首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.  相似文献   

2.
交叉断层的交替活动与块体运动的实验研究   总被引:35,自引:3,他引:32       下载免费PDF全文
通过物理模拟证明交叉断层上会交替地发生失稳事件。两条交叉的断层在活动中既相互促进 ,又相互制约 ,即一条断层既可能使另一条断层发生闭锁而积累应变 ,又可能触发其错动。每条断层的位移速率、总位移量以及失稳事件数与断层方向和主压应力轴的夹角有关。各断层段的位移有时体现为断层围限块体的平移运动 ,而有时则体现为块体的旋转运动。发生在不同部位的失稳事件影响范围不同 ,在正应力较大的断层上失稳事件影响范围大。涉及交叉断层的较大失稳事件发生前常出现前兆性小事件。交叉断层的交替活动实际上由变形场中块体的运动所控制  相似文献   

3.
Intermediate-term observations preceding earthquakes of magnitude 5.7 or greater in California from 1975 through 1986 suggest that: (1) The sudden appearance of earthquakes in a previously inactive area indicates an increased likelihood of a significant earthquake in that area for a period from days to years; (2) these larger earthquakes tend to occur towards the ends of creeping fault segments; (3) one large earthquake in a region increases the likelihood of a subsequent significant event in the adjacent area; and (4) marginal evidence for the occurrence of a regional deformation event suggests that such events increase the probability of earthquake occurrence throughout the entire area. A common element in many of these observed patterns appears to be the transmission and amplification of tectonic stress changes by the mechanism of fault creep, and suggests that surface fault creep is a sensitive indicator of changes in stress. The preceding critieria are used to construct a preliminary forecast of the likely locations of significant earthquakes over the next decade.  相似文献   

4.
We investigate the influence of spatial heterogeneities on various aspects of brittle failure and seismicity in a model of a large strike-slip fault. The model dynamics is governed by realistic boundary conditions consisting of constant velocity motion of regions around the fault, static/kinetic friction laws, creep with depth-dependent coefficients, and 3-D elastic stress transfer. The dynamic rupture is approximated on a continuous time scale using a finite stress propagation velocity (quasidynamic model). The model produces a brittle-ductile transition at a depth of about 12.5 km, realistic hypocenter distributions, and other features of seismicity compatible with observations. Previous work suggested that the range of size scales in the distribution of strength-stress heterogeneities acts as a tuning parameter of the dynamics. Here we test this hypothesis by performing a systematic parameter-space study with different forms of heterogeneities. In particular, we analyze spatial heterogeneities that can be tuned by a single parameter in two distributions: (1) high stress drop barriers in near-vertical directions and (2) spatial heterogeneities with fractal properties and variable fractal dimension. The results indicate that the first form of heterogeneities provides an effective means of tuning the behavior while the second does not. In relatively homogeneous cases, the fault self-organizes to large-scale patches and big events are associated with inward failure of individual patches and sequential failures of different patches. The frequency-size event statistics in such cases are compatible with the characteristic earthquake distribution and large events are quasi-periodic in time. In strongly heterogeneous or near-critical cases, the rupture histories are highly discontinuous and consist of complex migration patterns of slip on the fault. In such cases, the frequency-size and temporal statistics follow approximately power-law relations.on leave from CNRS Rennes, France  相似文献   

5.
田宵  汪明军  张雄  张伟  周立 《中国地震》2021,37(2):452-462
微地震事件的空间分布可以用来监测水力压裂过程中裂缝的发育情况。因此,震源定位是微震监测中重要的环节。震源定位依赖准确的速度模型,而震源位置和速度模型的耦合易导致线性迭代的同时反演方法陷入局部极小值。邻近算法作为一种非线性全局优化算法,能够最大程度地避免陷入局部最优解。本文将邻近算法应用于单井监测的微震定位和一维速度模型同时反演,首先利用邻近算法搜索一维速度模型,再使用网格搜索方法进行震源定位,并根据定位的走时残差产生新的速度模型,最后通过若干次迭代使其收敛到最优解。理论和实际数据结果均表明该方法能够避免局部最优解,得到较为可靠的震源位置和一维速度模型。  相似文献   

