首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To investigate the physical property anisotropies of foliated fault rocks in subduction zones, the hanging wall phyllites and footwall cataclasites exhumed along the Nobeoka Thrust, a fossilized out‐of‐sequence‐thrust in the Shimanto Belt, Japan, was focused. Discrete physical property (electric resistivity, P‐ and S‐wave velocities, and porosity) measurements were conducted employing geologic coordinates (depth‐parallel direction, strike direction, and maximum dip direction of foliation), using the core samples obtained from the Nobeoka Thrust Drilling Project and compared the data to borehole geophysical logs. A higher sample P‐wave velocity (Vp), lower S‐wave velocity (Vs), higher Vp/Vs, and lower sample porosity and resistivity compared to the logs, are inferred to have been caused by the larger sampling scale of the logs and lower fluid saturation of the borehole. The phyllites and cataclasites exhibited substantial vertical and horizontal anisotropy of Vp (0.4–17.3 % and 2.7–13.8 %, respectively), Vs (0.5–56 % and 7.7–43 %, respectively), and resistivity (0.9–119 % and 2.0–65.9 %, respectively). The physical property anisotropies are primarily affected by the dip angles of foliation. The fault rocks that have gentler dip angles exhibit a higher Vp in the strike and maximum dip direction and a lower Vp in the depth‐parallel direction. In contrast, the fault rocks that have steeply dipping structures show a higher Vp in the strike and depth‐parallel directions with a lower velocity in the maximum dip direction. Resistivity anisotropy show a trend opposite to that of the Vp in relation to the dip angles. Our results show lower Vp anisotropy than those obtained in previous studies, which measured wave speeds perpendicular or parallel to foliation under confining pressure. This study highlights the significance of dip angles on vertical properties in geophysical surveys across foliated fault rocks.  相似文献   

2.
The P- and S-wave receiver functions and dispersion curves of the fundamental Rayleigh wave are used to study the lithosphere within the Central Anatolian Plateau. The results for eight broadband seismic stations are presented. It is established that within the plateau, the crust with a thickness of about 35 km is underlain by the mantle lid with its bottom at a depth of about 60 km. The velocities of longitudinal (Vp) and shear (Vs) waves in this layer are at most 7.6 and 4.5 km/s, respectively, and the Vp/Vs ratio is close to 1.7 (i.e., by 6% lower than in the standard IASP91 and PREM models). Such a low velocity ratio is characteristic of rocks having high orthopyroxene content. Beneath the high-velocity mantle lid, the S-wave velocity decreases to 4.0–4.2 km/s and the Vp/Vs ratio is close to its standard value (1.8). At most stations, the P-wave receiver functions do not contain seismic phase P410s, which is formed at the global seismic boundary at a depth of 410 km. The seismic boundary at a depth of 410 km is related to the olivine-spinel phase transformation, and its absence can indicate the anomalously low olivine content and high basalt content. This anomaly is probably associated with the subduction of a large amount of oceanic crust during the closure of the Tethys. The results of the study overall indicate the high informativity of the used method.  相似文献   

3.
In the work under consideration, on the basis of data analysis on the velocities of quasi-longitudinal Vp and quasi-transverse Vs waves—measured for rock samples at high pressures and temperatures, and analogous velocities, calculated on the basis of the grain orientation distribution function, reconstructed from the neutron-diffraction textural experiment—the indicative inconsistencies between the experimental and model characteristics were inferred. The theoretical analysis of the wave field patterns of the propagation of longitudinal and transverse elastic waves in the anisotropic media is carried out. It is established that, in the general case, in the anisotropic inhomogeneous media the velocities of Vp and Vs propagation, measured experimentally and obtained from the modeling, cannot coincide due to the existence of the physical coupling between the vibrations of two types: transverse and longitudinal vibrations.  相似文献   

4.
High-pressure polymorphs of olivine and enstatite are major constituent minerals in the mantle transition zone(MTZ).The phase transformations of olivine and enstatite at pressure and temperature conditions corresponding to the lower part of the MTZ are import for understanding the nature of the 660 km seismic discontinuity.In this study,we determine phase transformations of olivine(MgSi2O4) and enstatite(MgSiO3) systematiclly at pressures between 21.3 and 24.4 GPa and at a constant temperature of 1600℃.The most profound discrepancy between olivine and enstatite phase transformation is the occurency of perovskite.In the olivine system,the post-spinel transformation occures at 23.8 GPa,corresponding to a depth of 660 km.In contrast,perovskite appears at 23 GPa(640 km) in the enstatite system.The ~1 GPa gap could explain the uplifting and/or splitting of the 660 km seismic discountinuity under eastern China.  相似文献   

