首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the estimates of surface drifter trajectories from 1 to 7?days in the equatorial Atlantic over an 18-month period with five eddying ocean general circulation model (OGCM) reanalyses and one observational product. The cumulative distribution of trajectory error was estimated using over 7,000?days of drifter trajectories. The observational product had smaller errors than any of the individual OGCM reanalyses. Three strategies for improving trajectory estimates using the ensemble of five operational ocean analysis and forecasting products were explored: two methods using a multi-model ensemble estimate and also spatial low-pass filtering. The results were insensitive to the method used to create the ensemble estimates, and by most measures, the results were better than the observational product. Comparison of relative skill of the various OGCM reanalyses suggested promising avenues for exploration for further improvements: forcing with higher frequency wind stress and quality control of input data. One of the lowest horizontal resolution OGCMs, with 1/4° longitude horizontal resolution, made the best trajectory estimates. The individual OGCMs were dominated by errors at spatial scales smaller than about 100 to 200?km, i.e., less than the local deformation radius. But buried in those errors were valuable signals that could be retrieved by combining all the OGCM velocity fields to produce a multi-model ensemble-based estimate. This estimate had skill down to spatial scales about 75?km. Results from this study are consistent with previous work showing that ensemble-mean forecast skill is superior to individual forecasts.  相似文献   

2.
A main conclusion following the oil spill from the Prestige tanker was that improvements in ocean circulation models were necessary; this was in order to predict, more accurately, the trajectories followed by the oil slicks and hence assist in fight against oil pollution operations. In this contribution, the results of the validation of a semi-empirical ocean circulation model, parameterised for the Bay of Biscay and forced with operational oceano-meteorological remote sensing observations, are shown. The model results have been validated with observations from drifting buoys, deployed in the Bay of Biscay during the crisis. The results show that the model explains a relatively large percentage of the current variability. The comparisons between the real and the estimated drifter trajectories indicate that for 3, 5 and 7 day-long trajectories, the drifter position is estimated with errors of approximately 23, 35 and 46km, respectively. The model reproduces relatively well the trajectory followed by the drifter with the shortest period (23 days).  相似文献   

3.
Two very high-frequency radars (VHFR) operating on the Opal coast of eastern English Channel provided a nearly continuous 35-day long dataset of surface currents over a 500 km2 area at 0.6–1.8 km resolution. Argo drifter tracking and CTD soundings complemented the VHFR observations, which extended approximately 25 km offshore. The radar data resolve three basic modes of the surface velocity variation in the area, that are driven by tides, winds and freshwater fluxes associated with seasonal river discharge. The first mode, accounting for 90% of variability, is characterized by an along-shore flow pattern, whereas the second and third modes exhibit cross-shore, and eddy-like structures in the current velocity field. All the three modes show the dominant semi-diurnal variability and low-frequency modulation by the neap-spring tidal cycle. Although tidal forcing provides the major contribution to variability of local currents, baroclinicity plays an important role in shaping the 3D velocity field averaged over the tidal cycle and may strongly affect tracer dynamics on larger time scales. An empirical orthogonal function (EOF) decomposition and a spectral rotary analysis of the VHFR data reveal a discontinuity in the velocity field occurring approximately 10 km offshore which was caused by the reversal in the sign of rotation of the current vector. This feature of local circulation is responsible for surface current convergence on ebb, divergence on flood and strong oscillatory vertical motion. Spectral analysis of the observed currents and the results of the Agro drifter tracking indicate that the line of convergence approximately follows the 30-m isobath. The most pronounced feature of the radar-derived residual circulation is the along-coast intensification of surface currents with velocity magnitude of 0.25 m/s typical for the Regions of Freshwater Influence (ROFI). The analysis has provided a useful, exploratory examination of surface currents, suggesting that the circulation off the Opal coast is governed by ROFI dynamics on the hypertidal background.  相似文献   

