首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
通过分析 2 0 0 1年昆仑山口西MS8.1地震前后的GPS资料和 1 979— 2 0 0 2年的水准测量资料 ,获得了地表同震位移场。利用这些同震位移数据 ,以震后详细野外地质调查破裂数据为约束 ,反演了破裂断层面上的同震滑动分布。结果表明 ,破裂下界深度为 1 4 .2~ 2 1km(70 %置信区间 ) ,最佳破裂深度 1 7km。虽然在太阳湖段和主破裂带西端的中间区域未观测到地表破裂 ,但反演的结果表明此区域存在 2~ 3m左右的左旋水平走滑 ,与InSAR资料分析得到的结果一致。地表以下的破裂西端止于太阳湖段 ,而东端似乎在地表破裂迹线以东 30km范围内仍存在 1 .5~ 2 .0m的左旋滑动。反演的垂直位移表明断层在东经 93°以西部分大体表现为南盘上升 ,而东经 93°以东部分表现为北盘上升。由大地测量和地表破裂调查得到的地震矩释放为 6 .1× 1 0 2 0 N·m ,与地震波资料的反演结果基本一致  相似文献   

2.
利用日本ALOS-2和欧空局Sentinel-1A卫星获得的尼泊尔地震同震形变场,结合GPS同震位移数据,联合反演了断层滑动分布特征和空间展布.结果表明:尼泊尔地震的同震形变场主要集中在150km×100km的范围内,且分为南北两个相邻的形变中心,南形变中心的视线向抬升量约为1.2m,北形变中心的视线向沉降量约为0.8m,均位于发震断层上盘.位于形变抬升区的KKN4和NAST两个GPS站,抬升量和南向运动量均达到了m级,而远离震区的其他GPS台水平和垂直观测量均在1cm以内.联合反演得到的断层位错分布主要集中在沿走向150km,沿倾向70km的范围内,最大滑动量为5.59m,平均滑动量为0.94m.断层面倾角在浅部约为7°,随着深度增加,倾角逐渐变大,到垂直深度20km时倾角接近12°;5月12日MW7.2级余震位于主震破裂区的"凹"型滑动缺损区域;主震破裂区的上边界与MBT空间位置十分吻合,主震破裂区主要集中的MBT以北50~60km处,垂直深度为8~9km,倾角为9°,继续向北时主震破裂面以10°~12°的倾角向深延伸,在18~20km可能与MHT交汇.因此,初步判定MBT为此次地震的发震断层.  相似文献   

3.
利用现代空间大地测量技术,尤其是卫星合成孔径雷达干涉测量,能够获取高精度、高空间分辨率的同震和孕震形变,为地震断层形变和破裂机制研究提供了前所未有的机遇。本文介绍了利用大地测量观测数据反演地震断层位错模型参数的贝叶斯反演方法。联合运用2008汶川大地震前后GNSS和InSAR技术观测获得的同震位移,反演了地震断层的几何参数和滑动位错分布。研究结果表明,汶川地震的断层滑动主要集中在倾角较陡的浅部,同时包含逆冲和右旋走滑,其中最大逆冲6.1m,最大右旋6.5m。根据断层滑动分布正演计算得到的上盘同震位移明显小于下盘,预示该断层两侧孕震形变可能存在较大的不对称性。  相似文献   

4.
根据喜马拉雅断裂系的构造形态,采用缓倾角反铲型断层模型模拟MHT上地震破裂部分的坡坪式发震构造。利用Alos-2及Sentinel-1获取的InSAR数据,反演获得了2015年尼泊尔Gorkha地震及其最大余震Kodari地震的同震滑动分布模型。与单独利用Alos-2或Sentinel-1 InSAR数据的反演结果相比,利用Alos-2和Sentinel-1 InSAR数据联合反演能够提供Gorkha地震破裂的更多细节信息,尤其对深部信息的约束更加明显。联合反演得到的破裂深度最大可达24km,穿过了该区域的闭锁线,到达了闭锁和蠕滑的转换区域。反演的断层模型倾角在3°~10°之间,最大滑动量出现在地下17km处,约4.5m。Gorkha地震和Kodari地震发震性质相似,都是发生在MHT断层上的低角度逆冲型地震,其中Gorkha地震略带右旋分量。反演结果还显示,Gorkha地震与Kodari地震的破裂滑动在空间上存在互补性,Kodari地震就发生在Gorkha地震的破裂空区内。通过计算Gorkha地震对Kodari地震发震断层的库仑破裂应力加载,发现Kodari地震震中恰位于库伦破裂应力正负交界区域,库仑破裂应力加载达0.4MPa,表明Kodari地震可能受到了Gorkha地震的触发。  相似文献   

