首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
亚洲中东部“塑性流动-地震”网络系统及板内构造单元   总被引:1,自引:0,他引:1  
对于地震的网络状分布特征的研究表明,在亚洲的中东部地区存在着两个网络系统,即分布于大部分地区的中东亚网络系统和位于其东南的华东南网络系统。根据多层构造模型,这些地震网络系统实际上是岩石圈下层(含下地壳和岩石圈地幔)塑性流动网络的一种显示。每一“塑性流动-地震”网络系统为不同类型的边界所围限,其中包括一段驱动边界以及若干段约束边界和泄流边界。本地区的两个塑性流动网络系统分别以喜马拉雅弧和台湾弧为驱动边界,对板块内部的构造变形、构造应力场、地震活动性、以及构造单元(亚板块、地体等)的划分起着控制的作用。  相似文献   

2.
大陆板内塑性流动波与地震迁移(一)   总被引:11,自引:7,他引:4       下载免费PDF全文
王绳祖  张宗淳 《地震地质》1994,16(4):289-297
大陆岩石圈下层的网络状塑性流动,通过能量的远距离传递,控制着板内地震的空间分布,而脉动式塑性流动波的传播决定了地震的迁移。根据地震时、空分布特征的分析结果,以喜马拉雅碰撞带为驱动边界的中东亚网络系统主要存在着两种塑性流动波,波速的沿网带分量分别约为1~7km/a和12~45km/a,边界起波的时间间隔平均为93.7a和10.8a,分别称之为“百年波”和“十年波”。塑性流动波的波峰带为地震的发生提供必要的能量背景条件  相似文献   

3.
王绳祖  张流 《地震地质》2002,24(1):69-80
文中所述华北地区位于中东亚塑性流动网络系统的东部 (偏北 ) ,在岩石圈下层内含右向和左向塑性流动网带多条 ,受其控制 ,在其上方多震层内形成地震带 ,并导致上层构造应力场在总趋势上与下层基本保持一致。发震断裂以不同交角沿网带展布 ,组成地震构造带 ,其中少数地震构造带的视成熟度较高 ,多数尚属未成熟的准地震构造带  相似文献   

4.
亚洲中东部地区塑性流动波(“慢波”)与地震活动   总被引:4,自引:0,他引:4       下载免费PDF全文
王绳祖  张宗淳 《地震地质》2004,26(1):91-101
根据先前相似模型实验的结果 ,在板块边界驱动下 ,沿岩石圈下层 (含下地壳和岩石圈地幔 )传播的塑性流动波包括“快波”和“慢波” ,二者均属于黏性重力波 ,并分别由主波和辅波叠加而成。“快波”以 10 0 ~ 10 2 km/a量级的速度传播 ,已为塑性流动波控制下地震迁移的研究所证实。文中根据 7级以上强震的条带状分布图像 ,证明在喜马拉雅弧驱动下还存在着波速仅为 10 0 ~ 10 1m/a量级的“慢波” ,其中对 7级以上强震起控制作用的主要是“慢波”的辅波 ,其平均波长为 4 45km ,波速为 0 81~ 2 80m/a ,周期为 0 .16~ 0 .5 5Ma。“慢波”的边界起波时间距今约 1.34~ 4 .6 6Ma ,相当于上新世中期至早更新世中期 ,与喜马拉雅构造运动的主要活跃期 (幕 )之一相吻合。以喜马拉雅弧西段和东段为波源所形成的2个“慢波”系统的波峰带相互重叠 ,为 7级以上强震的发生提供了必要的能量背景  相似文献   

5.
基于大陆岩石圈塑性流动网络和塑性流动波的观念,地震迁移主要表现为塑性流动波控制下地震沿网带的迁移。中东亚网络系统存在着两种以上的塑性流动波,其中与地震中期预测有关的是“十年波”和“百年波”。它们具有不同的起波年份、起波期和波峰带,而各期波的优势传播方向和有效作用范围又有所不同。两种波的波峰带相互叠合形成双重波峰区,其中有“塑性流动-地震”网带经过的区段为地震提供必要的能量背景条件,构成能量背景区。对中国大陆1976年震情的检验表明,6.0~7.8级地震共19次,约有90%分布在相应震级范围的能量背景区内  相似文献   