6.
—A cellular automaton is used to study the relation between the structure of a regional fault network and the temporal and spatial patterns of regional seismicity. Automata in which the cell sizes form discrete fractal hierarchies are compared with those having a uniform cell size. Conservative models in which all the stress is transferred at each step of a cascade are compared with nonconservative ("lossy") models in which a specified fraction of the stress energy is lost from each step. Particular attention is given to the behavior of the system as it is driven toward the critical state by uniform external loading. All automata exhibit a scaling region at times close to the critical state in which the events become larger and energy release increases as a power-law of the time to the critical state. For the hierarchical fractal automata, this power-law behavior is often modulated by fluctuations that are periodic in the logarithm of the time to criticality. These fluctuations are enhanced in the nonconservative models, but are not robust. The degree to which they develop appears to depend on the particular distribution of stresses in the larger cells which varies from cycle to cycle. Once the critical state is reached, seismicity in the uniform conservative automaton remains random in time, space, and magnitude. Large events do not significantly perturb the stress distribution in the system. However, large events in the nonconservative uniform automaton and in the fractal systems produce large stress perturbations that move the system out of the critical state. The result is a seismic cycle in which a large event is followed by a shadow period of quiescence and then a new approach back toward the critical state. This seismic cycle does not depend on the fractal structure, but is a direct consequence of large-scale heterogeneity of these systems in which the size of the largest cell (or the size of the largest nonconservative event) is a significant fraction of the size of the network. In essence, seismic cycles in these models are boundary effects. The largest events tend to cluster in time and the rate of small events remains relatively constant throughout a cycle in agreement with observed seismicity.  相似文献   

7.
The stimulation of a geothermal well in Basel, Switzerland produced a distribution of microseismic event locations with an overall alignment in the direction of the maximum horizontal stress. Fault plane solutions of individual larger events indicated movements on fracture planes at an angle to the maximum horizontal stress that could not be reliably interpreted from the event locations. To obtain higher resolution images of the microseismic event locations, events with similar waveforms have been identified by multiplet analysis. A number of receivers were used in the multiplet processing to ensure each multiplet is represented by a unique group of waveforms. The location accuracy within each multiplet has been significantly improved using cross‐correlation to refine the shear‐wave traveltime picks. The distribution of events within each multiplet can be interpreted as being due to movements on a single fracture or a number of near parallel fractures. It is shown that whilst the overall distribution of events is around the direction of the maximum horizontal stress, the individual multiplets representing fracture planes have a variety of azimuths and dips.  相似文献   

8.
We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m?×?0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than \( \sqrt{2} \) times the shear wave velocity. This feature is consistent with the theoretical prediction.  相似文献   

9.
Seismicity is generally concentrated on faults or in fault zones of varying, sometimes complex geometry. An earthquake catalog, compiled over time, contains useful information about this geometry, which can help understanding the tectonics of a region. Interpreting the geometrical distribution of events in a catalog is often complicated by the diffuseness of the earthquake locations. Here, we explore a number of strategies to reduce this diffuseness and hence simplify the seismicity pattern of an earthquake catalog. These strategies utilize information about event locations contained in their overall catalog distribution. They apply this distribution as an a priori constraint on relocations of the events, or as an attractor for each individual event in a collapsing scheme, and thereby focus the locations. The latter strategy is not a relocation strategy in a strict sense, although event foci are moved, because the movements are not driven by data misfit. Both strategies simplify the seismicity pattern of the catalog and may help to interpret it. A synthetic example and a real-data example from an aftershock sequence in south west Iceland are presented to demonstrate application of the strategies. Entropy is used to quantify their effect.  相似文献   