5.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki&Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方,其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki&Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

6.
王敏 《地球物理学报》2009,52(10):2519-2526
2008年5月12日发生在四川汶川的大地震造成映秀—北川断裂和灌县—江油断裂同时破裂,分别形成了240多公里和70多公里的地表破裂带.本文以GPS观测获得的同震位移场为约束,反演地震破裂的空间分布.反演结果显示映秀—北川主破裂带倾向北西,沿破裂带的走向从南到北倾角逐渐变大,破裂断层的平均宽度在10~18 km左右.破裂断层的错动在南段以逆冲为主,在北段走滑分量逐步加大,右旋走滑成为断层破裂的主要特征.断层破裂最大段落错动量分别达到了7.8 m和7.4 m,恰好对应这次地震中地表破坏最为严重的映秀和北川地区.本次地震释放地震矩6.70×1020N·m,相应矩震级Mw=7.9.  相似文献   

7.
Yabuki & Matsu'ura反演方法是利用ABIC最佳模型参数选取方法和平滑的滑动分布作为约束条件,由形变观测数据计算发震断层滑动分布.本文基于日本列岛同震GPS观测数据和发震断层曲面构造模型,利用Yabuki & Matsu'ura反演方法计算2011年日本东北地区太平洋海域Mw9.0级地震的发震断层同震滑动分布.反演结果表明,断层面上的最大滑动量为35 m,较大滑动分布在浅于30 km的震源中心上部,最大破裂集中在20 km深度的地方.其地震矩约为3.63×1022N·m,对应的矩震级为Mw9.0.模拟结果显示Yabuki & Matsu'ura反演方法更适用于倾角低于40°的断层模型反演.最后,本文基于上述方法获得的发震断层滑动模型,利用地球体位错理论正演计算该地震在中国及其邻区产生的远场形变,正演计算结果基本可以解释由中国GPS陆态网络观测到的同震形变.  相似文献   

8.
2021年5月22日青海省果洛藏族自治州玛多县发生MS7.4地震,震中位于青藏高原中部的巴颜喀拉块体,这是近20多年来在巴颜喀拉块体周边发生8次M≥7级强震后,块体内部的一次强震,也是汶川地震以来中国大陆发生的最大一次地震,因此该地震的成因及周边地区未来的地震危险性值得重点关注.本文利用震后及时获取的39个近场流动GNSS观测,联合61个GNSS连续观测、Sentinel-1和ALOS-2 InSAR观测获取了本次地震精细的同震形变场,以此为约束,基于均匀弹性半无限位错模型,反演了发震断层的滑动分布,并计算了同震库仑应力变化.GNSS水平同震形变十分显著,断层南北两侧的GNSS点位,最大水平形变分别达0.7 m和-1.2 m,距震中200 km的测点仍有1 cm左右的同震形变.Sentinel-1和ALOS-2的升降轨InSAR同震形变场显示此次地震造成了约160 km长的地表破裂,最大视线向形变分别达0.9 m和1.2 m.同震滑动分布模型显示,发震断层由主段和次段组成,长度分别为170 km和20 km,主段倾向北,倾角85°,平均滑动角为-4.36°,表明玛多地震是一次典型的走滑型地震.次段倾向南,倾角68°,平均滑动角为-11.84°.地震破裂主要集中在0~15 km深度范围,最大滑动量为4.4 m,对应深度6.97 km.反演给出的矩震量为1.61×1020N·m,对应矩震级MW7.4.主发震断层上存在4个凹凸体,玛多地震是一次不对称双侧破裂事件.结合余震精定位、野外调查及地质资料,我们认为主发震断裂为昆仑山口—江错断裂,东部的次级破裂与主破裂机制不同.同震库仑应力结果显示,东昆仑断裂玛沁段应力有所增加(>0.01 MPa),处于应力加载状态,未来发生强震的危险性较高.  相似文献   