6.
岩石圈塑性流动波的实验研究(Ⅱ)   总被引:4,自引:4,他引:0       下载免费PDF全文
岩石圈塑性流动波的物理模拟实验表明 ,在板块边界驱动下 ,模型中除了产生“快波”(波速量级大致相当于原型的 10 0 ~ 10 2 km/a)外 ,还存在着相当于原型波速量级为 10 - 1~ 10 0 m/a的“慢波”。“慢波”也可分解为主波和辅波 ,主波类似于涌波 (孤立波 ) ,辅波则以波群的方式传播 ,二者均系粘性重力波。板块边界的驱动作用通过不同波速的多重塑性流动波向板内传播 ,控制地震能量背景的起伏振荡 ,并导致缓慢构造运动的韵律性变化  相似文献   

7.
On deposits controlled by tectonic lenses   总被引:1,自引:0,他引:1  
Tectonic lenses (e.g., boudinage structures,pinch-and-swell structures) are common geologicalstructures observed in various scales ranging fromseveral hundreds of kilometers (e.g., lenticular terranesor massifs) in orogenic belts to a few millimeters (e.g.,core-mantle structures and porphyroclasts) in petro-graphic thin-sections. The most frequently observedtectonic lenses are those developed in metamorphicrocks where compositional layers with distinctrheological strengths coexist. No matter h…  相似文献   

8.
中东亚大陆塑性流动网络控制下构造变形的物理模拟   总被引:11,自引:1,他引:10       下载免费PDF全文
以塑化松香和干凝滑石粉浆分别作为岩石圈延性下层(下地壳及岩石圈地幔)和脆性上层(上部地壳)的相似材料,就亚洲中东部大陆在板块边界推挤作用下的构造变形进行了模拟实验。初步结果表明,本地区在印度板块和菲律宾海板块的推挤下,形成两个塑性流动网络系统,它们控制了岩石圈上层构造变形,在分布格局上大致与地震的网络状分布相对应;东北部可能存在另一规模较小、作用较弱的驱动边界及相应的网络系统,由于它的影响,导致华北北部构造带和地震带的扭曲。实验还表明,大型压性盆地的形成与岩石圈下层稳定块体的存在有关  相似文献   

9.
青藏高原岩石圈多层构造应力场   总被引:3,自引:0,他引:3  
王绳祖 《地震》2002,22(3):21-26
青藏高原构造应力场可按岩石圈下层、多震层和浅层地壳区分为三层。除了震源机制解方法和井孔原地测量方法可分别用于推测多震层和浅层的应力状况外,还可根据下层塑性流动网络,采用平分网络共轭角的方法估计下层的应力方向。对比岩石圈下层与上层(多震层)的构造应力场,其结果表明: 由于板块边缘驱动力主要通过下层的网络状流动实现其远程传递,故在总体作用趋势上,上层的应力方向受控于下层;又由于高原靠近喜马拉雅驱动边界,部分驱动力直接沿上层传递,致使局部地区上、下层应力方向相差显著。  相似文献   

10.
任建业  雷超 《地球物理学报》2011,54(12):3303-3314
通过对盆地地震剖面构造-地层的详细解释,在莺歌海盆地和琼东南盆地(简称莺-琼盆地)古近纪同裂陷充填序列中识别出一条区域性的构造变革界面——T70,该界面在地震剖面上表现为显著的下削上超的地震反射结构特征,发育的时代为32~30 Ma,与南海海底扩张起始和红河断裂带左旋走滑的时间一致;T70界面将莺-琼盆地的同裂陷期地层...  相似文献   

11.
3-D velocity structure in the central-eastern part of Qilianshan   总被引:4,自引:0,他引:4  
Introduction The central-eastern part of Qilianshan, located along the northeastern margin of Qing-hai-Xizang (Tibetan) plateau, belongs to the Qilian tectonic zone with active neotectonic move-ment. The main active faults are Haiyuan-Qilian fault, Gulang-Tianjingshan fault and Huang-cheng-Taerzhuang fault. The research area in this paper is a rectangle (Figure 1), the location of the four apex are: A(37.50N, 101.60E), B(36.55N, 103.74E), C(37.20N, 104.20E) and D(38.15N, 102.04E). In…  相似文献   

12.
The coincidence of orogenic belts containing zones of high pressure metamorphism, ophiolites and deepwater sediments with faunal province boundaries leads to the postulation of several sutural zones within Asia. About nine blocks are defined and it is suggested on the basis of palaeogeographical, palaeontological and tectonic evidence that Asia did not fuse completely until well into the Mesozoic.  相似文献   

