参数较少、同时具有地形指数尺度转换机制、较好描述二维水文过程的简单高效的大尺度水文模型TOPX,并将其与区域环境系统集成模式RIEMS紧密耦合,以增强区域气候模式对大尺度流域径流量的定量数值模拟能力.TOPX模型在酉水河流域和泾河流域的离线测试表明:该模型对小尺度流域的径流量模拟精度较高,能够较好地描述流域水文变化过程;同时,该模型在大尺度上具有较强的分布式模拟能力,能够捕捉陆面水文过程的主要特征和时空演变特点.TOPX与RIEMS的耦合模式在泾河流域进行了在线测试,借助TOPX模型中的地形指数降尺度转换和水文过程产汇流机制,耦合模式实现了利用区域气候模式模拟的气象资料来驱动水文模型进行大尺度流域日径流量的模拟.进一步分析还表明:区域气候模式RIEMS模拟的降水时空分布数据的精度是影响耦合模式对径流量模拟效果的关键因素.  相似文献   

3.
引入两个负指数型差值函数,估计降雨量的概率分布,以此描述流域降雨空间变异性问题.将降雨量空间统计分布与垂向混合产流模型耦合进行产流量计算,即对地表径流,采用超渗产流模式,根据降雨与土壤下渗能力的联合分布推求其空间分布;对地面以下径流,采用蓄满产流模式,以地表渗入量的均值作为输入,进行简化处理以提高其实用性;最终推导出总产流量概率分布函数计算公式.将流域概化成一个线性水库,并根据随机微分方程理论,推导任一计算时段洪水流量的概率分布,从而构建了一个完整的随机产汇流模型.以淮河支流黄泥庄流域为例进行应用研究,结果表明,该模型可提供洪水过程的概率预报,可用于防洪风险分析,若以概率分布的期望值作为确定性预报,亦具有较高精度.  相似文献   

4.
河砂岩屑热年代学被广泛应用于揭示造山带和流域范围内热演化历史.由于受到地貌特征、剥蚀速率的空间分布、年龄与高程关系等多种因素的影响,河砂岩屑热年代学年龄所代表的意义存在多解性.本文提出了一种利用地貌形态特征和实测河砂热年代学数据模拟流域热史的计算模型.该模型首先利用DEM数据计算流域高程分布特征,通过数据中各象元对应的坡度角大小定量计算剥蚀速率的空间分布,以确定不同高程区域对河砂岩屑样品组分的贡献量.然后根据区域地质特征建立多种可能的热史年龄-高程关系,并模拟计算出与设定的年龄-高程关系相对应的河砂年龄概率分布曲线.最后,通过对模拟河砂年龄概率分布曲线与实测分布曲线的匹配度进行卡方检验,选取最可能形成实测河砂年龄分布的年龄-高程关系,即代表了流域真实的热史演化.通过河砂岩屑磷灰石裂变径迹方法将该模型应用于藏东南地区察隅河两条支流桑曲和贡日嘎布曲流域,模拟计算结果表明两个地区的热史演化均具有多阶段的特征,桑曲流域在38~7Ma之间均匀冷却,对应的剥露速率约为0.14km/Ma,7 Ma以来剥露速率加快,达到1.62km/Ma;贡日嘎布曲的热史年龄记录比桑曲新,18~14 Ma的隆升速率为0.32km/Ma,14~8 Ma比较稳定;8 Ma以来隆升速率逐渐加快,8~5 Ma对应的隆升速率为0.21km/Ma,5~3 Ma为0.43km/Ma,3~1.1 Ma为0.83km/Ma.桑曲的模拟计算结果与前人利用该区域基岩年龄数据所揭示的热史演化特征及剥露速率基本吻合,表明该方法可以准确模拟河砂岩屑年龄所代表的流域热史特征.因此,在地形险峻或者冰川覆盖而无法获取基岩样品的野外地区,可以通过采集河砂样品替代基岩剖面模拟地质体热史特征.  相似文献   