5.
Abstract During the Hakuho‐Maru KH03‐3 cruise and the Tansei‐Maru KT04‐28 cruise, more than 1000 rock samples were dredged from several localities over the Hahajima Seamount, a northwest–southeast elongated, rectangular massif, 60 km × 30 km in size, with a flat top approximately 1100 m deep. The rocks included almost every lithology commonly observed among the on‐land ophiolite outcrops. Volcanic rocks included mid‐oceanic ridge basalt (MORB)‐like tholeiitic basalt and dolerite, calc‐alkaline basalt and andesite, boninite, high‐Mg adakitic andesite, dacite, and minor rhyolite. Gabbroic rocks included troctolite, olivine gabbro, olivine gabbronorite (with inverted pigeonite), gabbro, gabbronorite, norite, and hornblende gabbro, and showed both MORB‐type and island arc‐type mineralogies. Ultramafic rocks were mainly depleted mantle harzburgite (spinel Cr? 50–80) and its serpentinized varieties, with some cumulate dunite, wehrlite and pyroxenites. This rock assemblage suggests a supra‐subduction zone origin for the Hahajima Seamount. Compilation of the available dredge data indicated that the ultramafic rocks occur in the two northeast–southwest‐oriented belts on the seamount, where serpentinite breccia and gabbro breccia have also developed, but the other areas are free from ultramafic rocks. Although many conical serpentinite seamounts 10 km in size are aligned along the Izu–Ogasawara (Bonin)–Mariana forearc, the Hahajima Seamount may be better interpreted as a fault‐bounded, uplifted massif composed of ophiolitic thrust sheets, resembling the Izki block of the Oman ophiolite in its shape and size. The ubiquitous roundness of the dredged rocks and their thin Mn coating (<2 mm) suggest that the Hahajima Seamount was uplifted above sealevel and wave‐eroded, like the present Macquarie Is., a rare example of ophiolite exposure in an oceanic setting. The Ogasawara Plateau on the Pacific Plate is adjacent to the east of the Hahajima Seamount, and collision and subduction of the plateau may have caused uplift of the forearc ophiolite body.  相似文献   

6.
A polycrystalline specimen of anorthite has been hot-pressed atP = 15kbar andT = 1000°C in a piston-cylinder apparatus. Compressionalp)and shear(νs) velocities are determined as a function of pressure to 7.5 kbar at room temperature by an ultrasonic pulse transmission technique. The specimen is less than 0.5% porous and is elastically isotropic within 1%. The velocities at 7.5 kbar areνp = 7.29km/secandνs = 3.85km/sec. These data are consistent with those for most terrestrial and lunar plagioclase rocks but not for certain anisotropic rocks and single crystals. The measured velocities demonstrate, moreover, that it is impossible to distinguish between rocks of gabbro, anorthositic gabbro, or anorthosite compositions for the 20–55 km layer of the lunar crust on the basis of seismic data alone. The mean composition of the crust could well be that of a gabbro (17% Al2O3) rather than of an anorthositic gabbro(~25%Al2O3) as assumed in some current models.  相似文献   

7.
We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock‐testing standard for well‐constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO2 storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length‐to‐diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m?3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ~10 and ~18 MPa under unconfined conditions with associated Young's modulus and Poisson's ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ~10 MPa and then stabilises at ~1 mD. Ultrasonic P‐ and S‐wave velocities vary from about 2.8–3.8 km s?1 and 1.5–2.4 km s?1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation.  相似文献   

8.
A three-dimensional Qp image of the Campi Flegrei caldera between 0 and 3 km of depth has been inferred by the inversion of P rise time and pulse width data of 87 local earthquakes recorded during the last bradiseismic crisis by a local array deployed in the area by the University of Wisconsin. The availability of both thermal measurements in 5 deep boreholes and of a heat flow surface map of the area allowed us to calibrate the local temperature F vs. Qp relationship. The comparison of Qp, Vp and Vp/Vs images, combined with hydrogeological and geochemical data from deep boreholes, allowed us to distinguish some low-Qp anomalies related to the presence of fluids in the rocks from a deep low-Qp anomaly related to the conductive cooling of a magma reservoir. The deep anomaly is located in the same zone where several authors believe that the volcanic and magmatic activity migrated after the Neapolitan Yellow Tuff eruption. Moreover this anomaly includes the area where the existence of a magma chamber at depth between 4 and 5 km was inferred by an active seismic experiment.  相似文献   

9.
Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs) is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.  相似文献   