4.
Accurate short-term prediction of surface currents can improve the efficiency of search-and-rescue operations, oil-spill response, and marine operations. We developed a linear statistical model for predicting surface currents (up to 48?h in the future) based on a short time history of past HF-radar observations (past 48?h) and an optional forecast of surface winds. Our model used empirical orthogonal functions (EOFs) to capture spatial correlations in the HF-radar data and used a linear autoregression model to predict the temporal dynamics of the EOF coefficients. We tested the developed statistical model using historical observations of surface currents in Monterey Bay, California. The predicted particle trajectories separated from particles advected with HF-radar data at a rate of 4.4?km/day. The developed model was more accurate than an existing statistical model (drifter separation of 5.5?km/day) and a circulation model (drifter separation of 8.9?km/day). When the wind forecast was not available, the accuracy of our model degraded slightly (drifter separation of 4.9?km/day), but was still better than existing models. We found that the minimal length of the HF-radar data required to train an accurate statistical model was between 1 and 2?years, depending on the accuracy desired. Our evaluation showed that the developed model is accurate, is easier to implement and maintain than existing statistical and circulation models, and can be relocated to other coastal systems of similar complexity that have a sufficient history of HF-radar observations.  相似文献   

5.

Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.

  相似文献   

6.
Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.  相似文献   

7.
The prediction of drifting object trajectories in the ocean is a complex problem plagued with uncertainties. This problem is usually solved simulating the possible trajectories based on wind and advective numerical and/or instrumental data in real time, which are incorporated into Lagrangian trajectory models. However, both data and Lagrangian models are approximations of reality and when comparing trajectory data collected from drifter exercises with respect to Lagrangian models results, they differ considerably. This paper introduces a stochastic Lagrangian trajectory model that allows quantifying the uncertainties related to: (i) the wind and currents numerical and/or instrumental data, and (ii) the Lagrangian trajectory model. These uncertainties are accounted for within the model through random model parameters. The quantification of these uncertainties consists in an estimation problem, where the parameters of the probability distribution functions of the random variables are estimated based on drifter exercise data. Particularly, it is assumed that estimated parameters maximize the likelihood of our model to reproduce the trajectories from the exercise. Once the probability distribution parameters are estimated, they can be used to simulate different trajectories, obtaining location probability density functions at different times. The advantage of this method is that it allows: (i) site specific calibration, and (ii) comparing uncertainties related to different wind and currents predictive tools. The proposed method is applied to data collected during the DRIFTER Project (eranet AMPERA, VI Programa Marco), showing very good predictive skills.  相似文献   

8.
Satellite sensors increasingly provide high-resolution (HR) observations of the ocean. They supply observations of sea surface height (SSH) and of tracers of the dynamics such as sea surface salinity (SSS) and sea surface temperature (SST). In particular, the Surface Water Ocean Topography (SWOT) mission will provide measurements of the surface ocean topography at very high-resolution (HR) delivering unprecedented information on the meso-scale and submeso-scale dynamics. This study investigates the feasibility to use these measurements to reconstruct meso-scale features simulated by numerical models, in particular on the vertical dimension. A methodology to reconstruct three-dimensional (3D) multivariate meso-scale scenes is developed by using a HR numerical model of the Solomon Sea region. An inverse problem is defined in the framework of a twin experiment where synthetic observations are used. A true state is chosen among the 3D multivariate states which is considered as a reference state. In order to correct a first guess of this true state, a two-step analysis is carried out. A probability distribution of the first guess is defined and updated at each step of the analysis: (i) the first step applies the analysis scheme of a reduced-order Kalman filter to update the first guess probability distribution using SSH observation; (ii) the second step minimizes a cost function using observations of HR image structure and a new probability distribution is estimated. The analysis is extended to the vertical dimension using 3D multivariate empirical orthogonal functions (EOFs) and the probabilistic approach allows the update of the probability distribution through the two-step analysis. Experiments show that the proposed technique succeeds in correcting a multivariate state using meso-scale and submeso-scale information contained in HR SSH and image structure observations. It also demonstrates how the surface information can be used to reconstruct the ocean state below the surface.  相似文献   

