首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
China is one of the main global centers of origin of agriculture. Foxtail millet (Setaria italica), common millet (Panicum miliaceum), and rice (Oryza sativa) were the first crops to be domesticated in China. There remain many uncertainties and controversies in our current understanding of the chronology, locations, and plant types at the origins and the process of evolution of prehistoric millet and rice farming, and their relationships with climate change and human adaptation. This review summarizes the research progress made by Chinese scientists over the last decade on the origins and evolution of prehistoric agriculture. It highlights novel techniques and methods for identifying early crop remains, including plant macrofossils (carbonized seeds, spikelets), microfossils (phytoliths, calciphytoliths, starch, pollen), and biomarkers; new evidence on the origins, development, and spread of early agriculture; and research related to climate and environmental changes. Further, we pinpoint and discuss existing challenges and potential opportunities for further in-depth investigation of the origins and evolution of agriculture and the adaption of human activities to climate change.  相似文献   

2.
全新世高温期环境变化对太湖流域新石器文化的影响   总被引:9,自引:3,他引:6  
施少华 《湖泊科学》1993,5(2):136-143
从太湖流域新石器时代(包括马家浜、崧泽和良渚三个文化期)文化遗址的分布范围、遗址数量、生产方式和文化特征等多方面,分析了全新世高温期(8—3ka B.P.)环境变化对本地区新石器时期古文化发展的影响。结果表明,全新世高温期暖湿而且较为稳定的气候环境,有利于先民们的生活,促使了本地区新石器文化的飞跃发展,包括原始农业、家畜业的产生和发展,先民们活动范围扩大和遗址数量增加等等。但高温期中存在气候剧烈波动阶段和气候迅速变化的低温事件,以及伴随它们出现的各种严重自然灾害,严重阻碍和限制了古文化的发展,甚至是毁灭性的打击,使得文化性质发生根本的变化。  相似文献   

3.
The occurrence of prehistoric extreme flood events has been the common interest of geologists, geographers and archaeologists. It is recognized that from 5000 aBP to 3000 aBP was a period of extreme floods frequently occurring around the world. For in-stance, flood events have been found in North Amer-ica, rapid sea level rise has been found in both the Black Sea and the Mediterranean Sea, and flooded ancient cities have been found in a number of coast areas[1—6]. In China, records of pre…  相似文献   

4.
This article reviews the potential impacts of climate change on land use change in China. Crop sown area is used as index to quantitatively analyze the temporal–spatial changes and the utilization of the agricultural land. A new concept is defined as potential multiple cropping index to reflect the potential sowing ability. The impacting mechanism, land use status and its surplus capacity are investigated as well. The main conclusions are as following;
  • 1.During 1949–2010, the agricultural land was the greatest in amount in the middle of China, followed by that in the country’s eastern and western regions. The most rapid increase and decrease of agricultural land were observed in Xinjiang and North China respectively, Northwest China and South China is also changed rapid. The variation trend before 1980 differed significantly from that after 1980.
  • 2.Agricultural land was affected by both natural and social factors, such as regional climate and environmental changes, population growth, economic development, and implementation of policies. In this paper, the effects of temperature and urbanization on the coverage of agriculture land are evaluated, and the results show that the urbanization can greatly affects the amount of agriculture land in South China, Northeast China, Xinjiang and Southwest China.
  • 3.From 1980 to 2009, the extent of agricultural land use had increased as the surplus capacity had decreased. Still, large remaining potential space is available, but the future utilization of agricultural land should be carried out with scientific planning and management for the sustainable development.
  相似文献   

5.
邢伟  鲍锟山  韩冬雪  王国平 《湖泊科学》2019,31(5):1391-1402
沼泽湿地是陆地生态系统的重要组成部分,在维护区域环境稳定中起着重要作用.随着社会经济的发展,人类活动导致湿地大面积退化和消失,严重影响了区域生态安全;恢复退化湿地已成为各国政府和学者关注的焦点.而了解历史时期沼泽湿地发育过程及影响因素则是建立合理湿地恢复目标的重要前提.东北地区是我国最大的沼泽湿地集中分布区,其中70%的湿地面临不同程度的退化威胁;但由于数据的缺乏,东北地区沼泽湿地发育过程及其与气候变化的关系仍不清楚.基于此,本研究系统分析了全新世以来东北地区沼泽湿地形成发育的动态变化过程,并探讨了东北地区不同区域沼泽湿地的发育规律及其对气候变化的响应机理.研究发现东北地区沼泽湿地约从12 ka(1 ka=1000 cal.)开始发育,在距今8.6 ka以后开始广泛形成,约有35%的沼泽湿地形成于全新世暖湿期(8.0-4.0 ka);而沼泽湿地发育的高峰期则集中在全新世晚期.这种发育趋势与全球北方主要区域沼泽湿地大规模发育趋势显著不同.古气候重建表明,全新世早期东北地区气候温暖湿润,处在有利于沼泽发育的时期,促进了沼泽湿地的形成;而在全新世晚期,东北地区呈现冷湿的气候组合特征,冷湿的气候条件不利于有机质的分解,进而促进了沼泽湿地的大规模形成和发育.此外,研究结果也表明全新世以来东北地区不同区域沼泽湿地发育的时间和规模呈现显著的空间差异,而温度和降水则是影响不同区域沼泽湿地发育的最重要因素.本研究将为我国东北地区沼泽湿地的保护和恢复提供一定的理论和数据支持.  相似文献   