10.
Large olivine samples were hot-pressed synthesized for shock wave experiments. The shock wave experiments were carried out at pressure range between 11 and 42 GPa. Shock data on olivine sample yielded a linear relationship between shock wave velocity D and particle velocity u described by D=3.56(?0.13)+2.57(?0.12)u. The shock temperature is determined by an energy relationship which is approximately 790°C at pressure 28 GPa. Due to low temperature and short experimental duration, we suggest that no phase change occurred in our sample below 30 GPa and olivine persisted well beyond its equilibrium boundary in metastable phase. The densities of metastable olivine are in agreement with the results of static compression. At the depth shallower than 410 km, the densities of metastable olivine are higher than those of the PREM model, facilitating cold slab to sink into the mantle transition zone. However, in entire mantle transition zone, the shock densities are lower than those of the PREM model, hampering cold slab to flow across the "660 km" phase boundary.  相似文献   

11.
— The Altiplano-Puna Volcanic Complex (APVC) in the central Andes is the product of an ignimbrite “flare-up” of world class proportions (de Silva, 1989). The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple-eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Seven PASSCAL broadband seismic stations were operated in the Bolivian portion of the APVC from October 1996 to September 1997 and recorded teleseismic earthquakes and local intermediate-depth events in the subducting Nazca plate. Both teleseismic and local receiver functions were used to delineate the lateral extent of a regionally pervasive ~20-km-deep, very low-velocity layer (VLVL) associated with the APVC. Data from several stations that sample different parts of the northern APVC show large amplitude Ps phases from a low-velocity layer with Vs ≤ 1.0 km/s and a thickness of ~1 km. We believe the crustal VLVL is a regional sill-like magma body, named the Altiplano–Puna magma body (APMB), and is associated with the source region of the Altiplano–Puna Volcanic Complex ignimbrites (Chmielowski et al., 1999).¶Large-amplitude P–SH conversions in both the teleseismic and local data appear to originate from the top of the APMB. Using the programs of Levin and Park (1998), we computed synthetic receiver functions for several models of simple layered anisotropic media. Upper-crustal, tilted-axis anisotropy involving both Vp and Vs can generate a “split Ps” phase that, in addition to the Ps phase from the bottom of a thin isotropic VLVL, produces an interference waveform that varies with backazimuth. We have forward modeled such an interference pattern at one station with an anisotropy of 15%–20% that dips 45° within a 20-km-thick upper crust. We develop a hypothesis that the crust above the “magma body” is characterized by a strong, tilted-axis, hexagonally symmetric anisotropy. We speculate that the anisotropy is due to aligned, fluid-filled cracks induced by a “normal-faulting” extensional strain field associated with the high elevations of the Andean Puna.  相似文献   

12.
应用超声波反射-透射法,在最高压力为1.0 GPa(室温),最高温度为700℃(1.0 GPa)的条件下对新疆东准噶尔地区的卡拉麦里花岗岩带和野马泉岩体的典型花岗岩类岩石(碱长花岗岩、碱性花岗岩、花岗闪长岩、二长花岗岩和石英闪长岩)的纵波速度(VP)和横波速度(VS)进行了测量.结果显示,在常温、压力0.4~1.0 GPa条件下,东准噶尔地区花岗岩类岩石的VP和VS均随压力呈线性增加,说明在这个压力段岩石中的微裂隙已基本闭合.室温、1.0 GPa时花岗岩类岩石的VP是5.79~6.84 km·s-1,VS是3.26~3.85 km·s-1.依据压力与VP及压力与VS的线性关系,拟合得到常温常压下花岗岩类岩石的纵波和横波压力系数分别是0.1568~0.4078 km/(s·GPa)和0.0722~0.3271 km/(s·GPa),VP0和VS0分别是5.62~6.47 km·s-1和3.15~3.75 km·s-1.恒压1.0 GPa、室温到700℃条件下,花岗岩类岩石的VP和VS均随温度的升高呈线性降低,温度系数分别为(-3.41~-4.96)×10-4 km/(s·℃)和(-0.88~-3.22)×10-4 km/(s·℃).利用实验获得的花岗岩类岩石的VP0、VS0及温度系数和压力系数,结合东准噶尔地区的地热资料,建立了VP和VS随深度变化的剖面.将获得的VP和VS-深度剖面与该区地球物理探测结果对比,发现东准噶尔地区的碱长花岗岩、碱性花岗岩、二长花岗岩和部分花岗闪长岩的VP和VS与该区上地壳速度吻合很好,同时这几种岩石的平均泊松比也与上地壳泊松比一致,因此我们认为这几种类型的岩石是该区上地壳的重要组成部分.另外,石英闪长岩的VP和VS均符合中地壳的速度,可能为中地壳中的一种岩石.  相似文献   