5.
黑河流域胡杨适宜生境分布模拟   总被引:1,自引:0,他引:1  
胡杨(Populus euphratica)是中国干旱区内陆河流域河岸林的主要树种,是干旱内陆河流域绿洲生存和发展的天然屏障.胡杨潜在分布信息对于内陆河流域绿洲环境保护与恢复起关键作用,但是目前很少有研究尝试利用精确可靠的物种分布模型(Species distribution model, SDM)预测胡杨地在此类地区的潜在空间分布.文章基于胡杨的分布点位数据及29个环境因子并利用MaxEnt模型预测胡杨在黑河流域的潜在地理分布.结果表明:在黑河流域,胡杨潜在的适宜生境面积为820km2,主要集中在流域下游的河岸带地区.同时,为了证明本研究中使用方法的优越性,我们分别构建了其他两组对照模型,包括基于不同的环境因子的MaxEnt模型及基于相同的胡杨点位分布数据和29种环境因子数据构建的其他8种不同算法的胡杨分布模型.结果表明:在文章构建的所有模型中,基于29种环境因子的MaxEnt模型建模效果最好,该模型能够精确地描绘胡杨林在黑河流域的基本分布特征.同时,模型比较结果表明:在充足可靠的环境因子数据的基础上, MaxEnt模型能够更加合理地模拟极端干旱区的物种分布.本研究结果表明,黑河流域胡杨的适宜生境面积远大于现有分布区面积,因此对胡杨的生态保护及管理应优先考虑其适宜生境分布区.本研究可以为不断退化的胡杨河岸森林带的保护和管理提供参考.  相似文献   

6.
在半湿润半干旱地区,下垫面条件复杂,产流机制混合多变,而现有的水文模型由于其固定的结构和模式,无法灵活地模拟不同下垫面特征的洪水过程.本文利用CN-地形指数法将流域划分为超渗主导子流域和蓄满主导子流域.将新安江模型(XAJ)、新安江-Green-Ampt模型(XAJG)和Green-Ampt模型(GA)相结合,在子流域分类的基础上构建空间组合模型(SCMs),并在半湿润的东湾流域和半干旱的志丹流域进行检验.结果表明:东湾流域的参数由水文模型来主导;而志丹流域的参数受主导径流影响很大.在东湾流域,偏蓄满的模型模拟结果优于偏超渗的模型,且SCM2模型(XAJ和XAJG的组合模型)的模拟效果最好(径流深合格率为75%,洪峰合格率75%);而SCM5模型(GA和XAJG的组合模型)在以超渗产流为主的志丹流域模拟最好(径流深合格率53.3%,洪峰合格率53.3%).在半干旱半湿润流域,SCMs模型结构灵活,在地形和土壤数据的驱动下,具有更合理的模型结构和参数,模拟精度较高,适应性较强.  相似文献   

7.
为考虑洪水预报误差的空间变化,提出一种基于微分响应的流域产流分单元修正方法.该方法建立了各单元流域产流与流域出口流量之间的微分响应关系,采用正则化最小二乘法结合逐步迫近进行反演求解,将产流误差估计量分配给相应单元流域实现流域产流分单元修正.将构建的方法应用于大坡岭流域和七里街流域进行新安江模型产流修正,比较分析了流域产流分单元修正、流域面平均产流修正和自回归修正的效果.结果表明:流域产流分单元修正效果优于流域面平均产流修正;随着预见期的增大,产流微分响应修正效果优于自回归修正.该方法通过汇流系统将流域出口断面流量信息进行分解用于修正各单元流域产流,有利于提高实时洪水预报精度.  相似文献   

8.
基于SWAT模型的南四湖流域非点源氮磷污染模拟   总被引:7,自引:2,他引:5  
李爽  张祖陆  孙媛媛 《湖泊科学》2013,25(2):236-242
本文利用SWAT模型结合实测数据,对南四湖流域2001-2010年年均非点源氮磷污染进行模拟,分析了南四湖流域非点源氮磷负荷空间分布特征,计算各河流流域对南四湖湖区污染的贡献率,并对非点源氮磷污染严重的关键区进行识别.研究表明:(1)先模拟湖东和湖西的两个典型小流域的非点源氮磷污染,并将模型推及整个南四湖流域,该方法不仅提高了计算效率,且得到了较好的模拟结果.通过对比发现,湖东的模拟效果要好于湖西,一定程度上说明SWAT模型在起伏较大的地区能取得更高的精度.(2)南四湖流域非点源氮磷污染严重,几乎所有区域的氮负荷超标,40%以上的区域磷负荷超标严重.湖东非点源氮磷污染较湖西严重,其中洸府河流域是南四湖湖区非点源氮磷污染的主要贡献者.(3)通过对径流量、泥沙负荷、氮负荷、磷负荷的相关分析可以得出,南四湖流域非点源氮负荷以溶解态为主,随径流进入水体;非点源磷负荷以吸附态为主,随泥沙进入水体.  相似文献   

