首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drylands account for approximately 41% of the global total land area. Significant warming and rare precipitation in drylands result in a fragile ecology and deterioration of the living environment, making it more sensitive to global climate change. As an important regulator of the Earth's climate system, the oceans play a vital role in the process of climate change in drylands. In modern climate change in particular, the impact of marine activities on climate change in drylands cannot be neglected. This paper reviews the characteristics of climate change in drylands over the past 100 years, and summarizes the researches conducted on the impact of marine activities on these changes. The review focuses on the impact of the Pacific Decadal Oscillation(PDO), Atlantic Multidecadal Oscillation(AMO), El Ni?o and La Ni?a on climate change in drylands, and introduces the mechanisms by which different oceanic oscillation factors synergistically affect climate change in drylands.Studies have shown that global drylands have experienced a significant intensification in warming in the past 100 years, which shows obvious characteristics of interdecadal dry/wet variations. The characteristics of these changes are closely related to the oscillatory factors of the oceanic interdecadal scale. Different phase combinations of oceanic oscillation factors significantly change the land-sea thermal contrast, which in turn affects the westerly jet, planetary wave and blocking frequency, resulting in changes in the temperature and dry/wet characteristics of drylands. With the intensification of climate change in drylands, the impact of marine activities on these regions will reveal new characteristics in the future, which will increase the uncertainty of future climate change in drylands and intensify the impact of these drylands on global climate.  相似文献   

2.
Global atmosphere-ocean general circulation models are the tool by which projections for climate changes due to radiative forcing scenarios have been produced. Further, regional atmospheric downscaling of the global models may be applied in order to evaluate the details in, e.g., temperature and precipitation patterns. Similarly, detailed regional information is needed in order to assess the implications of future climate change for the marine ecosystems. However, regional results for climate change in the ocean are sparse. We present the results for the circulation and hydrography of the Barents Sea from the ocean component of two global models and from a corresponding pair of regional model configurations. The global models used are the GISS AOM and the NCAR CCSM3. The ROMS ocean model is used for the regional downscaling of these results (ROMS-G and ROMS-N configurations, respectively). This investigation was undertaken in order to shed light on two questions that are essential in the context of regional ocean projections: (1) How should a regional model be set up in order to take advantage of the results from global projections; (2) What limits to quality in the results of regional models are imposed by the quality of global models? We approached the first question by initializing the ocean model in the control simulation by a realistic ocean analysis and specifying air-sea fluxes according to the results from the global models. For the projection simulation, the global models’ oceanic anomalies from their control simulation results were added upon initialization. Regarding the second question, the present set of simulations includes regional downscalings of the present-day climate as well as projected climate change. Thus, we study separately how downscaling changes the results in the control climate case, and how scenario results are changed. For the present-day climate, we find that downscaling reduces the differences in the Barents Sea between the original global models. Furthermore, the downscaled results are closer to observations. On the other hand, the downscaled results from the scenario simulations are significantly different: while the heat transport into the Barents Sea and the salinity distribution change modestly from control to scenario with ROMS-G, in ROMS-N the heat transport is much larger in the scenario simulation, and the water masses become much less saline. The lack of robustness in the results from the scenario simulations leads us to conclude that the results for the regional oceanic response to changes in the radiative forcing depend on the choice of AOGCM and is not settled. Consequently, the effect of climate change on the marine ecosystem of the Barents Sea is anything but certain.  相似文献   

3.
The coastal zones are areas of high biological productivity and intense human pressure. Environmental challenges arise from pollution and from urban and industrial development. Administrative, social and legal challenges centre upon the need for sound management of coastal zone resources, as an important component of national strategies for sustainability. A number of specific actions have been set out in Agenda 21, the principal product of the Earth Summit held in Rio de Janeiro in 1992. But these need to be carried forward within cross-sectoral, integrated coastal area management procedures. International action is also needed because marine ecosystems rarely coincide with national boundaries, and are affected by international economic, social and legal decisions.