13.
Data in the literature and additional measurements on the thermal diffusivities of granites, granulites and ultrabasic rocks at temperatures up to 1000 K and pressures to 2 GPa, have been used to propose a new model for thermal diffusivity distribution in the crust and upper mantle.The laboratory measurements were made using a pulse method or the Angstroem method with cylindrical heat flow. After making particular assumptions about the pressure and temperature distribution within the top 60 km the pressure and temperature dependencies of diffusivity were transformed into a depth dependence.The model is characterised by a continuous decrease of diffusivity to a depth of ~30 km where there is a small but rapid increase to a nearly constant value of 7.3 × 10?3 cm2 s?1.  相似文献   

14.
Hydrocarbon depletion and fluid injection cause compaction and stretching of the reservoir and overburden layers. 4D prestack seismic data can be used to detect these changes because compaction/stretching causes changes in traveltimes and seismic velocities. We show that, by using two different petro‐elastic models at varying effective pressures, a good approximation is to assume that the fractional changes in layer thickness, ΔL/L, and seismic velocity, Δv/v, are related by a linear function of ΔL/L. The slope of this function (the dilation factor, α= (Δv/v)/(ΔL/L) ) is negative and its absolute value generally decreases (shale, low porosity) or increases (sandstone, high porosity) with increasing layer thickness and decreasing effective pressure. The analysis is mainly performed for isotropic deformations. The dilation factor for uniaxial deformations is smaller in absolute value. The dilation factor, which can be calculated from time‐lapse data, can be used to predict reservoir compaction/stretching as a function of depth and surface subsidence.  相似文献   

15.
Yong-Feng  Zhu  Hans-Joachim  Massonne  Thomas  Theye 《Island Arc》2007,16(4):508-535
Abstract Four phengite‐bearing eclogites, taken from different depths of the Chinese continental scientific drilling (CCSD) borehole in the Sulu ultrahigh pressure terrane, eastern China, were studied with the electron microprobe. The compositional zonations of garnet and omphacite are moderate, whereas phengite compositions generally vary significantly in a single sample from core to rim by decrease of the Si content. Various geothermobarometric methods were applied to constrain the P‐T conditions of these eclogites on the basis of the compositional variability of the above minerals. The constrained P‐T path for sample B218 is characterized by pressure decrease from ca 3.0 GPa (ca 600°C) to 1.3 GPa (ca 550°C). Eclogite B310 yielded P‐T conditions of 3.0 GPa and 750°C. The path for eclogite B1008 starts at about 650°C and 3.6–3.9 GPa (stage I) followed by a pressure decrease to 2.8–3.0 GPa and a significant temperature rise (stages II and IIIa, 750–810°C). Afterwards, this rock cooled down to 620–660°C at still high pressures (2.5–2.7 GPa, stage IIIb). Retrograde conditions were about 670°C and 1.3 GPa (stage IV). Eclogite B1039 yielded a P‐T path starting at ca 600°C and 3.3–3.9 GPa (stage I). A pressure decrease to about 3.0 GPa (stage II, 590–610°C) and then a moderate isobaric temperature increase to ca 630°C (stage III) followed. Stage IV is characterized by temperatures of 650°C at pressures close to 1.3 GPa. During and after this stage (hydrous) fluids partially rich in potassium penetrated the rocks causing minor changes. Relatively high oxygen fugacities led to andradite and magnetite among the newly formed minerals. We think that the above findings can be best explained by mass flow in a subduction channel. Thus, we conclude that the assembly of UHP rocks of the CCSD site, eclogites, quartzofeldspathic rocks, and peridotites, cannot represent a crustal section that was already coherent at UHP conditions as it is the common belief currently. The coherency was attained after significant exhumation of these UHP rocks.  相似文献   

16.
A review of experimental data for systems, pertaining to anhydrous fertile garnet-lherzolite shows strong convergence in the liquidus and solidus temperatures for the range 6.5–15 GPa. These can converge either to a common temperature or to temperatures which differ by only ~ 100°C. The major-element composition of magmas generated by even minor degrees of partial melting may be similar to the primordial bulk silicate Earth composition in an upper-mantle stratigraphic column extending over 160 km in depth.The convergence of the solidus and liquidus temperatures is a consequence of the highly variable dTdP of the fusion curves for minerals which crystallize in peridotite systems. In particular, dTdP for the forsterite fusion curve is much less than that for diopside and garnet. Whether or not the solidus and liquidus intersect, the liquidus mineralogy for undepleted garnet-lherzolite compositions changes from olivine at low pressures to pyroxene, garnet, or a complex pyroxene-garnet solid solution at pressures in excess of 10–15 GPa. Geochemical data for the earliest Archean komatiites are consistent with an upper-mantle phase diagram having garnet as a liquidus phase for garnet-lherzolite compositions at high pressures. All estimates of the anhydrous solidus and liquidus for the range 10–15 GPa are consistent with silicate liquid compressibility data, which indicate that olivine may be neutrally buoyant in ultramafic magmas at these pressures.  相似文献   