13.
One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo- Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma).  相似文献   

14.
The highly heterogeneous strain field indicated by neotectonic and seismological data in the central-eastern Mediterranean region has been reproduced, at a first approximation, by finite element modelling, of a 2D elastic thin plate. The zone considered is modelled as a mosaic of poorly deformable zones decoupled by highly deformable belts, simulating the major tectonic structures indicated by geological and geophysical evidence. The deformation of the model is obtained by imposing kinematic boundary conditions, representative of the motion of Africa and eastern Anatolia relative to Eurasia. Experiments carried out with different boundary conditions and model parameterisations have provided information on the sensitivity of the model and some insights into the geodynamic behavior of the study area. The deformation pattern of the central Mediterranean area is strongly conditioned by the mechanical properties assumed in the border zones between the Aegean and Adriatic systems. The match of the complex strain pattern observed in the western Anatolian–Aegean–Balkan zones is significantly favoured if high rigidity is assigned to the inner part of this structural system. A motion of Africa with respect to Eurasia compatible with an Eulerian pole located offshore Portugal best accounts for the observed strains in the central Mediterranean region. The match of the strongly heterogeneous strain field observed in the study area can hardly be achieved by simplified models not including major tectonic features and lateral heterogeneity of mechanical properties. The kinematic field resulting from the model configuration which best simulates the observed strain field presents some differences with respect to geodetic measurements in the Aegean–Western Anatolian area, where the computed velocities are systematically lower than the geodetic ones. It is suggested that the most plausible explanation of such differences is related to the fact that the present deformation pattern, inferred from geodetic data, may be different from the middle–long term one, inferred from seismological and geological data.  相似文献   

15.
王绳祖 《地震地质》2005,27(2):260-272
根据“网状塑性流动”大陆动力学模型,岩石圈的变形方式由浅层脆性向深层延性的转变以及岩石圈下层网状塑性流动的控制作用,导致板块内部的多层构造变形。GPS方法或断层错动反演方法所测定的只是浅表地壳。多震层的应变速率可用“地震复发间隔法”,根据先后两次地震的复发间隔和后发地震的发震概率予以估计。基于岩石圈下层塑性流动网络共轭角与挤压变形之间的关系,可运用“共轭角法”估计该层的应变,并结合对于变形时间的估计,进一步推算网络的特征应变速率。文中给出了亚洲中东部地区岩石圈下层特征应变速率的等值线图,其数量级为10-15~10-14/s。控制多震层地震活动的主要是塑性流动网带,其应变速率大于网络的特征应变速率,除此以外,多震层的应变速率还受到驱动边界的直接作用、塑性流动波和上下层之间非连续分布软弱层的影响。根据青藏高原至华北平原11个潜在震源区所在地段多震层应变速率与岩石圈下层特征应变速率的对比分析,除临汾盆地1处偏差较大外,其余10处两者间表现出显著的线性相关,其比值β平均为1.75,分布范围为1.25~2.25。文中建议在进行中长期地震预测时,可根据岩石圈下层特征应变速率等值线图,结合比值β的引入,粗略地估计各潜在震源  相似文献   

16.
藏东南及周边地区地震活动特征研究   总被引:1,自引:0,他引:1  
张浪平  邵志刚  晏锐 《地震》2011,31(3):9-18
藏东南及周边地区是印度板块与欧亚板块动力碰撞的影响区, 该区历史地震活动强烈, 曾发生过1950年墨脱—察隅8.6级和1951年当雄8.0级地震。 本文首先介绍藏东南及周边地区的地质构造背景, 其次通过考察该地区强震活动情况和活动地块边界带相关段落的加卸载响应比(LURR)时序特征, 分析了研究区的强震活动状态。 从历史地震活动看, 安达曼弧地区与喜马拉雅东构造结地区强震活动存在一定的动力关联, 当前研究区域的周边动力环境表现为安达曼弧地区地震活动强烈和东构造结地区的持续平静。 从地震活动图像看, 1980年以来6级以上地震在藏东南及周边地区已经形成空区, 表现类似于1950年墨脱—察隅地震前的空间分布特征。 从活动地块边界带相关段落LURR时序特征看, 喜马拉雅带东段现处于高应力状态, 其次为澜沧江带与三江带。  相似文献   