International scientific co-operation on marine issues is already well established, and many regional action plans and Conventions have been adopted. Technological co-operation is less advanced. Such efforts need to be intensified, and continuously adapted. Sound plans for the future must be based on good science, critical economic evaluation of resources, sensitive evaluation of social and cultural factors and of the needs of local communities, evaluation of the risks of climate change, sea-level rise and other changes, and monitoring as a basis for continuing adaptation.  相似文献   


4.
Despite their obvious environmental, societal and economic importance, our understanding of the causes and magnitude of the variations in the global water cycle is still unsatisfactory. Uncertainties in hydrological predictions from the current generation of models pose a serious challenge to the reliability of forecasts and projections across time and space scales. This paper provides an overview of the current issues and challenges in modelling various aspects of the Earth’s hydrological cycle. These include: the global water budget and water conservation, the role of model resolution and parametrisation of precipitation-generating processes on the representation of the global and regional hydrological cycle, representation of clouds and microphysical processes, rainfall variability, the influence of land–atmosphere coupling on rainfall patterns and their variability, monsoon processes and teleconnections, and ocean and cryosphere modelling. We conclude that continued collaborative activity in the areas of model development across timescales, process studies and climate change studies will provide better understanding of how and why the hydrological cycle may change, and better estimation of uncertainty in model projections of changes in the global water cycle.  相似文献   

5.
Generating estimates of the future impacts of climate change on human and natural systems is confounded by cascading uncertainties which propagate through the impact assessment. Here, a simple stochastic rainfall–runoff model representing 238 river basins on the Australian continent was used to assess the sensitivity of the risk of runoff changes to various sources of uncertainty. Uncertainties included global mean temperature change, greenhouse gas stabilisation targets, catchment sensitivities to climatic change, and the seasonality of runoff, rainfall, and evaporation. Model simulations provided estimates of the first-order risk of climate change to Australian catchments, with several regions having high likelihoods of experiencing significant reductions in future runoff. Climate uncertainty (at global and regional scales) was identified as the dominant driving force in hydrological risk assessments. Uncertainties in catchment sensitivities to climatic changes also influenced risk, provided they were sufficiently large, whereas structural assumptions of the model were generally negligible. Collectively, these results indicate that rigorous assessment of climate risk to water resources over relatively long time-scales is largely a function of adequately exploring the uncertainty space of future climate changes.  相似文献   

6.
Climate change impact assessments conventionally assess just the implications of a change in mean climate due to global warming. This paper compares such effects of such changes with those due to natural multi-decadal variability, and also explores the effects of changing the year-to-year variability in climate as well as the mean. It estimates changes in mean monthly flows and a measure of low flow (the flow exceeded 95% of the time) in six catchments in Britain, using the UKCIP98 climate change scenarios and a calibrated hydrological model. Human-induced climate change has a different seasonal effect on flows than natural multi-decadal variability (an increase in winter and decrease in summer), and by the 2050s the climate change signal is apparent in winter and, in lowland Britain, in summer. Superimposing natural multi-decadal variability onto the human-induced climate change increases substantially the range in possible future streamflows (in some instances counteracting the climate change signal), with important implications for the development of adaptation strategies. Increased year-to-year variability in climate leads to slight increases in mean monthly flows (relative to changes due just to changes in mean climate), and slightly greater decreases in low flows. The greatest effect on low flows occurs in upland catchments.  相似文献   

7.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The predicted increase in mean global temperature due to climate change is expected to affect water availability and, in turn, cause both environmental and societal impacts. To understand the potential impact of climate change on future sustainable water resources, this paper outlines a methodology to quantify the effects of climate change on potential groundwater recharge (or hydrological excess water) for three locations in the north and south of Great Britain. Using results from a stochastic weather generator, actual evapotranspiration and potential groundwater recharge time‐series for the historic baseline 1961–1990 and for a future ‘high’ greenhouse gas emissions scenario for the 2020s, 2050s and 2080s time periods were simulated for Coltishall in East Anglia, Gatwick in southeast England and Paisley in west Scotland. Under the ‘high’ gas emissions scenario, results showed a decrease of 20% in potential groundwater recharge for Coltishall, 40% for Gatwick and 7% for Paisley by the end of this century. The persistence of dry periods is shown to increase for the three sites during the 2050s and 2080s. Gatwick presents the driest conditions, Coltishall the largest variability of wet and dry periods and Paisley little variability. For Paisley, the main effect of climate change is evident during the dry season (April–September), when the potential amount of hydrological excess water decreases by 88% during the 2080s. Overall, it is concluded that future climate may present a decrease in potential groundwater recharge that will increase stress on local and regional groundwater resources that are already under ecosystem and water supply pressures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.  相似文献   