6.
Communities are facing severe water stress due to the rapid development of agriculture and industry, climate change, as well as population growth. Climate variability has a big impact on runoff variation and it is important to understand these hydrological responses. Using a water balance model, monthly discharges of 21 climatically different catchments in China were simulated. Sensitivities of runoff to climate change were investigated by adopting hypothetical climate scenarios. Results indicate that the water balance model performs well for monthly discharge simulations of climatically different catchments with Nash–Sutcliffe coefficients >65 % and relative errors falling in the range of ±5 %. In general, runoff in arid north China are more sensitive to climate change than those in humid south China. A 1 °C rise in temperature would probably lead to 1.2–4.4 % decreases in runoff. A decrease in precipitation of 10 % would result in 9.4–17.4 % of decreases in runoff. It is essential to consider the implications of climate change in future water resources management.  相似文献   

7.
随着气候与生态问题的不断涌现,气候环境变化与生态系统响应研究的重要性日益凸显,而传统方法逐渐难以满足深入研究的需要.现代分子生物技术的快速发展使针对湖泊沉积物的DNA分析逐渐被引入相关研究中,有效弥补了传统研究方法的不足,为研究者提供了理解过去气候和环境变化、生态系统响应的新视角.湖泊沉积物中的DNA蕴藏着丰富的生物群落演变信息,不仅是重建古气候、古环境变化历史的有力工具,更有助于研究生态系统的长期演化过程及内部机制,探讨气候环境变化及人类活动对生态系统的影响.本文分析了保存在湖泊沉积物中DNA的特点,着重介绍湖泊沉积物DNA分析在气候环境变化及生态系统响应研究中的应用,并对该技术目前存在的挑战、可能的解决方案及未来发展潜力进行了总结与展望.  相似文献   

8.
Terrestrial vegetation is one of the most important components of the Earth’s land surface. Variations in terrestrial vegetation directly impact the Earth system’s balance of material and energy. This paper describes detected variations in vegetation activity at a national scale for China based on nearly 30 years of remote sensing data derived from NOAA/AVHRR (1982–2006) and MODIS (2001–2009). Vegetation activity is analyzed for four regions covering agriculture, forests, grasslands, and China’s Northwest region with sparse vegetation cover (including regions without vegetation). Relationships between variations in vegetation activity and climate change as well as agricultural production are also explored. The results show that vegetation activity has generally increased across large areas, especially during the most recent decade. The variations in vegetation activity have been driven primarily by human factors, especially in the southern forest region and the Northwest region with sparse vegetation cover. The results further show that the variations in vegetation activity have influenced agricultural production, but with a certain time lag.  相似文献   

9.
研究季风区历史时期湖泊环境演化的意义   总被引:11,自引:3,他引:8  
本文首先讨论了历史时期季风区湖泊环境演化研究在古全球变化研究中的地位及其意义,着重强调人与自然相互作用研究以及进行定量研究是该领域的关键所在。综合中国近年来在湖泊沉积与古全球变化研究中取得的成果,提出在该领域研究的一些新的认识与亟待解决的问题。  相似文献   

10.
Sporopollen analysis on a 346 cm peat record at Dahu, Jiangxi, chronologically constrained by 16 AMS 14C datings, provides an opportunity to reconstruct the vegetation evolution stages responding to cli-mate change in South China since the last glacial maximum. The result shows that during 18330-15630 cal a B.P., broad-leaved forest dominated the area, corresponding to mild, cool and fairly humid climate. At the interval of 15630-11600 cal a B.P., several evergreen broad-leaved species appeared within the broad-leaved forest, indicating moderate and humid condition. During early Holocene, broad-leaved evergreen forest community was constructed as Castanopsis/Lithorcarpus principally developed, suggesting a warm and humid scenario until 6000 cal a B. P. Since 6000 cal a B. P., abrupt forest deterioration happened with an contemporary increase of fern and herb communities, repre-senting a turnover to relatively cool and dry condition and as well, possible impact from human activi-ties. Meanwhile, several relatively cool and dry events can be identified in the sporopollen record, they can be correlated to the North Atlantic Heinrich event, YD and Holocene millennial-scale oscillations, implying that the low latitude climate was coupled with high latitude influences. Moreover, the varia-tions of temperature and humidity since LGM at Dahu were much smaller when compared with the re-cords in north monsoonal China.  相似文献   