9.
Samples of bottom sediment taken in an area used for marine dumping of sewage sludge were examined for the presence of Escherichia coli and coliform bacteria. Using a simple membrane filtration technique, an extensive network of stations was sampled and examined at sea in under two days. The results obtained were in good agreement with seabed drifter and radioactive tracer studies, and suggest that the use of bacterial indices may be a useful means of estimating the distribution of sewage sludge solids in bottom sediments.  相似文献   

10.
The National High Frequency (HF) Surface Current Mapping Radar Network is being developed as a backbone system within the U.S. Integrated Ocean Observing System. This paper focuses on the application of HF radar-derived surface current maps to U.S. Coast Guard Search and Rescue operations along the Mid-Atlantic coast of the USA. In that context, we evaluated two algorithms used to combine maps of radial currents into a single map of total vector currents. In situ data provided by seven drifter deployments and four bottom-mounted current meters were used to (1) evaluate the well-established unweighted least squares (UWLS) and the more recently adapted optimal interpolation (OI) algorithms and (2) quantify the sensitivity of the OI algorithm to varying decorrelation scales and error thresholds. Results with both algorithms were shown to depend on the location within the HF radar data footprint. The comparisons near the center of the HF radar coverage showed no significant difference between the two algorithms. The most significant distinction between the two was seen in the drifter trajectories. With these simulations, the weighting of radial velocities by distance in the OI implementation was very effective at reducing both the distance between the actual drifter and the cluster of simulated particles as well as the scale of the search area that encompasses them. In this study, the OI further reduced the already improved UWLS-based search areas by an additional factor of 2. The results also indicated that the OI output was relatively insensitive to the varying decorrelation scales and error thresholds tested.  相似文献   

11.
《Continental Shelf Research》1999,19(9):1221-1245
This paper presents some recent results of drifters released on the West Florida Shelf during 1996–1997 and compares with the numerical model results of the wind-driven circulation. Using satellite tracked surface drifters during the one year period from February 1996 to February 1997, a drifter free region, called the “forbidden zone”, is found over the southern portion of the West Florida Shelf. This finding is consistent with historical drift bottle data and with a recent numerical model study of the West Florida Shelf circulation response to climatological wind forcing. Direct drifter simulations by numerical model during March 1996 show a good agreement with both the in situ ADCP current observation and drifter observation. Three mechanisms are proposed for the observed Lagrangian features. The primarily dynamic mechanism is the along-shore wind forcing, which induces a coastal jet that tends to leave the coast and the bottom onshore and near surface offshore transports. The second one is the convergent coastal geometry and bottom topography for the southward flow in central shelf near Tampa Bay that enforces the coastal jet and the bottom and near surface transport. The last is a kinematic one, simply due to the short along-shore Lagrangian excursion, driven by the typical synoptic weather systems. Thus near surface shelf waters over the north may not reach the southern coast of the West Florida. Implication is that surface hazard such as oil spill that may occur outside of the southern West Florida shelf may not greatly impact the southern coastal region except Florida Keys. However, the biological and chemical patches over the north that may occur in the water column such as red tides still can easily reach the southern coastal region through the subsurface and bottom waters.  相似文献   