10.
—Fault models can generate complex sequences of events from frictional instabilities, even when the material properties are completely uniform along the fault. These complex sequences arise from the heterogeneous stress and strain fields which are produced through the dynamics of repeated ruptures on the fault. Visual inspection of the patterns of events produced in these models shows a striking and ubiquitous feature: future events tend to occur near the edges of where large events died out. In this paper, we explore this feature more deeply. First, using long catalogues generated by the model, we quantify the effect. We show, interestingly, that it is an even larger effect for future small events than it is for future large events. Then, using our ability to directly measure all aspects of the model, we find a physical explanation for our observations by examining the stress fields associated with large events. Looking at the average stress field we see a large stress concentration left at the edge of the large events, out of which the future events emerge. Further, we see the smearing out of the stress concentration as small events occur. This indicates why the epicenters of future small events are more correlated with the edges of large events than are the epicenters of future large events. Finally, we discuss how results from our simple model may be relevant to the more complicated case of the earth.  相似文献   

11.
We investigate mainshock slip distribution and aftershock activity of the 8 January 2013 M w?=?5.7 Lemnos earthquake, north Aegean Sea. We analyse the seismic waveforms to better understand the spatio-temporal characteristics of earthquake rupture within the seismogenic layer of the crust. Peak slip values range from 50 to 64 cm and mean slip values range from 10 to 12 cm. The slip patches of the event extend over an area of dimensions 16?×?16 km2. We also relocate aftershock catalog locations to image seismic fault dimensions and test earthquake transfer models. The relocated events allowed us to identify the active faults in this area of the north Aegean Sea by locating two, NE–SW linear patterns of aftershocks. The aftershock distribution of the mainshock event clearly reveals a NE–SW striking fault about 40 km offshore Lemnos Island that extends from 2 km up to a depth of 14 km. After the mainshock most of the seismic activity migrated to the east and to the north of the hypocenter due to (a) rupture directivity towards the NE and (b) Coulomb stress transfer. A stress inversion analysis based on 14 focal mechanisms of aftershocks showed that the maximum horizontal stress is compressional at N84°E. The static stress transfer analysis for all post-1943 major events in the North Aegean shows no evidence for triggering of the 2013 event. We suggest that the 2013 event occurred due to tectonic loading of the North Aegean crust.  相似文献   

12.
Microseismic monitoring is an approach for mapping hydraulic fracturing. Detecting the accurate locations of microseismic events relies on an accurate velocity model. The one‐dimensional layered velocity model is generally obtained by model calibration from inverting perforation data. However, perforation shots may only illuminate the layers between the perforation shots and the recording receivers with limited raypath coverage in a downhole monitoring problem. Some of the microseismic events may occur outside of the depth range of these layers. To derive an accurate velocity model covering all of the microseismic events and locating events at the same time, we apply the cross double‐difference method for the simultaneous inversion of a velocity model and event locations using both perforation shots and microseismic data. The cross double‐difference method could provide accurate locations in both the relative and absolute sense, utilizing cross traveltime differences between P and S phases over different events. At the downhole monitoring scale, the number of cross traveltime differences is sufficiently large to constrain events locations and velocity model as well. In this study, we assume that the layer thickness is known, and velocities of P‐ and S‐wave are inverted. Different simultaneous inversion methods based on the Geiger's, double‐difference, and cross double‐difference algorithms have been compared with the same input data. Synthetic and field data experiments suggest that combining both perforation shots and microseismic data for the simultaneous cross double‐difference inversion of the velocity model and event locations is available for overcoming the trade‐offs in solutions and producing reliable results.  相似文献   