17.
More than 80 percent of strong earthquakes(M≥7.0)occur in active-tectonic block boundaries in mainland China, and 95 percent of strong earthquake disasters also occur in these boundaries. In recent years, all strong earthquakes(M≥7.0)happened in active-tectonic block boundaries. For instance, 8 strong earthquakes(M≥7.0)occurred on the eastern, western, southern and northern boundaries of the Bayan Har block since 1997. In order to carry out the earthquake prediction research better, especially for the long-term earthquake prediction, the active-tectonic block boundaries have gradually become the key research objects of seismo-geology, geophysics, geodesy and other disciplines. This paper reviews the research results related to seismic activities in mainland China, as well as the main existing recognitions and problems as follows: 1)Most studies on seismic activities in active-tectonic block boundaries still remain at the statistical analysis level at present. However, the analysis of their working foundations or actual working conditions can help investigate deeply the seismic activities in the active-tectonic block boundaries; 2)Seismic strain release rates are determined by tectonic movement rates in active-tectonic block boundaries. Analysis of relations between seismic strain release rates and tectonic movement rates in mainland China shows that the tectonic movement rates in active-tectonic block boundaries of the eastern region are relatively slow, and the seismic strain release rates are with the smaller values too; the tectonic movement rates in active-tectonic block boundaries of the western region reveal higher values, and their seismic strain rates are larger than that of the eastern region. Earthquake recurrence periods of all 26 active-tectonic block boundaries are presented, and the reciprocals of recurrence periods represent high and low frequency of seismic activities. The research results point out that the tectonic movement rates and the reciprocals of recurrence periods for most faults in active-tectonic block boundaries exhibit linear relations. But due to the complexities of fault systems in active tectonic block boundaries, several faults obviously deviate from the linear relationship, and the relations between average earthquake recurrence periods and tectonic movement rates show larger uncertainties. The major reason is attributed to the differences existing in the results of the current earthquake recurrence studies. Furthermore, faults in active-tectonic boundaries exhibit complexities in many aspects, including different movement rates among various segments of the same fault and a certain active-tectonic block boundary contains some parallel faults with the same earthquake magnitude level. Consequently, complexities of these fault systems need to be further explored; 3)seismic activity processes in active-tectonic block boundaries present obvious regional characteristics. Active-tectonic block boundaries of the eastern mainland China except the western edge of Ordos block possess clustering features which indicate that due to the relatively low rate of crustal deformation in these areas, a long-time span is needed for fault stress-strain accumulation to show earthquake cluster activities. In addition, active-tectonic block boundaries in specific areas with low fault stress-strain accumulation rates also show seismic clustering properties, such as the clustering characteristics of strong seismic activities in Longmenshan fault zone, where a series of strong earthquakes have occurred successively, including the 2008 M8.0 Wenchuan, the 2013 M7.0 Lushan and the 2017 M7.0 Jiuzhaigou earthquakes. The north central regions of Qinghai-Tibet Plateau, regarded as the second-grade active-tectonic block boundaries, are the concentration areas of large-scale strike-slip faults in mainland China, and most of seismicity sequences show quasi-period features. Besides, most regions around the first-grade active-tectonic block boundary of Qinghai-Tibet Plateau display Poisson seismic processes. On one hand, it is still necessary to investigate the physical mechanisms and dynamics of regional structures, on the other hand, most of the active-tectonic block boundaries can be considered as fault systems. However, seismic activities involved in fault systems have the characteristic of in situ recurrence of strong earthquakes in main fault segments, the possibilities of cascading rupturing for adjacent fault segments, and space-time evolution characteristics of strong earthquakes in fault systems. 4)The dynamic environment of strong earthquakes in mainland China is characterized by “layering vertically and blocking horizontally”. With the progresses in the studies of geophysics, geochemistry, geodesy, seismology and geology, the physical models of different time/space scales have guiding significance for the interpretations of preparation and occurrence of continental strong earthquakes under the active-tectonic block frame. However, since the movement and deformation of the active-tectonic blocks contain not only the rigid motion and the horizontal differences of physical properties of crust-mantle medium are universal, there is still need for improving the understanding of the dynamic processes of continental strong earthquakes. So it is necessary to conduct in-depth studies on the physical mechanism of strong earthquake preparation process under the framework of active-tectonic block theory and establish various foundation models which are similar to seismic source physical models in California of the United States, and then provide technological scientific support for earthquake prevention and disaster mitigation. Through all kinds of studies of the physical mechanisms for space-time evolution of continental strong earthquakes, it can not only promote the transition of the study of seismic activities from statistics to physics, but also persistently push the development of active-tectonic block theory.  相似文献   