12.
The greater Agulhas Current is one of the most energetic current systems in the global ocean. It plays a fundamental role in determining the mean state and variability of the regional marine environment, affecting its resources and ecosystem, the regional weather and the global climate on a broad range of temporal and spatial scales. In the absence of a coherent in-situ and satellite-based observing system in the region, modelling and data assimilation techniques play a crucial role in both furthering the quantitative understanding and providing better forecasts of this complicated western boundary current system. In this study, we use a regional implementation of the Hybrid Coordinate Ocean Model and assimilate along-track satellite sea level anomaly (SLA) data using the Ensemble Optimal Interpolation (EnOI) data assimilation scheme. This study lays the foundation towards the development of a regional prediction system for the greater Agulhas Current system. Comparisons to independent in-situ drifter observations show that data assimilation reduces the error compared to a free model run over a 2-year period. Mesoscale features are placed in more consistent agreement with the drifter trajectories and surface velocity errors are reduced. While the model-based forecasts of surface velocities are not as accurate as persistence forecasts derived from satellite altimeter observations, the error calculated from the drifter measurements for eddy kinetic energy is significantly lower in the assimilation system compared to the persistence forecast. While the assimilation of along-track SLA data introduces a small bias in sea surface temperatures, the representation of water mass properties and deep current velocities in the Agulhas system is improved.  相似文献   

13.
14.
We investigate the influence of spatial heterogeneities on various aspects of brittle failure and seismicity in a model of a large strike-slip fault. The model dynamics is governed by realistic boundary conditions consisting of constant velocity motion of regions around the fault, static/kinetic friction laws, creep with depth-dependent coefficients, and 3-D elastic stress transfer. The dynamic rupture is approximated on a continuous time scale using a finite stress propagation velocity (quasidynamic model). The model produces a brittle-ductile transition at a depth of about 12.5 km, realistic hypocenter distributions, and other features of seismicity compatible with observations. Previous work suggested that the range of size scales in the distribution of strength-stress heterogeneities acts as a tuning parameter of the dynamics. Here we test this hypothesis by performing a systematic parameter-space study with different forms of heterogeneities. In particular, we analyze spatial heterogeneities that can be tuned by a single parameter in two distributions: (1) high stress drop barriers in near-vertical directions and (2) spatial heterogeneities with fractal properties and variable fractal dimension. The results indicate that the first form of heterogeneities provides an effective means of tuning the behavior while the second does not. In relatively homogeneous cases, the fault self-organizes to large-scale patches and big events are associated with inward failure of individual patches and sequential failures of different patches. The frequency-size event statistics in such cases are compatible with the characteristic earthquake distribution and large events are quasi-periodic in time. In strongly heterogeneous or near-critical cases, the rupture histories are highly discontinuous and consist of complex migration patterns of slip on the fault. In such cases, the frequency-size and temporal statistics follow approximately power-law relations.on leave from CNRS Rennes, France  相似文献   

15.
The seasonal variations of the Kuroshio intrusion pathways northeast of Taiwan were investigated using observational data from satellite-tracked sea surface drifters and a numerical particle-tracking experiment based on a high-resolution numerical ocean model. The results of sea surface drifter data observed from 1989 to 2013 indicate that the Kuroshio surface intrusion follows two distinct pathways: one is a northwestward intrusion along the northern coast of Taiwan Island, and the other is a direct intrusion near the turn of the shelf break. The former occurs primarily in the winter, while the latter exists year round. A particle-tracking experiment in the high-resolution numerical model reproduces the two observed intrusion paths by the sea surface drifters. The three-dimensional structure of the Kuroshio intrusion is revealed by the model results. The pathways, features and possible dynamic mechanisms of the subsurface intrusion are also discussed.  相似文献   