9.
依据四川盆地和其西部高原地区1549个地面重力实测点数据,利用基于‘消去-恢复’思想的最小二乘配置方法,将EGM2008地球重力场模型给出的自由空气重力异常与地面实测自由空气重力异常两种数据进行融合,并对其适用性加以验证分析.计算结果表明,在四川高原地形起伏剧烈的山地,利用采样间隔4 km的地面测点,通过该数据融合方法能将模型值与实测值的标准差从41.9 mGal(10~(-5)ms~(-2))提高到11.6 mGal,平均差异从-105.4 mGal提高到-0.5 mGal;在龙泉山以东较为平坦的盆地区域,间隔8 km的地面测点密度就可以将模型标准差从5.2 mGal提高到1.9 m Gal,平均差异从-16.8 mGal提高到-0.1 mGal.上述不同地面测点分布密度对数据融合结果影响的分析表明,在地形起伏的山地,要将模型标准差控制在10 mGal左右,必须将地面测点密度控制在2 km以内;在平坦的盆地或平原地区,地面测点60 km间隔采样就可以将EGM2008模型值标准差校正到5 mGal左右.  相似文献   

10.
EGM2008地球重力模型数据在中国大陆地区的精度分析   总被引:9,自引:1,他引:8  
本文介绍了5′×5 ′的EGM2008地球重力模型及其在全球的精度评价.按照地形变化规律,将中国大陆大致分为7个区域,在10 km网度上,将EGM2008地球重力模型数据与中国地面实测空间重力网格数据进行了对比.由于数据源的问题,中国大陆的模型数据精度普遍低于北美和欧洲.二种数据在地形平坦的东部地区差别较小,向西随着地形复杂程度的增加,二种数据之间的标准差从小于10 mGal增大到50多mGal.畸变点分析表明精度极低的网格点均分布在地形起伏大的地区.总体而言,5′×5′的EGM2008地球重力模型数据在中国大陆将近80%的面积上的精度可达10 mGal之内,可用于小比例尺重力编图和构造研究.在地形起伏较大的中国西部以青藏高原为例进一步比较了EGM2008重力模型和重力测点数据,结果表明在重力点分布稀疏不均匀的地区,平面网格数据难以准确表达重力场信息.由于缺少地面重力数据控制,EGM2008重力模型数据在中国西部精度较低,但模型数据依然在很大程度上提高了空间重力异常信息的丰富程度.将中国区域重力调查成果数据应用于地球模型的构建是一项有意义的工作.  相似文献   

11.
Hydrological models at a monthly time‐scale are important tools for hydrological analysis, such as in impact assessment of climate change and regional water resources planning. Traditionally, monthly models adopt a conceptual, lumped‐parameter approach and cannot account for spatial variations of basin characteristics and climatic inputs. A large requirement for data often severely limits the utility of physically based, distributed‐parameter models. Based on the variable‐source‐area concept, we considered basin topography and rainfall to be two major factors whose spatial variations play a dominant role in runoff generation and developed a monthly model that is able to account for their influences in the spatial and temporal dynamics of water balance. As a hybrid of the Xinanjiang model and TOPMODEL, the new model is constructed by innovatively making use of the highly acclaimed simulation techniques in the two existing models. A major contribution of this model development study is to adopt the technique of implicit representation of soil moisture characteristics in the Xinanjiang model and use the TOPMODEL concept to integrate terrain variations into runoff simulation. Specifically, the TOPMODEL topographic index ln(a/tanβ) is converted into an index of relative difficulty in runoff generation (IRDG) and then the cumulative frequency distribution of IRDG is used to substitute the parabolic curve, which represents the spatial variation of soil storage capacity in the Xinanjiang model. Digital elevation model data play a key role in the modelling procedures on a geographical information system platform, including basin segmentation, estimation of rainfall for each sub‐basin and computation of terrain characteristics. Other monthly data for model calibration and validation are rainfall, pan evaporation and runoff. The new model has only three parameters to be estimated, i.e. watershed‐average field capacity WM, pan coefficient η and runoff generation coefficient α. Sensitivity analysis demonstrates that runoff is least sensitive to WM and, therefore, it can be determined by a prior estimation based on the climate and soil properties of the study basin. The other two parameters can be determined using optimization methods. Model testing was carried out in a number of nested sub‐basins of two watersheds (Yuanjiang River and Dongjiang River) in the humid region in central and southern China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, evapotranspiration and runoff, over the watershed. With a minimal requirement for input data and parameterization, this terrain‐based distributed model is a valuable contribution to the ever‐advancing technology of hydrological modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In order to expand the application range of the classic Topographic Index model (TOPMODEL) and develop a more appropriate submodel of hydrological processes for use in the land surface model, two types of TOPMODEL are investigated, one with saturated hydraulic conductivity change with depth obeying exponential law (classical e-TOPMODEL or e-TOPMODEL for short) and the other obeying general power law (general p-TOPMODEL or p-TOPMODEL for short). Using observation date in the Suomo River catchment located in the upper reaches of the Yangtze River, the sensitivity study of the p-TOPMODEL was conducted and the simulated results from the model were examined and evaluated first, and then the results were compared with the results from the e-TOPMODEL to find the similarities and differences between the two types of models. The main conclusions obtained from the above studies are (1) topographic index and its distribution derived from the p-TOPPMODEL for the Suomo Basin are sensitive to changes of parameter n and m; (2) changes of n and m have impacts on the simulation results of various hydrological components (such as daily runoff, monthly averaged runoff, monthly averaged surface runoff and subsurface runoff), but have the weaker impacts on forty-year averaged total runoff; and (3) for the same value of m, the simulated results of e-TOPMODEL display higher surface runoff and lower subsurface runoff than the general p-TOPMODEL does but multi-year averaged total runoffs produced from the two types of TOPMODEL show insignificant difference. The differences between the two types of models indicate that it is necessary to pay close attention to correct selection from different hydrological models for use in land surface model development. The result mentioned above is useful to provide some referential information for the model selection.  相似文献   