13.
Development and Applications of Double-difference Seismic Tomography   总被引:7,自引:0,他引:7  
Double-difference (DD) tomography is a generalization of DD location; it simultaneously solves for the three-dimensional velocity structure and seismic event locations. DD tomography uses a combination of absolute and more accurate differential arrival times and hierarchically determines the velocity structure from larger scale to smaller scale. This method is able to produce more accurate event locations and velocity structure near the source region than standard tomography, which uses only absolute arrival times. We conduct a stability and uncertainty analysis of DD tomography based on a synthetic data set. Currently three versions of the DD tomography algorithms exist: tomoDD, tomoFDD and tomoADD. TomoDD assumes a flat earth model and uses a pseudo-bending ray-tracing algorithm to find rays between events and stations while tomoFDD uses a finite-difference travel-time algorithm and the curvature of the Earth is considered. Both codes are based on a regularly distributed inversion grid, with the former for a local scale and the latter for a regional scale. In contrast, tomoADD adapts the inversion mesh to match with the data distribution based on tetrahedral and Voronoi diagrams. We discuss examples of applying DD tomography to characterize fault zone structure, image high-resolution structure of subduction zones, and determine the velocity structure of volcanoes.  相似文献   

14.
—The recurrence behaviour of large earthquakes, in several tectonic settings, has been explained by simple models of stress accumulation and release which assume that the fault stress state is solely a function of the far-field tectonic strain rate. However, the limited dataset of large event recurrence intervals has been a major obstacle to the verification of these and other models. We present the results from a simple analogue model of earthquake rupture and stick-slip which displays power-law frequency-size statistics and involves many cycles of large events. We show that, despite the macroscopic homogeneity of the model, large events do not conform to simple deterministic time- or slip-predictable patterns. However, when the recurrence intervals for large events are divided by the median recurrence interval, the normalized data are composed of two distinct lognormally distributed populations. One population is characterized by events which are strongly clustered in time with relatively short recurrence intervals and low moment release, the other by events which are weakly clustered in time with median-sized recurrence intervals. It is suggested that the long-term recurrence behaviour of large earthquakes, whilst being non-deterministic, may be modelled by a well-defined statistical distribution of recurrence intervals.  相似文献   

15.
We calculated the Coulomb failure stress change generated by the 1976 Tangshan earthquake that is projected onto the fault planes and slip directions of large subsequent aftershocks.Results of previous studies on the seismic fail-ure distribution,crustal velocity and viscosity structures of the Tangshan earthquake are used as model constraints.Effects of the local pore fluid pressure and impact of soft medium near the fault are also considered.Our result shows that the subsequent Luanxian and Ninghe earthquakes occurred in the regions with a positive Coulomb fail-ure stress produced by the Tangshan earthquake.To study the triggering effect of the Tangshan,Luanxian,and Ninghe earthquakes on the follow-up small earthquakes,we first evaluate the possible focal mechanisms of small earthquakes according to the regional stress field and co-seismic slip distributions derived from previous studies,assuming the amplitude of regional tectonic stress as 10 MPa.By projecting the stress changes generated by the above three earthquakes onto the possible fault planes and slip directions of small earthquakes,we find that the "butterfly" distribution pattern of increased Coulomb failure stress is consistent with the spatial distribution of follow-up earthquakes,and 95% of the aftershocks occurred in regions where Coulomb failure stresses increase,indicating that the former large earthquakes modulated occurrences of follow-up earthquakes in the Tangshan earthquake sequence.This result has some significance in rapid assessment of aftershock hazard after a large earthquake.If detailed failure distribution,seismogenic fault in the focal area and their slip features can be rapidly determined after a large earthquake,our algorithm can be used to predict the locations of large aftershocks.  相似文献   

16.
2010年9月4日新西兰南岛Canterbury平原发生了Mw7.1地震,震源深度约为10 km.本次地震发生在一条震前不为人所知的断层上.我们利用覆盖整个震区的合成孔径雷达(SAR)观测资料,通过干涉处理分析获得雷达视线向(LOS)同震形变场;以此资料为约束反演了断层的几何参数以及同震破裂分布.结果显示,该地震造成四条相对独立断层的破裂.大部分的地震矩释放发生在Greendale断层(编号1-4),其错动以右旋走滑为主,最大破裂约为8.5 m.其它三条断层中,经过震源的逆冲断层最大破裂为5.1 m (编号6),位于Greendale断层以西的逆冲断层最大破裂为3.5 m (编号5),位于Greendale断层北面的走滑断层最大破裂为1.9 m(编号7).反演的Greendale断层地表滑动与地质调查得到的地表破裂在形态和数值上均吻合较好.本次地震释放的地震矩为5.0×1019N·m,矩震级为7.1.板块边界带形变场分析表明,Darfield地震的发生受边界带应变分配在该地区残留构造应力场控制,其复杂性体现了区域构造应力场的特点.地震对其周围地区的应力场影响较大,库仑应力增加区与余震分布有一定对应关系,并在2011年Christchurch 6.3级地震发震断层区域造成约0.1bar的库仑应力增加,对此地震有一定的触发作用.  相似文献   