9.
郝明  王庆良  崔笃信  李煜航 《地震研究》2012,(3):323-329,441
通过分析2008年汶川8.0级地震前后的GPS观测资料和1983~2010年的精密水准观测资料,得到地表同震位移场。结合野外地质调查,反演了汶川地震同震断层几何模型和断层面上滑动分布。反演结果表明:北川—映秀断裂是一个铲形断层,长度为180km,地表倾角为62°,随指数函数形式逐渐变缓,深度18km,断层面滑动以逆冲为主;青川断裂长为120km,倾角为58°,断层面上走滑分量由南向北逐渐增加;灌县—江油断裂为纯逆冲断层,长度为80km,倾角35°。整个断层模型中最大错动量达到7.6m,对应破坏最严重的北川地区。本次地震释放的地震矩为7.62×1020N·m,相应矩震级为MW7.9。反演所得模型对于近场的水准观测资料和GPS观测资料拟合很好。  相似文献   

10.
陈伟  刘泰  佘雅文  付广裕 《地震》2021,41(4):121-135
基于黏弹性球体位错理论, 联合陆地和海底同震GPS数据以及日本本岛330个陆地GPS站点5~10年的震后数据, 反演了日本MW9.0地震的断层滑动模型, 提升了断层滑动分布在细节上的合理性。 首先, 基于日本本岛330个陆地GPS站点震前2年和震后10年的连续观测数据, 获取了日本MW9.0地震震后5~10年的年平均位移, 该时段的位移几乎完全由地幔黏弹性松弛效应引起; 接着, 利用黏弹性球体位错理论对震后5~10年的位移进行反复拟合, 确定了日本MW9.0地震震源及周边地区的地幔黏滞性系数最优解(9.0×1018 Pa·s)。 然后, 联合同震和震后位移数据, 引入黏弹性位错格林函数, 反演了2011年日本MW9.0地震的断层滑动分布。 结果表明, 该地震同震破裂的最大值达到了62.72 m, 同震滑动的总地震矩为4.48×1022 Nm, 相应的矩震级为MW9.03。 由于黏弹性松弛效应引起的震后位移中包含了同震破裂的信息, 基于黏弹性球体地震位错理论, 联合同震和震后位移数据反演断层同震破裂, 有效提高了日本MW9.0地震断层滑动分布的可靠性。 最后, 本文提出的反演方法为同震观测结果缺乏的大地震震后科考提供了理论支撑: 在大地震发生之后, 即使在同震期间没有足够的观测数据, 也可以在震后通过对震源区的加密观测积累的震后数据, 使用本文提出的反演方法优化同震断层滑动模型。  相似文献   

11.
薛莲  孙建宝  沈正康 《地震地质》2011,33(1):157-174
2010年1月12日GMT时间21时53分,在海地境内(72.57°W,18.44°N)发生了Mw7.0地震.文中利用干涉合成孔径雷达(InSAR)方法获得了覆盖整个震区的高精度形变观测资料,用以研究该地震的发震机理.采用ALOs PALSAR数据,分析了轨道、大气等误差源对干涉信号的影响,最终获得了雷达视线向(LOS...  相似文献   