11.
近50年来环境变化对巢湖硅藻组合演替的影响   总被引:4,自引:3,他引:1  
湖泊生态系统往往受营养、水文和气候等诸多环境因子的影响.区分不同环境因子的影响是揭示湖泊生态环境演化机制的关键.本文基于巢湖岩芯210Pb和137Cs测年、硅藻、地球化学指标和粒度分析结果以及流域水文、气候、人口和农业资料,利用冗余分析,定量区分1950年来营养、水文和气侯对硅藻组合演替的影响.1978年前硅藻组合中A...  相似文献   

12.
Abstract

We developed a water-use conflict analysis framework to determine environmental flows that optimally balance water requirements for ecosystems and human activities. This framework considers trade-offs between water use for ecosystem health and agricultural processes and considers temporal variations in hydrological processes. It comprises three separate models that (a) analyse water balance between agriculture and initial environmental flows, (b) identify outcomes of varying balances in water use, and (c) determine recommended environmental flows for sustainable water use. We applied the framework to a region downstream of the Yellow River in China. Based on our results, we recommend a water management plan that allocates more water to ecosystem services than is currently allocated and that does not increase predicted economic losses. In addition, we found that recommended flows change depending on the ecological objectives considered and whether technologies or methodologies that improve water-use efficiency are employed.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Pang, A., Sun, T., and Yang, Z., 2014. A framework for determining recommended environmental flows for balancing agricultural and ecosystem water demands. Hydrological Sciences Journal, 59 (3–4), 890–903.  相似文献   

13.
Global and climate changes are subject to scientific, societal and political debates. Recent observational evidence and results of global climate models have identified the circumpolar North as a region particularly susceptible to future climate change. To understand and assess the consequences of these changes for environmental and societal components of the European Arctic, the Barents Sea Impact Study (BASIS), an EU-funded integrated regional impact study (IRIS) has been carried out (ENV4-CT-97-0637). In common with global integrated assessments (IAs), IRISs also take a holistic view on climate change and its impact. Contrary to IAs, however, IRISs adopt a regional to sub-regional spatial scale. BASIS was carried out by an interdisciplinary team of specialists from 13 institutions in 6 countries. Major results pertain to impacts of possible climate change on marine and terrestrial ecosystems, freshwater hydrology, marine trace gas budgets, forestry and fishery. However, in this paper we focus on the major methodological aspects of an IRIS in general and on methods applied in BASIS in particular.  相似文献   

14.
全新世高温期我国湖泊沉积和自然环境的基本特征   总被引:5,自引:0,他引:5  
在全新世高温期,我国东部地区湖泊沉积广泛发育,西部地区湖泊扩张和高湖面记录普遍。证实该时期我国大多数地区水热条件与现今相比有不同程度的提高和改善。预测未来,因大气中CO_2倍增时重现全新世高温期的自然环境,总体上讲它有利于我国工农业生产条件的改善和环境质量的提高,但东部平原的洪涝灾害将加剧。  相似文献   

15.
An essential part of hydrological research focuses on hydrological extremes, such as river peak flows and associated floods, because of their large impact on economy, environment, and human life. These extremes can be affected by potential future environmental change, including global climate change and land cover change. In this paper, the relative impact of both climate change and urban expansion on the peak flows and flood extent is investigated for a small‐scale suburban catchment in Belgium. A rainfall‐runoff model was coupled to a hydrodynamic model in order to simulate the present‐day and future river streamflow. The coupled model was calibrated based on a series of measured water depths and, after model validation, fed with different climate change and urban expansion scenarios in order to evaluate the relative impact of both driving factors on the peak flows and flood extent. The three climate change scenarios that were used (dry, wet winter, wet summer) were based on a statistical downscaling of 58 different RCM and GCM scenario runs. The urban expansion scenarios were based on three different urban growth rates (low, medium, high urban expansion) that were set up by means of an extrapolation of the observed trend of urban expansion. The results suggest that possible future climate change is the main source of uncertainty affecting changes in peak flow and flood extent. The urban expansion scenarios show a more consistent trend. The potential damage related to a flood is, however, mainly influenced by land cover changes that occur in the floodplain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Assessment of the impact of changes in climate and land use and land cover (LULC) on ecosystem services (ES) is important for planning regional-scale strategies for sustainability and restoration of ES. The Upper Narmada River Basin (UNRB) in peninsular India has undergone rapid LULC change due to recent agricultural expansion. The impact of future climate and LULC change on ES in the UNRB is quantified and mapped using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST 3.3.0) tool. Our results show that water yield is projected to increase under climate change (about 43% for representative concentration pathway 4.5 for 2031–2040), whereas it is projected to decrease under the LULC change scenario. Sediment export is projected to increase (by 54.53%) under LULC change for 2031–2040. Under the combined effect of climate and LULC change, both water yield and sediment export are expected to increase. Climate change has a greater impact on projected water yield than LULC change, whereas LULC has greater impact on sediment export. Spatial analysis suggests a similar trend of variation in relative difference (RD) of ES in adjacent sub-basins. The quantified changes in ES provisioning will benefit future land management, particularly for operation of the Rani Avanti Bai Sagar Reservoir downstream of the UNRB.  相似文献   