17.
Crustalstructureandaccuratehypocenterde┐terminationalongtheLongmenshanfaultzoneZHUZHAO1)(赵珠)JUNFAN1)(范军)SI-HUAZHENG2)(郑斯华)AK...  相似文献   

18.
Using a set of synthetic P‐ and S‐wave onsets, computed in a 1D medium model from sources that mimic a distribution of microseismic events induced by hydrofrac treatment to a monitoring geophone array(s), we test the possibility to invert back jointly the model and events location. We use the Neighbourhood algorithm for data inversion to account for non‐linear effects of velocity model and grid search for event location. The velocity model used is composed of homogeneous layers, derived from sonic logging. Results for the case of one and two monitoring wells are compared. These results show that the velocity model can be obtained in the case of two monitoring wells, if they have optimal relative position. The use of one monitoring well fails due to the trade‐off between the velocity model and event locations.  相似文献   

19.
固体围压下完整花岗岩粘滑现象的实验研究   总被引:3,自引:0,他引:3  
程海旭  吴开统 《中国地震》1993,9(3):211-222
本文用完整的花岗岩样品在固体围压三轴实验装置上压缩,研究围压和应变速率对岩样变形破裂过程、粘滑应力降、粘滑复发间隔及样品主破裂几何分布的影响。结果表明,加载速率较低时,粘滑应力降较大,复发间隔较长且分布无规律。加载速率越大,粘滑应力降越小,复发间隔也近似相等,粘滑事件表现出准周期性。围压和应变率较低时,岩石的主破裂会演变成两个交叉的共轭断裂面;而围压和应变率较高时,岩石的主破裂则演变成单一断裂面或入字形断裂面。本文结果对认识中国大陆板内地震孕育、发生及重复过程;研究地震重复发生的机制及影响地震复发间隔的主要因素都有重要意义。  相似文献   

20.
We investigate the history, kinematics, principal stress orientations and geometry of deformation at the end of a bent normal fault segment of the Wasatch fault zone, Utah. Three fault types, developed in Archean crystalline rocks, reflect progressive uplift of fault-related footwall rocks. Chlorite-breccias and phyllonites reflect deep-level, reaction-assisted plastic deformation along the north-striking part of the segment. Planar, fretted faults which formed by cataclasis cut the phyllonites and breccias and are developed throughout the footwall of the segment. Youngest faults are hematitecoated, extremely narrow polished surfaces. Slip vectors and kinematic analyses of small faults developed in the footwall indicate oblique normal slip along the north-striking portion of the segment. Slip vectors and fault orientation along the northwest-striking portion of the segment reflect complexly oriented slip on faults which strike subparallel and at high angles to the main fault trace, yet slip is confined to a broad fault-parallel zone. Small faults at the southernmost tip of the segment indicate a strong influence of the north-striking Weber segment to the south. Inversion of fault data for principal stress orientations document complexly oriented principal stresses through the segment boundary zone and suggest that 3 may have reoriented approximately 60° over the life of the segment. Subsurface structure combined with small fault data indicate the segment boundary is comprised of a southwest-plunging bedrock high which is reflected by a sharp bend in the Brigham City segment. The southern end of the Brigham City segment may have started, as a straight, north-striking fault which has bent due to changes in stress orientations and/or interaction with the adjacent Weber segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号