17.
A new method of reconstruction of the temperature profile in the lunar mantle from the velocities of seismic P- and S-waves for different models of chemical composition is developed. The procedure of the solution of an inverse problem is realized with the help of the minimization of the Gibbs free energy and the equations of state of a mantle substance, taking into account phase transformations, anharmonicity, and the effects of inelasticity. The geophysical and geochemical constraints on composition and temperature distribution in Moon’s mantle are established. The upper mantle can be composed of olivine pyroxenite, depleted by low-volatile oxides (∼2 wt % of CaO and Al2O3). On the contrary, the lower mantle must be enriched by low-volatile oxides (∼4–6 wt % of CaO and Al2O3). Its composition can be represented by a mineral association of the olivine + clinopyroxene + garnet or olivine + orthopyroxene + clinopyroxene + garnet type, which is close in composition to pyrolite. The temperature distribution at depths 50–1000 km are approximated by the equation: T(°C) = 351 + 1718[1–exp (−0.00082H)]. The constraints inferred make it possible to conclude that the published values of the velocities of P- and S-waves for the lunar mantle, obtained by processing the data of seismic experiments of the Apollo lunar mission are inconsistent with each other at depths below 300 km. Otherwise, the variations in the velocities of P- and S-waves disturb the symmetry between the petrological model (composition), the temperature profile, and the seismic profile.  相似文献   

18.
A physics‐based numerical approach is used to characterize earthquake ground motion due to induced seismicity in the Groningen gas field and to improve empirical ground motion models for seismic hazard and risk assessment. To this end, a large‐scale (20 km × 20 km) heterogeneous 3D seismic wave propagation model for the Groningen area is constructed, based on the significant bulk of available geological, geophysical, geotechnical, and seismological data. Results of physics‐based numerical simulations are validated against the ground motion recordings of the January 8, 2018, ML 3.4 Zeerijp earthquake. Taking advantage of suitable models of slip time functions at the seismic source and of the detailed geophysical model, the numerical simulations are found to reproduce accurately the observed features of ground motions at epicentral distances less than 10 km, in a broad frequency range, up to about 8 Hz. A sensitivity analysis is also addressed to discuss the impact of 3D underground geological features, the stochastic variability of seismic velocities and the frequency dependence of the quality factor. Amongst others, results point out some key features related to 3D seismic wave propagation, such as the magnitude and distance dependence of site amplification functions, that may be relevant to the improvement of the empirical models for earthquake ground motion prediction.  相似文献   

19.
The dislocation density and the subgrain size of olivine in peridotite xenoliths in southwest Japan were investigated in order to draw out the lateral variation of the differential stress in the upper mantle of the island arc. Alkali basaltic and andesitic dykes including peridotite xenoliths of Dogo, Kikuma, and Shingu are situated about 200 km behind the Nankai Trough, and those of Oki-Dogo and Takashima located at the portions 400–500 km apart from the trough. The mean dislocation densities of olivine are 2 × 106 cm?2 for Oki-Dogo, 8 × 106 cm?2 for Takashima, 1 × 107 cm?2 for Hamada, 5 × 107 cm?2 for Aratoyama, 4 × 107 cm?2 for Kikuma, 3 × 107 cm?2 for Dogo, and 5 × 106 cm?2 for Shingu peridotites.It is concluded that the differential stress is high in the uppermost mantle beneath the island arc and low in the back-arc and the mantle wedge behind the plate boundary. The lateral variation of stress may be due to the diapiric upwelling of upper mantle materials under the island arc. The size of the diapir is suggested to be 200 km in width and 60–150 km in depth.  相似文献   

20.
Velocities of compressional and shear waves in limestones   总被引:2,自引:1,他引:2  
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional‐ and shear‐wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse‐echo method. The measurements were made both in vacuum‐dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin‐impregnated polished thin sections, X‐ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional‐ and shear‐wave velocities (Vp and Vs, respectively) decrease with increasing porosity and that Vp decreases approximately twice as fast as Vs. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore‐structure‐dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot–Gassmann velocity values are greater than the measured velocity values due to the rock–fluid interaction. This is not accounted for in the Biot–Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time‐average relationships overestimated the measured velocities even more than the Biot model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号