10.
张冬峰  石英 《地球物理学报》2012,55(9):2854-2866
采用高水平分辨率区域气候模式进行区域未来气候变化预估,对理解全球增暖对区域气候的潜在影响和科学评估区域气候变化有很好的参考价值.这里对国家气候中心使用25 km高水平分辨率区域气候模式RegCM3单向嵌套全球模式MIROC3.2_hires在观测温室气体(1951—2000)和IPCC A1B温室气体排放情景下(2001—2100)进行的共计150年长时间模拟结果,进行华北地区未来气温、降水和极端气候事件变化的分析.模式检验结果表明:模式对当代(1981—2000)气温以及和气温有关的极端气候事件(霜冻日数、生长季长度)的空间分布和数值模拟较好;对降水及和降水有关的极端气候事件(强降水日期、降水强度、五日最大降水量)能够模拟出它们各自的主要空间分布特征,但在模拟数值上存在偏大、偏强的误差.和全球模式驱动场相比,区域模式模拟的气温、降水和极端气候事件有明显的改进.2010—2100年华北地区随时间区域平均气温升高幅度逐渐增大,随之霜冻日数逐渐减少,生长季长度逐渐增多;同时随温室效应的不断加剧,未来降水呈增加的趋势,强降水日期和五日最大降水量逐渐增多、降水强度逐渐增大.从空间分布看,21世纪末期(2081—2100)气温、降水以及有关的极端气候事件变化比21世纪中期(2041—2060)更加明显.  相似文献   

11.
Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants (POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses. (1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems. (2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion. (3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs. (4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean. (5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems. (6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time. (7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.  相似文献   

12.
The coastal zones are facing the prospect of changing storm surge statistics due to anthropogenic climate change. In the present study, we examine these prospects for the North Sea based on numerical modelling. The main tool is the barotropic tide-surge model TRIMGEO (Tidal Residual and Intertidal Mudflat Model) to derive storm surge climate and extremes from atmospheric conditions. The analysis is carried out by using an ensemble of four 30-year atmospheric regional simulations under present-day and possible future-enhanced greenhouse gas conditions. The atmospheric regional simulations were prepared within the EU project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). The research strategy of PRUDENCE is to compare simulations of different regional models driven by the same global control and climate change simulations. These global conditions, representative for 1961–1990 and 2071–2100 were prepared by the Hadley Center based on the IPCC A2 SRES scenario. The results suggest that under future climatic conditions, storm surge extremes may increase along the North Sea coast towards the end of this century. Based on a comparison between the results of the different ensemble members as well as on the variability estimated from a high-resolution storm surge reconstruction of the recent decades it is found that this increase is significantly different from zero at the 95% confidence level for most of the North Sea coast. An exception represents the East coast of the UK which is not affected by this increase of storm surge extremes.  相似文献   

13.
The hydrological response to the potential future climate change in Yangtze River Basin (YRB), China, was assessed by using an ensemble of 54 climate change simulations. The Coupled Model Intercomparison Project 5 simulations under two new Representative Concentration Pathways (RCP) 4.5 and 8.5 emission scenarios were downscaled and used to drive the Variable Infiltration Capacity hydrological model. This study found that the range of temperature changes is homogeneous for almost the entire region, with an average annual increase of more than 2 °C under RCP4.5 and even more than 4 °C under RCP8.5 in the end of the twenty first century. The warmest period (June–July–August) of the year would experience lower changes than the colder ones (December–January–February). Overall, mean precipitation was projected to increase slightly in YRB, with large dispersion among different global climate models, especially during the dry season months. These phenomena lead to changes in future streamflow for three mainstream hydrological stations (Cuntan, Yichang, and Datong), with slightly increasing annual average streamflows, especially at the end of twenty first century. Compared with the percentage change of mean flow, the high flow shows (90th percentile on the probability of no exceedance) a higher increasing trend and the low flow (10th percentile) shows a decreasing trend or lower increasing trend. The maximum daily discharges with 5, 10, 15, and 30-year return periods show an increasing trend in most sub-basins in the future. Therefore, extreme hydrological events (e.g., floods and droughts) will increase significantly, although the annual mean streamflow shows insignificant change. The findings of this study would provide scientific supports to implement the integrated adaptive water resource management for climate change at regional scales in the YRB.  相似文献   