17.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

18.
The obvious decline in stream flow to the Biliu River reservoir over the period 1990–2005 has raised increasing concerns. Climate change and human activities, which mainly include land use changes, hydraulic constructions and artificial water consumption, are considered to be the most likely reasons for the decline in stream flow. This study centres on a detailed analysis of the runoff response to changes in human activities. Using a distributed hydrological model, (Soil and Water Assessment Tool), we simulated runoffs under different human activity and climate scenarios to understand how each scenario impacts stream flow. The results show that artificial water consumption correlates with the precipitation (wet, normal and dry) of the year in question and is responsible for most of the decrease in runoff during each period and for each different wetness year. A Fuzzy Inference Model is also used to find the relationship between the precipitation and artificial water consumption for different years, as well as to make inferences regarding the future average impact on runoff. Land use changes in the past have increased the runoff by only a small amount, while another middle reservoir (Yunshi) has been responsible for a decrease in runoff since operation began in 2001. We generalized the characteristics of the human activities to predict future runoff using climate change scenarios. The future annual flow will increase by approximately 10% from 2011 to 2030 under normal human activities and future climate change scenarios, as indicated by climate scenarios with a particularly wet year in the next 20 years. This study could serve as a framework to analyse and predict the potential impacts of changes both in the climate and human activities on runoff, which can be used to inform the decision making on the river basin planning and management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change, environment, and ecosystem shift is crucial for enabling a comparison with forcing mechanisms (e.g. El-Niño Southern Oscillation). In this study we decouple these factors using data analysis techniques [multiplex recurrence network (MRN) and principal component analyses (PCA)] on multiproxy data from two lakes located in different climate regions – Lonar Lake (ISM dominated) and the high-altitude Tso Moriri Lake (ISM and westerlies influenced). Our results indicate that (i) MRN analysis, an indicator of changing environmental conditions, is associated with droughts in regions with a single climate driver but provides ambiguous results in regions with multiple climate/environmental drivers; (ii) the lacustrine ecosystem was ‘less sensitive’ to forcings during the early Holocene wetter periods; (iii) archives in climate zones with a single climate driver were most sensitive to regime shifts; (iv) data analyses are successful in identifying the timing of onset of climate change, and distinguishing between extrinsic and intrinsic (lacustrine) regime shifts by comparison with forcing mechanisms. Our results enable development of conceptual models to explain links between forcings and regional climate change that can be tested in climate models to provide an improved understanding of the ISM dynamics and their impact on ecosystems. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
The Thar Desert dune system in north-west India and eastern Pakistan provides a rich archive of past environmental, geomorphological and climatic change. Much of the knowledge about the timing of dune accumulation in the Thar stems from scattered and sporadic records, based on older luminescence dating protocols. If the Thar dune record is to be incorporated within a growing multiproxy framework of past climate and environmental dynamics, it is necessary to generate a systematic record of the timing of dunefield accumulation. From this, relationships to climate and other drivers of dune activity may then be better established. To this end, an intensive programme of field sampling and optically stimulated luminescence (OSL) dating was carried out from a dunefield in the east-central Thar Desert. This study presents the first detailed Holocene dune accumulation history from the region, and sheds light on the development of the multi-generational parabolic dune systems. In contrast to previously published work, we identify the importance of the Holocene and the last millennium as periods with a number of preserved accumulation phases. OSL ages suggest that accumulation was persistent during the early and mid-Holocene (within 11.7-5.5 ka), late Holocene (2-1 ka), as well as two major phases in the last millennium (600 – 200 a and within the last 70 a). Potential drivers of dune mobility in the last century include a strong anthropogenic dimension. Rapid net accumulation is recorded in the last 70 years, with rates varying between 2 and 5 m/year, in an environment where agricultural pressures have increased dramatically with the advent of irrigation schemes expanding into dunefield areas. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号