14.
Abstract

Abstract Current research suggests that strategies to control sediment and phosphorus loss from non-point sources should focus on different runoff components and their spatial and temporal variations within the river basin. This is a prerequisite for determining effective management measures for reducing diffuse source pollution. Therefore, non-point source models, especially in humid climatic regions, should consider variable hydrologically active source areas. These models should be able to consider runoff generation by saturated overland flow, as well as Hortonian overland flow. A combination of the hydrological model WaSiM-ETH and the erosion and P-transport model AGNPS was chosen for this study. The models were run in the WaSiM runoff generation mode (Green & Ampt/TOPMODEL or Richards equation approach) and the SCS curve number mode to assess the effect of these different runoff calculation procedures on the dissolved phosphorus yield. A small and a medium-sized river basin, of the area of 1.44 and 128.9 km2, respectively, in central Germany were selected for the investigation. The results show that the WaSiM–AGNPS coupling produces more accurate results than the SCS curve number method. For the spatial distribution, the more physically-based model approach computed a much more realistic distribution of water and phosphorus yield-producing areas.  相似文献   

15.
With the objective of improving flood predictions, in recent years sophisticated continuous hydrologic models that include complex land‐surface sub‐models have been developed. This has produced a significant increase in parameterization; consequently, applications of distributed models to ungauged basins lacking specific data from field campaigns may become redundant. The objective of this paper is to produce a parsimonious and robust distributed hydrologic model for flood predictions in Italian alpine basins. Application is made to the Toce basin (area 1534 km2). The Toce basin was a case study of the RAPHAEL European Union research project, during which a comprehensive set of hydrologic, meteorological and physiographic data were collected, including the hydrologic analysis of the 1996–1997 period. Two major floods occurred during this period. We compare the FEST04 event model (which computes rainfall abstraction and antecedent soil moisture conditions through the simple Soil Conservation Service curve number method) and two continuous hydrologic models, SDM and TDM (which differ in soil water balance scheme, and base flow and runoff generation computations). The simple FEST04 event model demonstrated good performance in the prediction of the 1997 flood, but shows limits in the prediction of the long and moderate 1996 flood. More robust predictions are obtained with the parsimonious SDM continuous hydrologic model, which uses a simple one‐layer soil water balance model and an infiltration excess mechanism for runoff generation, and demonstrates good performance in both long‐term runoff modelling and flood predictions. Instead, the use of a more sophisticated continuous hydrologic model, the TDM, that simulates soil moisture dynamics in two layers of soil, and computes runoff and base flow using some TOPMODEL concepts, does not seem to be advantageous for this alpine basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Two distributed parameter models, a one‐dimensional (1D) model and a two‐dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event‐based and represent each watershed by an array of 1‐m2 cells, in which the cell size is approximately equal to the average area of the shrubs. Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite‐difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second‐order predictor–corrector finite‐difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions. The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large‐scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Because the traditional Soil Conservation Service curve‐number (SCS‐CN) approach continues to be used ubiquitously in water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed and tested a distributed approach for applying the traditional SCS‐CN equation to watersheds where VSA hydrology is a dominant process. Predicting the location of source areas is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non‐point‐source pollution. The method presented here used the traditional SCS‐CN approach to predict runoff volume and spatial extent of saturated areas and a topographic index, like that used in TOPMODEL, to distribute runoff source areas through watersheds. The resulting distributed CN–VSA method was applied to two subwatersheds of the Delaware basin in the Catskill Mountains region of New York State and one watershed in south‐eastern Australia to produce runoff‐probability maps. Observed saturated area locations in the watersheds agreed with the distributed CN–VSA method. Results showed good agreement with those obtained from the previously validated soil moisture routing (SMR) model. When compared with the traditional SCS‐CN method, the distributed CN–VSA method predicted a similar total volume of runoff, but vastly different locations of runoff generation. Thus, the distributed CN–VSA approach provides a physically based method that is simple enough to be incorporated into water quality models, and other tools that currently use the traditional SCS–CN method, while still adhering to the principles of VSA hydrology. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