14.
气候变化对湖库水环境的潜在影响研究进展   总被引:4,自引:3,他引:1  
本文着重归纳气候变化对湖库热力特性、冰期、溶解氧、营养盐、浮游植物和水生植物等方面的影响规律,探讨气候变化对湖库水环境潜在影响的区域差异,讨论现有研究方法的优缺点和发展前景.研究表明,气候变暖对湖库物理过程的影响最为显著;热带草原气候和温带海洋性气候对于气候变暖和降雨变化的响应较其他气候类型突出;气候变化对湖库水环境的影响效果具有两面性.通过分析各气候类型中气候变暖对磷水平的潜在影响差异表明,亚热带季风气候的湖库更可能受气候变暖的影响趋于富营养状态.在今后研究中,建议深入开展各气候类型中区域性气候变化对湖库水环境影响的实例研究.  相似文献   

15.
Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7–17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.  相似文献   

16.
17.
Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the Clausius–Clapeyron equation) and of precipitation at the rate 2–3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~?0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988?2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius?Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.  相似文献   

18.
Climate change will most likely cause an increase in extreme precipitation and consequently an increase in soil erosion in many locations worldwide. In most cases, climate model output is used to assess the impact of climate change on soil erosion; however, there is little knowledge of the implications of bias correction methods and climate model ensembles on projected soil erosion rates. Using a soil erosion model, we evaluated the implications of three bias correction methods (delta change, quantile mapping and scaled distribution mapping) and climate model selection on regional soil erosion projections in two contrasting Mediterranean catchments. Depending on the bias correction method, soil erosion is projected to decrease or increase. Scaled distribution mapping best projects the changes in extreme precipitation. While an increase in extreme precipitation does not always result in increased soil loss, it is an important soil erosion indicator. We suggest first establishing the deviation of the bias-corrected climate signal with respect to the raw climate signal, in particular for extreme precipitation. Furthermore, individual climate models may project opposite changes with respect to the ensemble average; hence climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that the impact of climate change on soil erosion can only accurately be assessed with a bias correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models. © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
The increasing frequency and/or severity of extreme climate events are becoming increasingly apparent over multi‐decadal timescales at the global scale, albeit with relatively low scientific confidence. At the regional scale, scientific confidence in the future trends of extreme event likelihood is stronger, although the trends are spatially variable. Confidence in these extreme climate risks is muddied by the confounding effects of internal landscape system dynamics and external forcing factors such as changes in land use and river and coastal engineering. Geomorphology is a critical discipline in disentangling climate change impacts from other controlling factors, thereby contributing to debates over societal adaptation to extreme events. We review four main geomorphic contributions to flood and storm science. First, we show how palaeogeomorphological and current process studies can extend the historical flood record while also unraveling the complex interactions between internal geomorphic dynamics, human impacts and changes in climate regimes. A key outcome will be improved quantification of flood probabilities and the hazard dimension of flood risk. Second, we present evidence showing how antecedent geomorphological and climate parameters can alter the risk and magnitude of landscape change caused by extreme events. Third, we show that geomorphic processes can both mediate and increase the geomorphological impacts of extreme events, influencing societal risk. Fourthly, we show the potential of managing flood and storm risk through the geomorphic system, both near‐term (next 50 years) and longer‐term. We recommend that key methods of managing flooding and erosion will be more effective if risk assessments include palaeodata, if geomorphological science is used to underpin nature‐based management approaches, and if land‐use management addresses changes in geomorphic process regimes that extreme events can trigger. We argue that adopting geomorphologically‐grounded adaptation strategies will enable society to develop more resilient, less vulnerable socio‐geomorphological systems fit for an age of climate extremes. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

20.
Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号