12.
利用2001年 Mw 78 可可西里强震InSAR同震测量结果,反演了青藏高原北部东昆仑断裂两侧地壳弹性介质差异.InSAR测量结果显示断层南侧的同震位移比北侧的大20%~30%.根据人工地震反射剖面建立岩石圈模型,以断层两侧杨氏模量差异和震源破裂深度为反演变量,通过有限元方法模拟实测得到的同震位移剖面.反演得到最佳断层破裂深度为20~22km,断层南侧杨氏模量相对北侧比值为81%~92%.结果表明,断层两侧弹性介质性质存在明显差异,由于构造运动作用,断层南部地壳不及北部地壳坚硬.前人利用地震层析成像和大地电磁测深等手段推断青藏高原内昆仑山断裂以南可可西里-羌塘地块地壳内广泛发育低速高导层,我们通过形变场力学分析得到与此相一致的结果.  相似文献   

13.
2001年昆仑山口西MS8.1地震经历了一个复杂的破裂过程,其破裂长、幅度大、破裂速度多变,成为大陆型地震研究的典型地震。本文融合近场高精度大地测量观测(4幅InSAR影像,34个GPS点位同震位移)和高信噪比远震波形记录,基于有限断层反演理论,联合反演得到该地震同震破裂时空过程的统一模型;同时,基于欧洲区域台网波形数据,利用反投影方法获得高频破裂的时空展布。联合反演结果表明,破裂自西向东传播的过程中走向有所变化,破裂尺度达400km,最大滑移量达8m,地震矩大小为6.1×1020Nm,对应的矩震级MW为7.78。主断层破裂经历了3个阶段,其中,超剪切破裂阶段对应最大位错区域,破裂到达西大滩段与昆仑山口断层交叉处时,破裂速度与尺度迅速下降。反投影结果同样显示破裂的3个阶段空间上对应大地测量反演的3个最大破裂区,最大破裂区的扩展速度达6km/s,但超剪切破裂终止在断层交叉口东部约30km处断层走向发生转变的位置。  相似文献   

14.
In this paper, we briefly describe the principle of tracking energy radiation sources of large earthquakes using fre- quency-domain far-field array technique, present general steps of tracking energy radiation sources, and take the 2001 Kunlun Mountain Pass earthquake as an example to analyze key factors for setting parameters while pro- cessing data. Using broadband waveform data from a seismic array in Ethiopia and Kenya (EK Array), we obtain that the rupture initiation point of the 2001 Kunlun Mountain Pass earthquake is located in the east of Buka Daban Peak (35.92°N, 91.70°E), and the rupture duration time is less than 160 s, the rupture length about 520 km, with 180 km in the west of the initiation point and 340 km in the east, respectively. The western segment of the earth- quake fault bends towards southwest near Buka Daban Peak, which is in concordance with the surface rupture trace. The eastern segment apparently bends towards northeast near Xidatan, which is in agreement with the strike of Xidatan fault, but 30 km away from Xidatan fault. In addition, the results imply that the western segment of the earthquake fault appears erect while the eastern segment appears to be gradually dipping southwards.  相似文献   

15.
We study the surface deformation associated with the 22 December 1999 earthquake, a moderate sized but damaging event at Ain Temouchent (northwestern Algeria) using Interferometric Satellite Aperture Radar images (InSAR). The mainshock focal mechanism solution indicates reverse faulting with a NE–SW trending rupture comparable to other major seismic events of this section of the Africa–Eurasia plate boundary. Previously, the earthquake fault parameters were, however, poorly known because no aftershocks were precisely determined and no coseismic surface ruptures were observed in the field. Using a pair of ERS data with small baseline and short temporal separation in the ascending orbit we obtained an interferogram that shows the coseismic surface displacement field despite poor coherence. The interferogram measures four fringes and displays an ellipse-shaped lobe with ∼11 cm peak line-of-sight displacement. The elastic modeling using a boundary element method (Poly3Dinv) indicate coseismic slip reaching up to 1 m at 5 km depth on the N 57° E trending, dipping 32° NW Tafna thrust fault. The geodetic estimate of seismic moment is 4.7 × 1017 N m. (Mw 5.7) in is good agreement with seismological results. The elliptical shape of the surface displacement field coincides with the NE–SW trending Berdani fault-related fold. The consistency between the geological observations and InSAR solution shed light on the precise earthquake location and related Tafna fault parameters.  相似文献   