In this study a simple modelling approach was applied to identify the need for spatial complexity in representing hydrological processes and their variability over different scales. A data set of 18 basins was used, ranging between 8 and 4011 km2 in area, located in the Nahe basin (Germany), with daily discharge values for over 30 years. Two different parsimoniously structured models were applied in lumped as well as in spatially distributed according to two distribution classifications: (1) a simple classification based on the lithology expressed in three permeability types and (2) a more complex classification based on seven dominating runoff production processes. The objective of the study was to compare the performances of the models on a local and on a regional scale as well as between the models with a view to identifying the accuracy in capturing the spatial variability of the rainfall‐runoff relationships. It was shown that the presence of a specific basin characteristic or process of the distribution classification was not related with higher model performance; only a larger basin size promoted higher model performance. The results of this study also indicated that the permeability generally contained more useful information on the spatial heterogeneity of the hydrological behaviour of the natural system than did a more detailed classification on dominating runoff generation processes. Although model performance was slightly lower for the model that used permeability as a distribution classification, consistency in its parameter values was found, which was lacking with the more complex distribution classification. The latter distribution classification had a higher flexibility to optimize towards the variability of the runoff, which resulted in higher performance, however, process representation was applied inconsistently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This research develops a one-parameter model of saturated source area dynamics and the spatial distribution of soil moisture. The single required parameter is the maximum soil moisture deficit within the catchment. The concept behind the development of the model comes from the fact that the complexity of topographically-driven runoff generation can be reduced through the use of geomorphological scaling relations. The scaling formulation allows the prediction of the dynamics of saturated source areas as a function of basin-wide soil moisture state. This model offers a number of potential advantages. Firstly, the model parameter is independent of topographic index distribution and its associated scale effects. Secondly, it may be possible to measure this single parameter using field measurements or perhaps remote sensing, which gives the model significant potential for application in ungauged basins. Finally, the fact that this parameter is a physical characteristic of the basin, estimation of this parameter avoids regionalization and parameter transferability problems. The model is tested using rainfall–runoff data from the 10.4 ha experimental catchment known as Tarrawara in Australia, the 37 km2 Town Creek catchment in U.S.A., and the 620 km2 Balaphi and the 850 km2 Likhu sub-catchments of the Koshi river in Nepal. In sub-catchments of Koshi river, the simulation results compare favorably against the calibrated TOPMODEL both in terms of direct runoff and the spatial distribution of soil moisture state. In the Tarrawara and Town Brook catchments, simulation results compare favorably against observed storm runoff using all observed data, without calibration.  相似文献   

20.
Abstract

This study modified the BTOPMC (Block-wise TOPMODEL with the Muskingum-Cunge routing method) distributed hydrological model to make it applicable to semi-arid regions by introducing an adjustment coefficient for infiltration capacity of the soil surface, and then applied it to two catchments above the dams in the Karun River basin, located in semi-arid mountain ranges in Iran. The application results indicated that the introduced modification improved the model performance for simulating flood peaks generated by infiltration excess overland runoff at a daily time scale. The modified BTOPMC was found to fulfil the need to reproduce important signatures of basin hydrology for water resource development, such as annual runoff, seasonal runoff, low flows and flood flows. However, it was also very clear that effective model use was significantly constrained by the scarcity of ground-gauged precipitation data. Considerable efforts to improve the precipitation data acquisition should precede water resource development planning.

Editor D. Koutsoyiannis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号