16.
A model for the numerical simulation of tephra fall deposits   总被引:4,自引:2,他引:4  
A simple semianalytical model to simulate ash dispersion and deposition produced by sustained Plinian and sub-Plinian eruption columns based on the 2D advection–dispersion equation was applied. The eruption column acts as a vertical line source with a given mass distribution and neglects the complex dynamics within the eruption column. Thus, the use of the model is limited to areas far from the vent where the dynamics of the eruption column play a minor role. Vertical wind and diffusion components are considered negligible with respect to the horizontal ones. The dispersion and deposition of particles in the model is only governed by gravitational settling, horizontal eddy diffusion, and wind advection. The model accounts for different types and size classes of a user-defined number of particle classes and changing settling velocity with altitude. In as much as wind profiles are considered constant on the entire domain, the model validity is limited to medium-range distances (about 30–200 km away from the source).The model was used to reconstruct the tephra fall deposit from the documented Plinian eruption of Mt. Vesuvius, Italy, in 79 A.D. In this case, the model was able to broadly reproduce the characteristic medium-range tephra deposit. The results support the validity of the model, which has the advantage of being simple and fast to compute. It has the potential to serve as a simple tool for predicting the distribution of ash fall of hypothetical or real eruptions of a given magnitude and a given wind profile. Using a statistical set of frequent wind profiles, it also was used to construct air fall hazard maps of the most likely affected areas around active volcanoes where a large eruption is expected to occur.  相似文献   

17.
A 3D kinematic geodynamo model in a sphere with the conductive solid inner core is considered. The 3D magnetic field and velocity field are resolved in the physical space for r- and -coordinates, whereas the sin- and cos-decomposition is applied to the -coordinate. The additional boundary conditions for the case of non-zero velocity field on the boundaries of the liquid spherical shell and for different magnetic diffusivities of the inner and outer core are applied. The computer code was tested by free decay mode solutions and comparisons were made also with results reported by other authors. This work is a part of a project to study 3D inviscid geodynamo models.  相似文献   

18.
The strong motion of a small long and narrow basin caused by a moderate scenario earthquake is simulated by using the spectral-element method and the parallel computing technique.A total of five different geometrical profiles within the basin are used to analyze the generation and propagation of surface waves and their relation to the basin structures in both the time and frequency domain.The amplification effects are analyzed by the distribution of peak ground velocity(PGV)and cumulative kinetic energy(Ek) in the basin.The results show that in the 3D basin,the excitation of the fundamental and higher surface wave modes are similar to that of the 2D model.Small bowls in the basin have great influence on the amplification and distribution of strong ground motion,due to their lateral resonances when the wavelengths of the lateral surface waves are comparable to the size of the bowls.Obvious basin edge effects can be seen at the basin edge closer to the source for constructive interference between direct body waves and the basin-induced surface waves.The Ek distribution maps show very large values in small bowls and some corners in the basin due to the interference of waves propagating in different directions.A high impedance contrast model can excite more surface wave modes,resulting in longer shaking durations as well as more complex seismograms and PGV and Ek distributions.  相似文献   

19.
A statistical oil spill response model is developed and validated by means of actual oil slick observations reported during the Prestige accident and trajectories of drifter buoys. The model is based on the analysis of a database of hypothetical oil spill scenarios simulated by means of a Lagrangian transport model. To carry out the simulations, a re-analysis database consisting of 44-year hindcast dataset of wind and waves and climatologic daily mean surface currents is used. The number of scenarios required to obtain statistically reliable results is investigated, finding that 200 scenarios provide an optimal balance between the accuracy of the results and the computational effort. The reliability of the model was analyzed by comparing the actual data with the numerical results. The agreement found between actual and numerical data shows that the developed statistical oil spill model is a valuable tool to support spill response planning.  相似文献   

20.
The Strait of Bonifacio is a long and narrow area between Corsica and Sardinia. To manage environmental emergencies related to the spill of oil from vessels, an innovative forecasting system was developed. This tool is capable of operationally predicting the dispersion of hydrocarbon spills in the coastal area of the Bonifacio Strait, either from an instantaneous or continuous spill and either in forward or backward mode. Experimental datasets, including ADCP water current measurements and the trajectories of drifter buoys released in the area, were used to evaluate the accuracy of this system. A comparison between the simulation results and experimental data revealed that both the water circulation and the surface transport processes are accurately reproduced by the model. The overall accuracy of the system in reproducing the transport of an oil spill at sea was estimated for both forward and backward prediction mode and in relation to different forecasting time lags.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号