16.
史保平  杨勇 《地震学报》2008,30(3):217-229
利用2001年昆仑山口西MS8.1地震现场观测所提供的地表破裂同震位移数据,使用简单滑移弱化破裂模型,估算了发震主断层上的破裂传播速度. 该模型中考虑了断层破裂时动摩擦过程中应力上调和下调机制对地震波辐射能量分配的影响. 对比Bouchon和Valleacute;e有关昆仑山口西地震主断层破裂传播速度超过剪切波速度,甚至达到P波速度的结果, 采用动摩擦应力下调时的滑移弱化模型 (分数应力降模型),结果表明,伴随较高的地震波辐射效率,主断层的平均破裂传播速度等于或小于瑞利波速度,这与许力生和陈运泰的体波反演结果,以及陈学忠震源应力场估算的结果是一致的. 最后,联系到由地表破裂现象所反映出的断层力学特征,如与视应力相关的分数应力降 (动摩擦应力下调), 基于滑移弱化模型, 讨论了可能的震源破裂机制.   相似文献   

17.
2008年5.12汶川大地震发生在中国大陆南北地震带中段.由于龙门山断裂带历史上只发生过3次6~61/2级强震,而且其晚第四纪构造活动速率很低,以至于对其潜在地震危险性认识不足.为什么在龙门山地区突发大地震,该地震具有哪些特征?其成因机制是什么?本文在地震地质科学考察的基础上,利用震前的GPS观测结果,试图对上述问题进行一些初步的思考和探讨.结果表明,5.12汶川大地震是龙门山断裂带的映秀—北川断裂突发错动的结果,地表上形成200多公里长的地表破裂带;灌县—江油断裂在地震中也发生了破裂,形成的地表破裂带长达60多公里.震前的GPS观测表明,横跨整个龙门山断裂带的滑动速率不超过~2 mm/yr,单条断裂的活动速率不超过~1 mm/yr,与地震地质研究结果和历史地震记录相一致.利用地震地质考察和地震波反演得到的最大同震位移可以获得相当于5.12汶川大地震的强震复发周期为2000~6000年.龙门山断裂带发育在破裂强度很大的变质杂岩体中,断裂带本身在剖面上呈“犁形”或“铲形”结构,有利于能量积累,形成破坏性巨大的地震.所以,5.12汶川大地震是一次低滑动速率、长复发周期和高破坏强度的巨大地震,是一种值得高度重视和深入研究的新的地震类型.  相似文献   

18.
2011年3月11日日本发生9.0级地震,本文以此次地震的震间、同震和震后形变观测为约束,依据不同时段断层运动空间分布特征分析日本海沟地区强震与断层运动间关系.震间日本海沟地区,断层运动闭锁线深度约为60km,闭锁线以上从深到浅依次为断层运动强闭锁段、无震滑移段和弱闭锁段.由同震位错反演结果,2011年日本9.0级地震同震存在深浅两个滑移极值区,同震较浅的滑移极值区(同震位错量10~50m,深度小于30km)震间为断层弱闭锁段;同震较深的滑移极值区(同震位错量10~20m,深度在40km左右)震间为断层强闭锁段;而在两者之间的过渡带同震位错相对较小,震间断层运动表现为无震滑移.震后初期断层运动主要分布在在闭锁线以上的同震较深滑移极值区,而同震较浅的滑移极值区能量释放比较彻底,断层震后余滑量相对较小.依据本文同震和震间断层运动反演结果,震间强闭锁段积累10m同震位错需要100多年时间,与该区域历史上7级地震活动复发周期相当;震间弱闭锁段积累30~50m同震位错约需要300~600年时间,与相关研究给出的日本海沟9级左右地震复发周期比较一致.在实际孕震能力判定的工作中,由于不同性质的断层段在同震过程中会表现更多的组合形式,断层发震能力判定结果存在更多的不确定性,但利用区域形变观测等资料给出震间断层运动特征的研究工作对于断层强震发震能力的判定具有非常重要的实际意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号