18.
The tectonic stresses can significantly affect the propagation of a magma-filled crack. It has been pointed out that the rheological boundaries control the emplacement of magmas through the effect of stress. However, it has not been clarified how the role of rheological boundaries depends on the regional tectonic and thermal states. We have evaluated the role of rheological boundaries under various tectonic and thermal conditions and found that the level of magma emplacement may jump according to the changes in the tectonic force or the surface heat flow. The stress profiles were estimated by a simple model of lithospheric deformation. We employed a three-layer model of the lithosphere; the upper crust, the lower crust and the upper mantle have different rheological properties. A constant horizontal force is applied to the lithosphere, and the horizontal strain is assumed to be independent of depth. When realistic tectonic forces (>1011 N/m) are applied, the rheological boundaries mainly control the emplacement of magma. The emplacement is expected at the MOHO, the upper–lower crust boundary, and the brittle–ductile boundary. For lower tectonic forces (<1011 N/m), the tectonic stress no longer plays an important role in the emplacement of magmas. When the tectonic stress controls the emplacement, the roles of rheological boundaries strongly depend on the surface heat flow. When the surface heat flow is relatively high (>80 mW/m2), the stress in the mantle is quite low and the MOHO cannot trap ascending magmas. For relatively low heat flow (<80 mW/m2), on the other hand, the MOHO acts as a magma trap, and the upper–lower crust boundary acts as a magma trap only when the magma supply rate is sufficiently high. Our results suggest that the emplacement depth can change responding to the change in the tectonic force and/or that in the surface heat flow. This may provide us a key to understand the relation between the evolution of a volcanic region and its tectonic and/or thermal history.  相似文献   

19.
The Yanshan movement/orogeny has been proposed for 90 years, which is of special significance in the history of geological research in China. This study conducted a review by synthesizing major achievements regarding episodic deformation features, sedimentary and magmatic records of the Yanshan orogeny in China, and clarified the episodic tectono-magmatism and its geodynamic origins. The tectonic implications of the Yanshan orogeny are discussed in the context of global plate tectonics and supercontinent reconstruction. Lines of evidence from structural, sedimentary and magmatic data suggest that the Yanshan orogeny represents a regional-scale tectonic event that affected the entire China continent in late Mesozoic period. Numerous age and structural constraints consistently indicate that the Yanshan orogeny was initiated in the Jurassic(at ~170±5 Ma). and was characterized by alternating stages of crustal shortening at ~170–136 Ma, crustal extension at ~135–90 Ma, and weak shortening at ~80 Ma. The 170–136 Ma crustal shortening was reflected in the generation of two regional stratigraphic unconformities(the Tiaojishan and Zhangjiakou unconformities), which were initially named the A and B episodes of "the Yanshan Orogeny" by Mr.Wong Wenhao in 1928. Geodynamically, the Yanshan orogeny in East Asia was associated with nearly coeval oceanic subduction and continental convergence in the Paleo-Pacific, Neo-Tethys, and Mongol-Okhotsk tectonic domains. As a consequence, three giant accretionary-collisional tectonic systems were formed along the continental margins of East Asia, i.e., the Mongol-Okhotsk, Bangonghu-Nujiang, and SE China subduction-and collision-related accretionary systems. The Yanshan orogeny induced widespread crustal-scale folding and thrusting, tectonic reactivation of long-lived zones of crustal weakness,and extensive magmatism and mineralization in intraplate regions. Based on the time principle of supercontinent assembly and break-up, we propose that the mid-Late Jurassic multi-plate convergence in East Asia might represent the initiation of the assembly of the Amasia supercontinent, and the Yanshan orogeny might be the first "stirrings" that is a prerequisite for the birth of the Amasia supercontinent.  相似文献   

20.
The question concerning the integrity of major tectonic plates is still unclear for several regions covering the plate junction zones. The Northeast Asia is one such region, where there is no common concept of the configuration of plate boundaries. From the classical viewpoint, the dynamics of Northeast Asia is determined by the superposition of the relative rotations of the three major plates (Eurasian, North American and Pacific). According to the alternative viewpoint, the fragments that were split from these plates rotate independently in the form of microplates (Bering, Okhotsk, and Amur). The analysis of kinematics for the GPS stations located in eastern Chukotka, western Alaska, and on the Bering Sea islands suggests the existence of the Bering microplate rotating clockwise relative to the North American plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号